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Abstract: Numerous conflicting criteria exist in building design optimization, such as energy
consumption, greenhouse gas emission and indoor thermal performance. Different simulation-based
optimization strategies and various optimization algorithms have been developed. A few of them
are analyzed and compared in solving building design problems. This paper presents an efficient
optimization framework to facilitate optimization designs with the aid of commercial simulation
software and MATLAB. The performances of three optimization strategies, including the proposed
approach, GenOpt method and artificial neural network (ANN) method, are investigated using a case
study of a simple building energy model. Results show that the proposed optimization framework
has competitive performances compared with the GenOpt method. Further, in another practical case,
four popular multi-objective algorithms, e.g., the non-dominated sorting genetic algorithm (NSGA-II),
multi-objective particle swarm optimization (MOPSO), the multi-objective genetic algorithm (MOGA)
and multi-objective differential evolution (MODE), are realized using the propose optimization
framework and compared with three criteria. Results indicate that MODE achieves close-to-optimal
solutions with the best diversity and execution time. An uncompetitive result is achieved by the
MOPSO in this case study.

Keywords: building performance design; multi-objective optimization; residential building;
algorithm comparison

1. Introduction

Global energy demand follows an upward trend due to industrial development and population
growth over the past decades. Global greenhouse gas (GHG) emissions also increase yearly with
one gigaton carbon dioxide equivalent (Gt CO2− eq) from 2000 to 2010 as compared to 0.4 Gt CO2− eq
from 1970 to 2010 [1,2]. In the context of China’s efforts to reduce the growing energy consumption
and GHG emissions, it is widely recognized that the building sector has an important role, accounting
for about 20% of the total energy consumption [3] and 35% of the total CO2 emissions [4].

According to the Ministry of Construction’s statistics, more than 80% of the existing buildings
in China are high-energy buildings [5]. Various simulation-based optimizations have grown in
popularity in designing high performance buildings due to increasing concerns about building energy
consumption, GHG emission and indoor comfort [6,7]. A “parametric study” is a commonly-used
method. One may fix all but one variable and tries to optimize a cost function with respect to
the non-fixed variable. Such a manual procedure is time consuming and often impractical for
more than two or three independent variables [8,9]. The development of more control-friendly
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and accurate optimization tools, such as GenOpt, BeOptand Opt-E-Plus, are successfully applied
to various practical optimizations [10]. Furthermore, researchers combine data-driven methods in
place of building simulation to relieve the computing burden. The frequently-used methods include
artificial neural network (ANN), support vector machine, etc. [11–13]. For dealing with conflict
criteria for building performance design, numerous optimization algorithms (especially multi-objective
optimization algorithms (MOOAs)) are widely used, such as the non-dominated sorting genetic
algorithm (NSGA-II), multi-objective particle swarm optimization (MOPSO), multi-objective genetic
algorithm (MOGA), multi-objective differential evolution (MODE), etc. So far, the performances of
different frameworks on building optimization problems (BOPs) have not been well understood due to
the lack of research-based comparison and analysis. Designers also lack case-study-based comparison
and discussion among different optimization algorithms for building performance design. To this end,
the major aims of this study include:

- Investigating and comparing different simulation-based optimization frameworks in the field of
building performance design.

- Understanding and analyzing the behaviors of different optimization algorithms in solving
building performance design issues.

To do so, an efficient and control-friendly optimization scheme is developed in this study to
facilitate optimization designs with the aid of mature building simulation software and MATLAB-based
algorithms. In the next section, we will briefly review the frequently-used optimization frameworks for
building energy analysis, and a short survey on the performance of different optimization algorithms
is provided. Details of the proposed optimization framework are described in Section 3. In Section 4,
the performances of three optimization frameworks are compared with Case Study I. Four popular
MOOAs are investigated and compared in terms of three criteria with practical Case Study II. Some
concluding remarks are given in the last section.

2. Brief Literature Review

There is some literature on the topic of simulation-based building performance optimization
published. For this study, more than 40 papers since 2010 dealing with building performance design
have been surveyed on the aspects of optimization frameworks and applied algorithms.

2.1. Different Optimization Frameworks

For building performance simulation (BPS), there is a wide range of mature software available,
including TRNSYS, EnergyPlus, DOE-2, IDA ICE, etc. In order to find the optimal design performance
with such a simulation engine, numerous state-of-the-art optimization tools, such as GenOpt, JEPlus,
BeOpt, MultiOpt, etc., have been widely used to couple the energy simulation programs with the
generic optimization algorithms [14–19]. Bucking [15] presented a methodology to measure the effect
of economic incentives on a net-zero energy building located in Montréal by BeOpt. Delgram [16]
studied the building architectural parameters on the building energy consumptions of a single room
model by coupling JePlus with EnergyPlus. Chantrellea [17] developed a multi-criteria tool called
MultiOpt for optimizing the building renovation operations, including building envelopes, heating
and cooling loads and control strategies. For HVAC operations, a dynamic optimization method
was applied to analyze the control strategies of an HVAC modeling system based on the Simulink
library [20]. Among the reported optimization tools, GenOpt is the most used tool in the literature
set. Futrell [18] combined a light environment analysis software and GenOpt to optimize building’s
daylighting design. Karaguzel [21] minimized the life cycle costs of a office building subject to building
materials using EnergyPlus and GenOpt.

Considering that the above optimization schemes probably lead to heavy computational burden
and time-consuming problems, data-driven methods also have been widely applied [11,12,22–26].
Among various data-driven methods (ANNs [12,23,24], support vector machine [22], PODmodel [26], etc.),
the ANN method is most used for its great performance and simple structure. ANNs resemble the
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biological neural system, composed of layers of parallel neurons and weighted links. They learn the
relationship between the input and output variables by studying previously-recorded data. Asadi [12]
presented a multi-objective optimization model that combined ANN with NSGA-II to quantitatively
assess technical choices in a school retrofit project. Gossard [23] adopted the ANN-NSGA-II model to
search the optimal value of a building envelope considering annual energy consumption and summer
comfort degree. Similarly, Wei [24] and Magnier [25] used ANN models to characterize building
behaviors and combined them with optimization algorithms for the thermal comfort and energy
efficiency of residential buildings. It is worth noticing that although the data-driven model can speed
up the optimization process, it inevitably introduces extra modeling error. It was reported that the
average error of the data-driven model was about ±6% [26].

2.2. Different Optimization Algorithms

A number of building design issues can be treated as optimization problems, such as building
orientation, indoor thermal comfort, daylighting, life cycle analysis, structural design analysis, energy
cost, etc. Typically, an optimization problem can be represented in mathematical form as:

Pc : min
x∈X

f (x),

where f : Rn → R is the objective function and Xis a user-specified constraint set. The selection of the
optimization algorithm depends on the problem that needs to be solved. Generally, the optimization
algorithms can be classified as single objective or multiple objective algorithms [27]. It was found that
about 40% of the building optimization studies used the single-objective approach, while 60% used the
multi-objective approach [13].

Single objective optimization algorithms can be divided into two branches: direct search
algorithms and evolutionary algorithms. Direct search algorithms use heuristic rules to search
through the solution space requiring that the objective function be continuous or near-continuous.
To optimize whole-building energy use, Eisenhower [28] used the derivative-free method (NOMAD)
which contains the mesh adaptive direct search (MADS) algorithm. Wetter [29] minimized the annual
energy consumption of an office building for lighting, cooling and heating by the pattern search
algorithm. The author also admitted that direct search algorithms may be trapped into local minima
in building design problems, and population-based optimization algorithms were recommended,
which can avoid such problems, even in a large solution space [30]. In the last ten years, evolutionary
algorithms have received considerable attention and have been widely used for building performance
design [13,15,18,21,31]. Particle swarm optimization (PSO), the genetic algorithm (GA) and the hybrid
evolutionary algorithm were used for minimizing the life cycle costs of office buildings [21], optimizing
daylighting performance [18] and the optimal design of a net zero energy house [15].

Designers often have to deal with conflicting design criteria simultaneously, such as energy
demand, thermal comfort, construction cost, and so on. Compared with single-objective optimization
algorithm, MOOAs, such as NSGA-II, MOPSO, MOGA and MODE, offer greater potential [2,12,16,32–35].
Magnier [25] optimized the thermal comfort and energy consumption of a residential house by
NSGA-II. Liu [36] applied MOPSO to search the trade-off between life cycle cost and the carbon
emission of building designs. MOGA was used to find the interaction between energy consumption,
retrofit cost and thermal discomfort hours of a school building [12]. To explore the usage of MOOAs
in building performance design, 21 papers using different MOOAs are investigated. Figure 1 reveals
that four algorithms, NSGA-II, MOPSO, MOGA and MODE, are most used for building performance
design. Among them, the usage of NSGA-II and MOPSO accounts for 76% of the total 21 papers.
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Figure 1. Usage of different multi-objective optimization algorithms (MOOAs) on building performance
optimization problems.

3. Optimization Framework Based on Data Interactive Mechanism and MATLAB

Although numerous optimization tools have been widely applied, researchers and practitioners
who are more familiar with MATLAB may wish to use it directly. In this study, we design a
MATLAB-based optimization framework to facilitate the algorithms’ realization and comparison.

3.1. Data Interactive Mechanism

The proposed optimization framework contains three modules: simulation module (TRNSYS,
EnergyPlus, DOE-2, etc.), optimization module (MATLAB) and data interactive module. The key
one is a C++-based data interactive module, which interfaces with both the simulation software and
MATLAB. The core idea of the data interactive mechanism is: at the beginning of each iteration during
the searching procedure, the data interactive module reads control variables from MATLAB, passes
them to the simulation software and calls the simulation program. At the end of each iteration, the
data interactive module reads the results from the simulation software and passes them to MATLAB
to help evaluate the cost function. The basic structure is shown in Figure 2, along with how it passes
data by text files.

Multi-objective optimization

algorithm

(Matlab based m file)

Interactive module

(C++ program)

Simulation program

(TRNSYS, EnergyPlus, DOE-2,

etc.)

Alg_output file Alg_input file

Sim_input file Sim_output file

S
 im

 u
 la

 tio
 n


M
 o
 d

 u
 le

D
 a

 ta
  In

 te r a
 c tiv e

M
 o

 d
 u

 le

O
 p

 tim
 iz a

 tio
 n



M
 o
 d

 u
 le

Figure 2. The basic optimization frame.
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A general optimization problem using the proposed data interactive mechanism can be set up
as follows:

S1. Build the whole building energy simulation using mature software, such as TRNSYS,
EnergyPlus and DOE-2. Make sure that the simulation program reads the control variables and
writes the related results by text files.

S2. Define objective function(s), specify possible constraints on the control variables and apply an
optimization algorithm in MATLAB in the form of m f ile. Make sure that the objective function(s) is
evaluated by writing Alg_output f ile and reading Alg_input f ile properly at each iteration.

S3. Specify all of the IO files properly in the interactive module, and run the optimization by
calling the optimization.

S4. Read the optimized control variables in MATLAB when the stopping criterion is satisfied.

3.2. Multi-Objective Optimization Algorithms

MOOAs are based on Pareto-dominance, which enables the algorithm to optimize all of the
objectives simultaneously. They can overcome many shortcomings of the classical weighted-sum
approach, as well as providing more solutions from a single optimization problem. Four multi-objective
optimization algorithms are briefly described below. They are all applied using the proposed
framework and compared in Section 5.

3.2.1. NSGA-II

Being a population-based approach, GA are well suited to solve multi-objective optimization
problems. The NSGA-II is one of the most commonly-used MOOAs [33]. As a modified version
of NSGA, NSGA-II has a better sorting algorithm, incorporates elitism, and no sharing parameter
needs to be chosen. At each generation, the populations are combined and sorted according to the
non-domination concept. The number of non-dominated points available after sorting may be greater
than the populations size N, which defines the number of elite points that are kept by the algorithm.
The algorithm selects the N least crowded solutions by using the crowding distance measure and
rejects the rest of the non-dominated points. Due to these improvements, both convergence and
spreading of the solution front are ensured, without requiring the use of any external population [37].

3.2.2. MOPSO

Moore and Chapman firstly proposed the feasibility PSO algorithm in solving multi-objective
optimization problems [38]. MOPSO is characterized by the excellent maneuverability and
convergence, which has been validated and applied widely by many researchers. Each potential
solution, which is called a particle, is compared to a flying bird within the search space. Each particle
is characterized by its position, velocity and past performance. The particles fly randomly and update
themselves by their own characteristic and social characteristics from other particle. There is an extra
set called the external archive containing all of the particle leaders. Archive will be updated at each
iteration when the new leader particle is better than the old one. Finally, the external archive contains
the output of the searching results [36].

3.2.3. MOGA

There are many variations of multi-objective GA in the literature. In this study, we use MATLAB’s
‘gamultiobj’ function (a variant of NSGA-II) for comparison. Like any other GA, it is based on the
evolution of a population of individuals, each of which is a solution to the optimization problem.

3.2.4. MODE

Differential evolution (DE) is a branch of evolutionary algorithms developed by Rainer Storn
and Kenneth Price [39]. The approach works by creating a random initial population of potential
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solutions where it is guaranteed by some repair rules. In MODE, an initial population is generated
at random from a Gaussian distribution; all dominated solutions are removed from the population;
if the number of non-dominated solutions exceeds some threshold, a distance metric relation is used to
remove those parents who are very close to each other. Three parents are selected at random. A child
is generated from the three parents and is placed into the population if it dominates the first selected
parent; otherwise, a new selection process takes place. This process continues until the population
is completed.

4. Investigation of Different Optimization Strategies: Case Study I

A simple structure containing three thermal zones is constructed in this section. The proposed
optimization framework with other two strategies, the GenOpt method and the ANN method, are all
employed for performance comparison.

4.1. Model Description

The simple model is shown in Figure 3 referring to the literature [29]. The structure
(length × width = 7.4 m × 4.1 m) is divided into three rooms: a north-facing room, a south-facing
room and a hallway between the two rooms. The walls are made of concrete and have 20 cm of exterior
insulation. Both windows have an external shading device that is activated only during summer when
the total solar irradiation on the window exceeds 200 W/m2.

Figure 3. Schematic view of the EnergyPlus model containing three thermal zones (Unit:mm).

4.2. Objective Function and Design Variables

For simplicity, a single objective of annual energy consumption is set in this case study, which is
expressed as:

Etotal =
Qheat
Cheat

+
Qcool
Ccool

+ Elight + Eelectrical (1)

where Qheat and Qcool are the zone’s annual heating and cooling load (kWh) respectively; Elight and
Eelectrical are the zone’s primary electricity consumption (kWh) for lighting and electrical appliance,
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respectively; Cheat and Ccool are plant efficiencies that relate the zone load to the primary energy
consumption for heating and cooling generation, including electricity consumption for fans and pumps.

Three design variables are chosen to be optimized: the width of both windows, the transmittance
of the external shading device and the azimuth of the whole building. These three variables are proven
to have impacts on annual energy consumption [40,41]. The ranges of design variables are summarized
in Table 1.

Table 1. The ranges of design variables: Case Study I.

Design Variables Type Range

Azimuth of building (◦) Continuous −180∼180
Window transmittance Continuous 0.2∼0.8
Width of window (m) Continuous 0.1∼5.9

4.3. Performance Comparison

We build the structure model using EnergyPlus. Four variables Qheat, Qcool , Elight and Eelectrical
are set as the output of EnergyPlus. For the proposed optimization framework, we set the interactive
module as Section 3’s description. At the beginning of each iteration, the new values of the design
variables are updated to the model file of EnergyPlus by the interactive module; at the end of each
iteration, the outputs of the simulation are automatically saved to report files, which will be read by
the interactive module for objectives’ evaluation in MATLAB. For GenOpt method, the optimization
design is similar to the literature [21,32]. For the ANN method, a three-layer feed-forward neural
network with input, hidden and output layers, is setup for surrogate model construction. The network
training and validation refers to [12]. Here, we provide the ANN’s basic setup in Table 2. The same
PSO algorithm is implemented in MATLAB and GenOpt. The details of the parameters’ setting are
shown in Table 3. Two criteria are selected for comparison: execution time and optimal searching
ability. All simulations are carried out using the same workstation with 3.4-GHz quad-core processors
and 8 G RAM.

Table 2. Main parameters of the ANN model: Case Study I.

Main Parameters Value

Model structure 3-18-1
Number of epochs 100

Training target mean squared error 0.0001
Training function Levenberg–Marquardt
Other parameters Default

Table 3. Main PSO parameters setting: Case Study I.

Main Parameters Value

Number of generations 50
Population size 30

Acceleration coefficient c1 2
Acceleration coefficient c2 1.8

The initial weight value 0.9
The final weight value 0.4

To investigate each approach’s performance, all three strategies conduct twelve optimization
runs. The best five results are recorded in Tables 4 and 5. It can be seen from Table 4 that the ANN
method has the shortest execution time (less than 1 min). It should be noted that the training time
for ANN modeling is not included (costs extra 70 min or so). The proposed framework has a similar
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execution time compared with GenOpt (shortens average execution time by 5.4%). Table 5 shows that
GenOpt and the proposed framework achieve similar optimal solutions. This means that the proposed
framework has competitive performances compared with the GenOpt method. Additionally, the
MATLAB interface gives it great potential in complex building performance optimization applications.
For the ANN method, the optimization performance is largely dependent on the modeling accuracy.
In this case, the optimal solution is worse than the other two strategies. The modeling error is the main
reason [24].

Table 4. Comparison of the execution time (min) between the three frameworks: Case Study I.

Method 1 2 3 4 5 Average Best

ANN method 0.3421 0.4232 0.6321 0.5313 0.8323 0.6045 0.4232
GenOpt 60.312 65.332 65.432 66.434 67.285 64.959 60.312

Proposed framework 46.673 47.354 48.332 50.832 54.534 49.545 46.673

Table 5. Comparison of optimal solution (kWh) between GenOpt and the proposed framework:
Case Study I.

Method 1 2 3 4 5 Average Best

ANN method 2810.32 2868.33 2910.22 2916.32 2936.34 2888.306 2810.32
GenOpt 2715.27 2718.23 2730.71 2769.46 2763.65 2739.464 2715.27

Proposed framework 2767.1 2704.76 2706.32 2713.56 2714.75 2721.298 2704.76

5. Optimization Algorithms Comparison: Case Study II

We have validated the performance of the proposed method using Case Study I. Here, a more
practical and complicated case is modeled for optimization algorithms’ investigation. With the aid of
the MATLAB interface, four multi-objective algorithms, NSGA-II, MOPSO, MOGA and MODE, are
realized and compared.

5.1. Model Description

A typical residential building located in Nanjing, East China, is chosen for the second case study.
The structure of the building is shown in Figure 4 (left). The gross floor area is 104 m2, and its
floor-to-roof height is 3 m. Detailed information about the geometry and layout of the residential
building is listed in Table 6. In order to facilitate the consumption calculation, the house is divided into
five thermal zones (shown in Figure 4 (right)). It is assumed that the building is equipped with variable
refrigerant volume (VRV) air conditioning systems in the master bedroom, secondary bedroom and
living room. The heating and cooling set points are 18 ◦C and 25 ◦C for the operating strategy of
the zone thermostat control. Each zone is equipped with a fluorescent lamp (CFL) lighting system.
The occupancy, total residential lights and electric equipment loads are recorded and adjusted at each
time step. Details are shown in Figures A1–A3 and Table A1. Air infiltration is assumed only for the
kitchen and toilet at the rate of 0.002 m3/s. We assume that the life cycle of the residential building is
30 years.
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Figure 4. The structure of the residential building containing five thermal zones (Unit:mm).

Table 6. Location and geometry of the residential building: Case Study II.

Parameter Value

Longitude (◦) 32.83
Latitude (◦) 118.8

Elevation (m) 30
Gross area (m2) 104

Floor-to-roof height (m) 3
Exterior wall area (m2) 112
Interior wall area (m2) 144

5.2. Design Variables and Objective Functions

In this case, 16 building performance-related parameters are considered as design variables.
As we know, envelop-related variables are commonly defined as continuous variables to facilitate
the optimization [42], such as conductivity, thermal absorbance, visible absorbance, etc. However,
the optimum results may not be obtained for sure in a practical application, because real materials
probably do not match the optimum ones exactly [43]. In this study, all of the material component
variables are treated as discrete variables, and only materials, which are available on the market
(recorded in Table A2), are used in the optimization process. Beyond that, the window-to-wall ratio
(WWR) of three zones and the azimuth are set as continuous variables. Table 7 shows all of the design
variables with the corresponding range of variation.

With the consideration of economic demand, environmental issues and thermal comfort
simultaneously, three indicators are set as objectives for the optimization application. They are the life
cycle cost (LCC), the carbon dioxide equivalent (CO2 − eq) and the total percentage of cumulative time
with discomfort over the whole year (TPMVD).
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Table 7. Details of 16 building parameters for optimization: Case Study II. WWR, window-to-wall ratio.

Construction Symbol Type Material No. or Variation Range

Floor
Lay1 EF1 Discrete 19, 20, 21
Lay 2 EF2 Discrete 22, 23

Exterior wall
Lay 1 EW1 Discrete 7, 8, 9

Lay 2 EW2 Discrete
10, 11, 12, 13

14, 15, 16, 17, 18
Lay 3 EW3 Discrete 4, 5, 6

Interior wall
Lay 1 IW1 Discrete 4, 5, 6

Lay 2 IW2 Discrete
7, 8, 9, 10

11, 12, 13, 14, 15
Lay 3 IW3 Discrete 4, 5, 6
Roof
Lay 1 ER1 Discrete 1, 2, 3
Lay 2 ER2 Discrete 7, 8, 9
Lay 3 ER3 Discrete 4, 5, 6

Window Window Discrete 24, 25, 26
Azimuth (◦) Azi Continuous −180∼180

WWR (Zone 1) (%) WZ1 Continuous 5∼25
WWR (Zone 2) (%) WZ2 Continuous 5∼25
WWR (Zone 3) (%) WZ3 Continuous 5∼25

(1) LCC:

Building LCC includes all of the costs during the building’s lifespan. LCC provides a
comprehensive and consistent evaluation for discerning the true economic benefits of the building [44].
Generally, the indicator is formulated as the following equation [45]:

LCC = IC + IE + IR + ID (2)

where IC represents the initial costs, IE represents the total operation cost, IR represents the repair
and maintenance cost during the life cycle and ID represents recycle and disposal cost in the end.
Operation cost mainly includes annual electrical energy consumption. Considering the global energy
shortage, as well as currency devaluation, operation cost takes the inflation and escalation in energy
prices into consideration.

(2) CO2 − eq:

CO2 − eq emission in the residential buildings is classified into material production CO2 − eq
emission and operation CO2 − eq emission. Material production CO2 emission is the sum of the
CO2 − eq emission when construction materials are produced and transported. Operation CO2 − eq
emission mainly includes the emission of electricity consumption in the building. To determine the
electricity-related emissions, the annual heating and cooling load is calculated first [36]. The total
CO2 − eq emission during the life cycle is expressed as:

CO2 − eq =
m

∑
i=1

Qi × Si + t×Qe × fe (3)

where m is the number of the building materials; Qi is the CO2 − eq emission of the i-th material
(kg/m2); Si is the area of the i-th material (m2); t is the the whole life cycle (years); Qe is the
electricity CO2 − eq emission (kg/kWh); fe is the annual electricity consumption of the building
(kWh). The CO2 − eq emissions of the building materials used in this study are recorded in Table A3.
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(3) TPMVD:

As we know, index PMV assesses thermal comfort level by a function of four environmental
variables (temperature, relative humidity, mean radiant temperature and air velocity) and two
individual parameters (metabolic rate and clothing value). The PMV value of zero is expected to
provide the lowest percent of people dissatisfied (PPD) among a population [46]. In order to adjust
the thermal comfort, the total percentage of cumulative time with discomfort over the whole year
during the occupancy period is evaluated as TPMVD. It is a two-tailed index that measures the thermal
discomfort throughout the whole year. The index of TPMVD can be expressed as [12]:

TPMVD =
∑(w fi, ti)

Σti
(4)

w fi =


1, EPMV < Elower
0, Elower < EPMV < Eupper

1, Eupper < EPMV

(5)

where Elower and Eupper represent the borders of the thermal comfort and EPMV is the index PMV at
each time step.

5.3. Criteria for Performance Comparison

In this case, four different multi-objective optimization algorithms are applied. The performance
of each algorithm is evaluated in three aspects [34]:

(1) Execution time;
(2) Convergence to the optimal set, indicated by the normalized generational distance, GDn;
(3) Diversity of solutions in the Pareto-optimal set, indicated by the normalized diversity

metric, DMn.
To avoid the biases to one objective function, the GDn and DMn are calculated on the optimal

solutions by using the normalized values of the three objective functions (denoted by Xn, Yn and Zn).
Xn, Yn and Zn are described as follows:

Xn =
X

max(X)−min(X)
(6)

Yn =
Y

max(Y)−min(Y)
(7)

Zn =
Z

max(Z)−min(Z)
(8)

The GDn indicates the average Euclidean distance between the best Pareto front and the optimal
solution obtained by each algorithm. The convergence metric can be expressed as follows:

GDn =
1
n
(

n

∑
i=1

d2
i )

1
2 (9)

where di is the Euclidean distance between the obtained solution and the nearest best Pareto solutions.
n is the number of obtained solutions.

The normalized diversity metric DMn is used to measure the diversity of the obtained solutions.
It is calculated as:

DMn =
d f + dl + ∑N

i=1 |di − d̄|
d f + dl + (N + 1)d̄

(10)

where di is the Euclidean distance between the consecutive solutions in the obtained non-dominated
set of solutions; d̄ is the average of di(i = 1, ..., N) assuming there are N solutions in the obtained
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non-dominated set; d f and dl are the Euclidean distances between the extreme and the boundary
solutions. By definitions, lower values of GDn and DMn are both preferred.

5.4. Algorithm Performance Comparison

With the aid of the MATLAB interface, four popular multi-objective algorithms, NSGA-II, MOPSO,
MOGA and MODE, are realized in the proposed framework. The parameters’ settings are important,
affecting the optimization performance. For different kinds of algorithms, it is hard to adjust every
parameter equally. Here, population size and the iteration number of each algorithm are both set to the
same values. For the other parameters, we set the default values. The parameter settings are shown
in Table 8. Based on the framework described in Section 3, the optimization case is set up using the
proposed data interactive mechanism. All experimental settings are identical to Case I. Three objective
functions are defined according to Section 5.2’s discussion. Each algorithm is executed five times.
In order to evaluate the convergence procedure of each algorithm, we record their Pareto frontiers at
30, 60, 90 and 120 generations, respectively, in Figures 6–9. All of the obtained Pareto solutions are
collected in Figure 5. In this figure, the red points represent the best Pareto solutions finally obtained
by all four algorithms.

Table 8. Parameters setting of four algorithms: Case Study II. NSGA, non-dominated sorting genetic
algorithm; MOPSO, multi-objective particle swarm optimization; MOGA, multi-objective genetic
algorithm; MODE, multi-objective differential evolution.

Algorithm Options Value

NSGA-II Maximum iteration 50
Population size 20

Crossover probability 0.9
Mutation probability 0.5

MOPSO Maximum iteration 50
Population size 20

Acceleration coefficient c1 2
Acceleration coefficient c2 1.8

The initial weight value 0.9
The initial final value 0.4

MOGA Maximum iterations 50
Population size 20

Crossover probability 0.9
Mutation probability 0.5

MODE Maximum iteration 50
Population size 20

Subpopulation size 20
Scaling factor 0.5

Crossover probability 0.9

From Figures 6–9, it can be seen that after 120 generations, NSGA-II, MOGA and MODE all almost
achieve their steady states. Table 9 shows that NSGA-II and MOGA have the similar best execution
time (400 min or so). MODE coverages most quickly and takes about 90 generations to complete the
whole optimization procedure. The execution time of MODE ranges from 385 min–423 min, and the
best time is only 385 min. Comparatively speaking, MOPSO costs the longest time to reach convergence
(442 min–477 min).

In terms of convergence of the obtained solutions (indicated by the GDn), the NSGA-II obtains a
better average/best GDn (0.25 and 0.21) than the others, while the MOPSO is still the worst (average:
0.38; and best: 0.34).

In terms of the diversity of the obtained solutions (indicated by the DMn), MODE, MOGA
and MOPSO have similar performances. Compared with them, the diversity of NSGA-II performs
poorly. From Figure 6, it is seen that Pareto solutions of NSGA-II are tightly clustered near the best
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Pareto solutions. The average DMn of NSGA-II is 0.54582. The boxplots of the three indexes for four
algorithms are also provided in Figure 10.
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Figure 5. Pareto frontier (red points) with all candidates of the Pareto solutions (black points).

Table 9. The four algorithms’ performance comparison with three criteria.

Indicator Algorithm 1 2 3 4 5 Average Best

Time MOGA 440.15 403.68 399.65 427.85 425.86 419.438 399.65
MODE 385.35 423.92 401.45 395.18 395.62 400.304 385.35

NSGA-II 459.13 407.24 430.74 444.38 425.43 433.384 407.24
MOPSO 470.22 453.14 442.96 462.65 477.04 461.202 442.96

GDn MOGA 0.3217 0.2456 0.3085 0.3025 0.2765 0.29096 0.2456
MODE 0.3012 0.3214 0.2876 0.3174 0.3347 0.31246 0.2876

NSGA-II 0.2135 0.2547 0.2117 0.3013 0.2945 0.25514 0.2117
MOPSO 0.3956 0.3859 0.4063 0.3415 0.3846 0.38278 0.3415

DMn MOGA 0.3421 0.3458 0.3695 0.3715 0.3018 0.34614 0.3018
MODE 0.3392 0.3107 0.3296 0.3076 0.3272 0.32286 0.3076

NSGA-II 0.5217 0.4924 0.5143 0.7072 0.4935 0.54582 0.4924
MOPSO 0.3582 0.3692 0.3987 0.3356 0.3562 0.36358 0.3356

In general, MODE outperforms the others in two of three indicators, including execution time
and DMn. It shows MODE’s competitive ability for building performance optimization. In this case,
MOPSO does not exhibit any outstanding features. MOGA and NSGA-II achieve average rankings
in most tests; thus, they can be trusted to find a near optimal design solution. It is worth noting that
an algorithm may achieve high performance on one criterion, but obtain low performance on other
criteria. Hence, it is hard to draw any solid conclusions from the single case study.
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Figure 6. Pareto frontiers at 30, 60, 90 and 120 generations, NSGA-II. (a) 30 generations;
(b) 60 generations; (c) 90 generations; (d) 120 generations.

4.8
5.1

5.4
5.7

6.0
6.3

6.6

36

38

40

42

44

46

48

50

52

2.5
3.0

3.5
4.0

4.5
5.0

5.5
6.0

 

LCC x10 4 (CNY)

TP
M

V
D

 (%
)

CO 2
-eq x10

4  (kg)

(a)

4.8
5.1

5.4
5.7

6.0
6.3

6.6

36

38

40

42

44

46

48

50

52

2.5
3.0

3.5
4.0

4.5
5.0

5.5
6.0

 

TP
M

V
D

 (%
)

CO 2
-eq x10

4  (kg)
LCC x10 4 (CNY)

(b)

4.8
5.1

5.4
5.7

6.0
6.3

6.6

36

38

40

42

44

46

48

50

52

2.5
3.0

3.5
4.0

4.5
5.0

5.5
6.0

TP
M

V
D

 (%
)

CO 2
-eq x10

4  (kg)
LCC x10 4 (CNY)

(c)

4.8
5.1

5.4
5.7

6.0
6.3

6.6

36

38

40

42

44

46

48

50

52

2.5
3.0

3.5
4.0

4.5
5.0

5.5
6.0

TP
M

V
D

 (%
)

CO 2
-eq x10

4  (kg)
LCC x10 4 (CNY)

(d)

Figure 7. Pareto frontiers at 30, 60, 90 and 120 generations, MOPSO. (a) 30 generations;
(b) 60 generations; (c) 90 generations; (d) 120 generations.
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Figure 8. Pareto frontiers at 30, 60, 90 and 120 generations, MOGA. (a) 30 generations;
(b) 60 generations; (c) 90 generations; (d) 120 generations.
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Figure 9. Pareto frontiers at 30, 60, 90 and 120 generations, MODE. (a) 30 generations;
(b) 60 generations; (c) 90 generations; (d) 120 generations.
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Figure 10. Boxplots of GDn, DMn and execution time for four algorithms. (a) GDn; (b) DMn;
(c) execution time (min).

5.5. Result Analysis

Figures 11 and 12 show the dispersion of the building parameters on the best Pareto frontier,
which may help designers make decisions on building performance design. For example, by examining
the design parameters on the best Pareto frontier, it is evident that 100-mm concrete (Material No.
20; see Table A2) and carpet (Material No. 22) are the most used in the construction of the floor.
For exterior walls and windows, frequently-used materials corresponding to the best solutions can also
be found. It is worthwhile to mention that some of building envelope components have non-dominated
solutions. The reason is that the economic and environmental costs are conflicting in reality. The prices
of environmentally-friendly materials are commonly higher than those of conventional ones. However,
if the thermal performance of the building is poor, the energy consumption of the HVAC system will
increase. Hence, the improvement of thermal comfort performance at the building design phase can
cut the energy consumption of the HVAC system in the operation phase.
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Figure 11. Frequency analysis of each discrete design variable on the best Pareto frontier.
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Figure 12. Boxplot of the continuous design variables on the best Pareto frontier.

6. Conclusions

In this paper, a MATLAB-based interactive optimization framework is developed to facilitate
building performance optimization designs. A performance comparison of three optimization schemes,
including the GenOpt, ANN and the proposed method, has been carried out by means of computational
experiments using a simple building energy model. Results show that the ANN method has the
shortest execution time, but the modeling error makes its optimization solution poor. Relatively, the
proposed interactive framework has competitive performances compared with the GenOpt method,
and its MATLAB interface makes it suitable for applying latest algorithms for complex building
performance optimizations.

With the proposed optimization platform, the comparison of four popular multi-objective
optimization algorithms, including the NSGA-II, MOPSO, MOGA and MODE, has been carried
out using a practical project located in Nanjing, China. To quantify the main features of these MOOAs,
three criteria are applied along with a comprehensive test procedure. Two important assumptions of
this case study are that (i) all algorithms have the same generation/population sizes and (ii) other
settings of the algorithms are set as default. Results show that MODE is superior to the others in the
indicators of execution time and DMn. MOGA and NSGA-II achieve average rankings in most tests.
MOPSO does not exhibit any outstanding features in this case. The performance of the MOOAs may
be sensitive to different cases; more criteria and case studies will be conducted in the future work.
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Abbreviations

The following abbreviations are used in this manuscript:

Qheat Annual heating load (kWh)
Qcool Annual cooling load (kWh)
Qheat Plant efficiency to primary heating consumption
Qcool Plant efficiency to primary cooling consumption
Elight Annual lighting consumption(kWh)
Eelectrical Annual electrical consumption(kWh)
LCC Life cycle cost (CNY)
IC Building initial cost (CNY)
IE Building total operation cost (CNY)
IR Building Repair and maintenance cost (CNY)
ID Building recycle and disposal cost (CNY)
CO2 − eq Carbon dioxide equivalent (kg)
Qi Material CO2-eq emission (kg/m2)
Si Material area (m2)
Qe Electricity CO2-eq emission (kg/kWh)
fe Annual Electricity consumption (kWh)
GDn Normalized generational distance
DMn Normalized diversity metric

Appendix A

Table A1. Maximum predicted occupation and installed electric power within each zone.

Zone Name
Net Floor
Area (m2)

Number of
People

Lighting
Power (W)

Electrical
Equipment Power (W)

Master bedroom
(Zone 1) 22.55 2 65 200

Secondary bedroom
(Zone 2) 20.87 1 60 175

living room
(Zone 3) 41.26 3 110 500

Kitchen+Toilet
(Zone 4 + Zone 5) 16.32 1 40 1300
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Table A2. Reference materials of the building envelope and corresponding cost [45,47,48].

Material No. Material Thickness (mm) Price (CNY/Unit)

1 Asphalt shingle 10 35/m2

2 Wood shingle 2.5 38/m2

3 Metal surface 0.8 95/m2

4 Gypsum board 16 15.9/m2

5 Gypsum board 13 11.9/m2

6 Gypsum board 9.5 7.9/m2

7 Fibrous insulation 10 7.8/m2

8 Fibrous insulation 15 11.6/m2

9 Fibrous insulation 20 15.6/m2

10 Cellular polyurethane 40 38/m2

11 Cellular polyurethane 60 57/m2

12 Cellular polyurethane 80 76/m2

13 Rigid insulation fiberglass 40 18/m2

14 Rigid insulation fiberglass 60 28/m2

15 Rigid insulation fiberglass 80 38/m2

16 Brick 90 1.68/Block
17 Brick 140 2.08/Block
18 Brick 190 2.58/Block
19 Concrete 50 305/m3

20 Concrete 100 305/m3

21 Concrete 150 305/m3

22 Carpet 20 16.2/m2

23 Acoustic tile 9 17.1/m2

24 Aluminum window 6 + 9A + 6 19/m2

25 Aluminum window 8 + 9A + 8 27/m2

26 Aluminum window 10 + 9A + 10 43/m2

Table A3. Total CO2 emission the building materials used in this study.

Material Unit CO2 − eq (kg)

Asphalt shingle T 65.44
Wood shingle m3 5.75
Metal Ferrum T 982.16

Gypsum board-16 mm m2 357
Gypsum board-13 mm m2 2.14
Gypsum board-9 mm m2 1.99

Fibrous insulation T 2593.14
Cellular polyurethane T 1505.89

Rigid insulation fiberglass T 2593.14
Brick m3 473.5

Concrete-2500psi m3 235.89
Carpet m2 0.89

Acoustic tile m2 1.16
Aluminum window-6 mm m2 20.15
Aluminum window-8 mm m2 25.51
Aluminum window-10 mm m2 29.08
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Figure A1. Daily schedule for occupancy, (a) Master bedroom; (b) Secondary bedroom; (c) Living room;
(d) Toilet and Kitchen.
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Figure A2. Daily schedule for lighting. (a) Master bedroom; (b) Secondary bedroom; (c) Living room;
(d) Toilet and Kitchen.
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Figure A3. Daily schedule for electrical equipment. (a) Master bedroom; (b) Secondary bedroom; (c)
Living room; (d) Toilet and Kitchen.
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