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Abstract: Switchgrass displays an excellent potential to serve as a non-food bioenergy feedstock
for bioethanol production in China due to its high potential yield on marginal lands. However,
few studies have been conducted on the spatial distribution of switchgrass-based bioethanol
production potential in China. This study created a land surface process model (Environmental Policy
Integrated Climate GIS (Geographic Information System)-based (GEPIC) model) coupled with a life
cycle analysis (LCA) to explore the spatial distribution of potential bioethanol production and present
a comprehensive analysis of energy efficiency and environmental impacts throughout its whole life
cycle. It provides a new approach to study the bioethanol productivity and potential environmental
impact from marginal lands based on the high spatial resolution GIS data, and this applies not
only to China, but also to other regions and to other types of energy plant. The results indicate
that approximately 59 million ha of marginal land in China are suitable for planting switchgrass,
and 22 million tons of ethanol can be produced from this land. Additionally, a potential net energy
gain (NEG) of 1.75 × 106 million MJ will be achieved if all of the marginal land can be used in
China, and Yunnan Province offers the most significant one that accounts for 35% of the total. Finally,
this study obtained that the total environmental effect index of switchgrass-based bioethanol is the
equivalent of a population of approximately 20,300, and a reduction in the global warming potential
(GWP) is the most significant environmental impact.

Keywords: switchgrass; bioethanol; Environmental Policy Integrated Climate GIS (GEPIC); life cycle
analysis (LCA); marginal land

1. Introduction

The last several decades have witnessed a rapid increase in the use of fossil fuels as urbanization
and industrialization have accelerated, and as the major energy resource, fossil fuels have contributed
immensely to the modernization of human society [1]. However, with the steady depletion of fossil
fuels, an increasing number of problems has emerged such as resource and energy scarcity along with
environmental crises [2,3]. There is an urgent need to reduce the current dependence on fossil fuels,
dramatically reduce wasted energy, and significantly shift energy consumption from oil, coal and

Energies 2017, 10, 260; doi:10.3390/en10020260 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/journal/energies


Energies 2017, 10, 260 2 of 15

gasoline to an alternative energy source [4,5]. The versatility of biomass as a potential energy source has
attracted wide attention in recent years [6–8]. As an attractive alternative, biofuel has the advantages
of being renewable, clean, beneficial for the environment, and a source of significant economic
potential [9]. The biofuel that is most frequently transported around the world is bioethanol [10], and it
is a renewable fuel made from plant-based feedstocks that is used in combustion engines [11]. In the
near future, bioethanol has the potential to address the urgent challenge of our energy needs and
pressing environmental issues [12]. The first generation of bioethanol production, primarily extracted
from foods crops such as grains, sugar cane and vegetables, was widely used in the USA and Brazil [13].
In the early phases of the development of bioethanol production, it commanded wide interest in the
field of biomass energy, but recently, the focus on bioethanol decreased dramatically due to its conflict
with food supply for human beings [14]. Second generation bioethanol produced from lignocellulosic
feedstocks (residues from agriculture, forestry, industry and/or dedicated lignocellulosic energy crops),
has received greater emphasis than the first generation of ethanol fuel [15,16]. The current sources of
bioethanol avoid the limitations of the first generation of this fuel and provide a larger proportion of
energy product sustainability in addition to greater environmental benefits [17].

In a large number of second generation bioenergy feedstocks, switchgrass (Panicum virgatum),
a perennial warm season bunchgrass native to North America [18], has proven to be an excellent
potential source of cellulosic ethanol [19]. Switchgrass has been the subject of research for 70 years,
and the initial studies on it focused mainly on livestock and conservation [20,21]. Recently, switchgrass
has attracted significant attention for bioethanol production because of its high yield potential on
marginal lands [22] along with low establishment and production costs [23]. It has been accepted to
have a high energy efficiency for ethanol production in numerous studies [24–27].

With a growing demand for clean energy, China is vigorously promoting research on bioethanol
with a particular emphasis on developing non-food feedstocks to produce ethanol for fuel [28].
Based on the analysis of net energy and emission reduction, switchgrass has proved to feature a high
energy efficiency for ethanol production compared with other energy plants (e.g., cassava, jatropha
and pistacia) in China as described previously [29,30]. China, as a country with large population and
few cultivated land per capita, has to make the most of the marginal land (e.g., alkaline land or barren
land) to develop the energy plants. Switchgrass can adapt to various types of soil, thus making it
highly tolerant to a variety of environmental conditions, and have high yield potential on marginal
cropland, which will be suited as a promising alternative energy source for ethanol production in China.
As a competitive feedstock for ethanol production, switchgrass has received a great deal of attention
from numerous scholars in China. Previous studies focused mainly on its growth characteristics [31,32],
planting conditions [32–34], and suitability and conversion efficiency to produce bioethanol [35–37].
However, empirical studies on the use of marginal land for ethanol production from switchgrass
along with environmental benefits in the whole life cycle have barely been addressed. Regional
estimates and the spatial heterogeneity of natural environmental conditions, both critical for biomass
production, have not been clearly investigated due to the current lack of spatially explicit data. In the
present study, the spatial distribution for the potential of switchgrass yield was explored using the
Environmental Policy Integrated Climate GIS (Geographic Information System)-based (GEPIC) model
for the first step. The model is used to simulate the spatial and temporal dynamics of the major
processes of the soil-crop-atmosphere management system [38,39]. Compared with other models,
the GEPIC model has the ability of high precision of crop yield simulation, relatively minimal input
data and wildly used [39–41]. It takes into account factors relating to weather, hydrology, nutrient
cycling, tillage, plant environmental control and agronomics. The marginal land suitable for energy
plants, the localized parameters for the GEPIC model and model accuracy verification are presented
in detail in our previous research by our team [42]. Here, this model enables estimates to be made
on the potential for switchgrass-based fuel ethanol production on a regional scale using a Life Cycle
Assessment (LCA) method. Finally, the energy efficiency, environmental impacts and economics of
switchgrass ethanol were also evaluated in China. Based on this analysis, it appears that a spatial view
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of switchgrass-based fuel ethanol production in China and related issues can be clearly determined
that will be helpful for decision making in the development of the switchgrass ethanol industry.

2. Materials and Methods

Switchgrass can adapt to various types of soil, thus making it highly tolerant to a variety of
environmental conditions [43]. Compared with other crops, switchgrass displays higher drought
capacity, lower fertilizer requirements, less insect damage and higher levels of production [44]. As one
of the few non-food crops in China, switchgrass can also guarantee a high yield potential on marginal
lands, which meets the requirements of the national energy strategies [45]. Thus, switchgrass has
become widely attractive to the energy sector and research institutions, and it is regarded as one of the
most promising feedstock sources for bioethanol production in China.

Switchgrass originally grew in most of North America with the exception of areas west of the
Rocky Mountains and north of 55◦ N latitude [46]. It was first introduced into China in 1980s, and since
then it has been widely grown in northern China [47]. Switchgrass uses C4 carbon fixation and has
a high capacity to utilize nitrogen and water. The plants grow quickly and are adaptable for high
production. The ideal level of rainfall is approximately 800 mm, and the initial temperatures for seed
germination are approximately 5.5 to 12 ◦C with an optimal growth temperature from approximately
20 to 30 ◦C [48]. The accumulated temperatures among various varieties differ, the leaf (≥10 ◦C
accumulated temperature, usually expressed in degree-days (◦C·d)) is approximately 79 to 152 ◦C·d
while the incubation period is approximately 634 to 1777 ◦C·d [49]. Switchgrass is tolerant of varying
soil conditions, although it grows better in loam and sandy soil. In China, there is much land with
a pH of 4.4 to 9.1 that is suitable for the growth of switchgrass.

2.1. Life Cycle Analysis

Early on, LCA models were pioneered in the enterprises for the eco identification and
eco diagnosis of production systems and are now successfully applied to evaluate the potential
environmental influence for a production and process (or service) system in its whole life cycle [50].
Generally, there are four phases for one production in that cycle: (1) production (including the
utilization of the raw material); (2) sales/transportation; (3) service and (4) final treatment. Each stage
may cause differing environmental issues. LCA can provide a holistic view of environmental impacts
for production during the life cycle system [51]. Given this ability, LCA is considered to be a powerful
methodology to study the interactions between biofuel production and the environment, and this type
of analysis has been performed previously [52–54].

The goal of this paper is to present the LCA of ethanol fuel production from switchgrass in
China and to evaluate the energy efficiency and environmental impacts of the production system
for bioethanol. The basic structure of the LCA method includes four interrelated parts: definition
of the target and scope, inventory analysis, impact assessment and analysis of the results [55].
The system boundary in this study includes four processes: (1) switchgrass planting; (2) switchgrass
transport; (3) fuel ethanol production; and (4) fuel ethanol transport (Figure 1). The inventory and
the environmental impact categories are summarized in Figure 1. The analysis of these results was
conducted to identify the energy efficiency and environmental impacts of the processes involved in
switchgrass and ethanol production on a national scale in China.

The product system of LCA in this study is subdivided into four processes: (1) planting;
(2) feedstock transport; (3) bioethanol production; and (4) bioethanol transport.
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Figure 1. The system boundary, energy flow, emission inventory and environmental impact categories
of this study.

2.1.1. Planting

In planting, the input of physical and energy mainly includes seed, fertilizer, diesel, harvesting,
packing, etc. The emission of gases mainly occurs in the process of fertilizing, pesticide spraying,
diesel fuel, etc. The yield of switchgrass is the output in this unit.

2.1.2. Feedstock Transport

Feedstock transport refers refers to the transport of the switchgrass from the field to the ethanol
production plant. The transportation of this unit is mainly dependent upon the road transport,
and farm vehicles are the main form of transportation. The input of this unit is diesel fuel for the
transport vehicles.

2.1.3. Bioethanol Production

Bioethanol production involves the processing of the raw material (switchgrass) into ethanol
fuel, mainly including pretreatment, liquification, molecular sieve dehydration, post-processing and
ethanol denaturation. The energy inputs for this unit include electricity, coal, steam and hot air.

2.1.4. The Bioethanol Transport

Bioethanol transport in this study refers to the transport of the ethanol production from plants to
the fuel transfer or filling stations. For the purposes of reducing energy consumption and emissions,
this transport process mainly analyzes the modes of transportation that combine railway transport
with that of roads. The railway transport is designed for the transportation from the plants and the
fuel transfer stations while the road transport is used for the distance between the fuel transfer stations
and the filling stations.
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2.2. Model Establishment

2.2.1. Model for Switchgrass Yield Estimation

The GEPIC model was used to estimate the yield of switchgrass in this study. The GEPIC model
was developed from the EPIC model, which was mainly applied to the risk assessment of agricultural
disasters, soil wind erosion, the impact of climatic change on the crop growth, etc. [41]. Coupled
with GIS technology, Liu et al. established the GEPIC model to study the water production potential
and the yield for winter wheat, which resulted in the application of the EPIC model on a global
scale [38]. Since then, the GEPIC model has been widely used around the world as well as validated
and localized in the Guangxi Province of China [56,57]. We used the GEPIC model to estimate the
yield of switchgrass with terrain, climate, soil and management datasets from the field. The marginal
land was a limiting condition to control the simulation scope in the model. Finally, the key growth
parameters of switchgrass in China were collected and formatted for the yield estimation (see Table 1,
column Data Source).

2.2.2. Model for Energy Efficiency Evaluation

The model for energy efficiency evaluation of LCA was established based on the first law of
thermodynamics, and it was used to reflect the quantitative relation between FE (fossil energy) and BE
(bioenergy), which was defined as NE (Net Energy). NE, as defined in Equation (1), is a key indicator
to evaluate the life cycle energy efficiency of the switchgrass bioethanol production:

NE = BE − FE1 − FE2 − FE3 − FE4 + FE5, (1)

where BE stands for the output energy, and FE1 (the fossil energies for the seeds, pesticide, fertilizer,
electricity and mechanical fuel), FE2 (the transportation fuel energy consumption), FE3 (the heat energy,
electricity and other industrial auxiliary energy) and FE4 (the transportation fuel energy consumption)
are the input fossil energies (FE) in each unit (planting unit, feedstock transport unit, bioethanol
production unit and bioethanol transport unit). FE5 stands for the substitute energy of the by-products
produced. The calculation methods for BE, FE1, FE2, FE3, FE4 and FE5 are described in more detail
as follows:

BE = HCVethanol , (2)

where HCVethanol (29.66 MJ/kg) stands for the high heating value of the ethanol production:

FE1 =
∑I(XEIi × Xi)

Y × x
(3)

where Xi is the number of material or energies consumption in the production process, XEIi is the
corresponding energy density, Y is the crop yield and x is the conversion rate of ethanol:

FE2 =
d1 × TE × H

Y × x
, (4)

where d1 is the average transportation distance of the material supply, TE is the fuel consumption per
unit distance per unit of weight and H is energy density of fuel transport:

FE3 = ∑i(Ei × EEIi), (5)

where Ei stands for the energy consumption (e.g., coal, electric and other supplementary energy) in
the transformation stage and EEIi is corresponding energy density:

FE4 = d2 × TE2 × H2 (6)
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where d2 is the average transportation distance of the transmission process, TE2 is the energy
consumption intensity for transportation and H2 is energy density:

FE5 = ∑i(EWi × Mi) (7)

where EWi is the substitutable factor of by-products produced in the conversion process and Mi is the
yield of the by-products.

In contrast to previous work, we calculated the NE in this paper based on the spatial distribution
of switchgrass-based bioethanol yield rather than the NE calculation by unit mass or unit area. This is
a good method to examine the spatial difference of NE of switchgrass-based bioethanol for this study.

2.2.3. Model for Environmental Impact Evaluation

The model for environmental impact evaluation was established according to the international
standards (ISO 14040 and ISO 14044) [58,59] for life cycle analysis, and the processes are described
as follows: (1) classification of the inventory data: the inventory data for the bioethanol life cycle
are first collected and then classified into different environmental impact categories, including the
Global Warming Potential (GWP), Photochemical Ozone Creation Potential (POCP), Acid Potential
(AP), Human Toxicity Potential (HTP) and Air Quality Potential (AQP); (2) characterization of the
environmental impact categories: this step is necessary for the analysis of the potential contributions
and impacts, and it is used mainly to quantify the emissions in terms of a common unit for
each environmental impact category [60]. The equivalent model was used in this study for the
characterization of environmental impact of the emissions in the life cycle; (3) normalization of
the environmental impact categories: normalization is used to exclude the magnitude differences
among the categories according to the standardized benchmarks which referenced the study by
Xia et al. here [61,62]. The normalized results were the number of people affected by per-unit emissions;
and (4) weighting: the calculated weights of different environmental impact categories in the bioethanol
life cycle was established by analytical hierarchy process (AHP) based on the study by Xia et al. [62].

2.3. Data Acquisition

2.3.1. Data for Marginal Land Extraction

The marginal land suitable for switchgrass growth was extracted using a multi-factor integrated
assessment method [63] based on the geographic data presented in Table 1 and comprehensively
considering the growing conditions required for switchgrass.

Table 1. Basic data for marginal land extraction.

Items Criteria Parameters Resolution Data Source

Land use data
Shrub land, sparse forest land,
grassland, shoal/bottomland,
alkaline land and bare land.

1 km
Data Center for Resources and

Environmental Sciences, Chinese
Academy of Sciences (RESDC)

Basic geographic
data

Slope 90 m Shuttle Radar Topographic
Mission (SRTM)

Soil organic 1:1,000,000 RESDC

Soil type 1:1,000,000 RESDC

Soil pH 1:1,000,000 RESDC

Meteorological data

Annual average
temperature/◦C 1 km China Meteorological

Administration (CMA)

≥10 ◦C Accumulated
temperature/◦C·d 1 km CMA

Annual precipitation 1 km CMA
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2.3.2. Data for Switchgrass Yield Estimation Using the GEPIC Model

The terrain, climate, soil (Table 1) and field management data were used in this study for the GEPIC
model to simulate switchgrass production on marginal land. In addition, the key growth parameters
were also adapted for the model according to existing literature, field visits and consultation with
relevant experts (see Table 1, column Data Source). Table 2 shows the key parameters localized for
simulating switchgrass yield.

Table 2. Localization of the key parameters for simulating switchgrass yield.

Parameters Parameter Definitions Model Value Localized Value

TB Optimal temperature for plant growth in ◦C 27.5 25 [64]
TG Minimum temperature for plant growth in ◦C 12 6.5 [64]
HI Harvest index 0.95 1 (Field visit)

DLAI Peaks in the growing season 1 0.98 (Field visit)
HMX Maximum crop height in m 2 2.7 [65]

RDMX Maximum root depth in m 2 3 [65]
GSI Maximum gas hole degree in mmol·m−2·s−1 0.0074 69 [66]

WAC2 Influence rate of the carbon-dioxide concentrations on the plant 660.52 1.1 [64]
GMHU Heat units required for germination in ◦C 100 152 [64]

2.3.3. Data for Energy Efficiency Evaluation

The following tables describe the energy consumption in the planting unit (Table 3), transport
unit (Table 4), and bioethanol production unit (Table 5) during the process of switchgrass-based
bioethanol production. Data for Tables 3–5 were obtained by field investigations and the literatures
analysis [67–75].

Table 3. Energy consumption in the switchgrass planting unit.

Input N-Fertilizer P-Fertilizer K-Fertilizer Herbicide Diesel Lime Total

Unit kg kg kg kg L kg
IQ 1 80.0 87.0 166.0 13.9 50.0 150.0
EI1 2 46.5 7.0 6.9 270.0 44.0 7.3
EI2 3 3700 610.0 1100 3700 2200 1100 12,500

Percentage 30% 5% 9% 30% 18% 9% 100%
1 Input quantity (unit/ha); 2 Energy intensity (MJ/unit); 3 Energy input (MJ/ha).

Table 4. Energy consumption in the transport unit.

Items Transportation Units 1 Input

Feedstock
transport

Distance Road km 160.0
Energy intensity MJ/L 44.0

Intensity of fuel consumption L/t.km 0.05
Intensity of fuel energy consumption MJ/t·km 2.2

Energy input MJ/feedstock (t) 350.0
Conversion coefficient Feedstock (t)/ethanol (t) 3.9
Converted into ethanol MJ/ethanol (t) 1400

Bioethanol
transport

Distance
Road km 80.0

Railway km 500.0
Intensity of fuel energy consumption Road MJ/t·km 2.2
Intensity of fuel energy consumption Railway MJ/t·km 0.5

Energy input MJ/ethanol (t) 402.0

Total Total energy input MJ/ethanol (t) 1800
1 t refers to ton.
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Table 5. Energy consumption in the bioethanol production unit.

Stages
Energy Consumption

EBP 7Electric
(kWh/ethanol (t))

Steam
(t/ethanol (t))

Coal
(t/ethanol (t))

Pretreatment 270.0
H & F 1 94.0 1.4
D & D 2 115.0 10.8

WT 3 81.0 1.2
Denaturation 7.4

AQ 4

Quantity 570.0 13.3 0.5
EI 5 3.6 J/kWh 2680 MJ/t 29,000 MJ/t

EIT 6 2050 35,600 14,000
EBP 7 27,000

SF 8 15,800
Biogas 8060

Electricity 3080
NEC 9 24,800

1 Hydrolysis and fermentation; 2 Distillation and dehydration; 3 Wastewater treatment; 4 Auxiliary equipment;
5 Energy intensity (MJ/t); 6 Energy in total (MJ/ethanol (t)); 7 Energy provided by by-products (MJ/ethanol (t));
8 Solid fuel; 9 Net energy consumption (MJ/ethanol (t)).

2.3.4. Data for Environmental Impact Evaluation

The emissions associated with the planting unit in this study included volatile organic compounds
(VOC), carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), nitrous oxides (NOx, N2O),
sulfur oxides (SOx) and PM10 (Figure 1). The emissions in the switchgrass planting phase are
mainly caused by the input of fertilizer, pesticides and diesel. The emissions in the transport phase
originated from the transport for the switchgrass and bioethanol by road, railway or a combination
of the two. The inputs of coal and steam are the main source of the emissions associated with the
bioethanol production unit. Table 6 shows the emissions from the planting, transport and bioethanol
production units.

Table 6. Emissions from the planting, transport and bioethanol production units (g/ethanol (t)).

Emissions VOC CO NOx PM10 SOx CH4 N2O CO2

Planting 870.0 490.0 2200 650.0 2700 781.0 15.0 7.7 × 105

FT 1 34.0 55.0 85.0 7.5 0.7 0.6 2.3 9.9 × 104

BP (coal) 2 15.0 1500 3400 204 9700 18.0 12.0 1.6 × 106

BP (steam) 3 22.0 640.0 2600 46.0 1.4 × 104 3200 8.8 1.9 × 106

BT1 4 4.3 7.1 11.0 0.98 0.09 0.08 0.30 1.3 × 104

BT2 5 1.0 1.6 2.5 0.22 0.02 0.02 0.07 2900
BTE 6 0.01 0.09 1.2 0.11 2.8 0.01 0.01 900.0

1 Feedstock transport; 2 Bioethanol production (coal); 3 Bioethanol production (steam); 4 Bioethanol transport
(by truck); 5 Bioethanol transport (by diesel locomotive); 6 Bioethanol transport (by electric locomotive).

3. Results and Discussion

3.1. Marginal Land Suitable for Switchgrass

The marginal land suitable for switchgrass in China based on the following principles using the
data in Table 1: (1) the land defining principles: deduct the cultivated land resource based on the land
use data in China; (2) the ecological protection constraint: deduct the sparse forest land, shrub land and
the bottomland for ecological conservation; (3) the stockbreeding development constraint: deduct the
high and moderate dense grasslands in the five grazing provinces (Qinghai, Xinjiang, Inner Mongolia,
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Xizang and Ningxia); (4) the large-scale development of energy plant principles: first, take out the
land of the wetland, water body and built-up land, and establish the land use types for energy plant;
second, extract the marginal land suitable for switchgrass based on the growing conditions of the
switchgrass using the spatial analysis technology of GIS. Figure 2 shows the marginal land resources
suitable for switchgrass planting in China. In general, there is considerable marginal land in China
capable of growing switchgrass. This consists of an area of 59.40 million ha that currently comprises
shrubs, sparse forest and grassland. It is estimated that 10 provinces have marginal lands suitable
for switchgrass totaling over one million ha in China. The marginal lands suitable for switchgrass in
Yunnan and Sichuan Provinces account for fifty percent of that in the country.
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3.2. Spatial Distribution of Switchgrass Yield

Figure 3 displays the spatial distribution of switchgrass yields. The distribution indicates that
the major grain-producing regions for switchgrass are mainly in southern China with a maximal
production of 18.45 t/ha. According to the switchgrass: ethanol conversion coefficient (3.85:1) [76],
the production distribution of bioethanol was also obtained and ranged from 1.79 to 4.79 t/ha.
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3.3. Energy Efficiency

Figure 4 shows the net energy gain (NEG) of switchgrass-based bioethanol production in China,
which was estimated by the total energy input and output throughout the whole life cycle. Overall,
the NEG was positive for the whole nation and indicated the great productive potential of NEG [77].
According to these statistics, the NEG of switchgrass-based bioethanol in China is approximately
1.75 × 106 million MJ. The Yunnan Province presents the best NEG per grid unit, which accounts for
35% of the total NEG in China, followed by Guizhou, Hubei, and Guangxi Provinces.
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3.4. Environmental Impacts

The environmental emission in the life cycle here relates to the total emissions of all the stages
from the feedstock planting to the ethanol allocation. In this study, we first classified and organized the
inventory of the environmental emissions, and then characterized, normalized and weighted combined
the environmental impact produced by the different polluting gases in the life cycle to calculate the
environmental impact category. Table 7 displays the environmental impact category indicators in
the life cycle and the normalization and weighting results of switchgrass-based bioethanol. The total
environmental impact index of switchgrass-based bioethanol is approximately 20,300 population
equivalents (the number by expressing people affected by per-unit emissions, and calculated based on
the normalization of environmental impact categories) according to the switchgrass planting scale in
this study. GWP produces the most significant environmental impact index during the life cycle with
the value of approximately 15,000 population equivalents, followed by HTP and AP, which account
for 12.91% and 12.31%, respectively. The contributions of AQP and POCP are very small, i.e., less than
1% in total.

Table 7. Environmental impacts of switchgrass-based bioethanol.

EI 1 EII (t) 2 SB 3 SR 4 WF 5 WR 6 Percentage (%)

GWP (CO2 eq) 5.2 × 108 7200 7.1 × 104 0.2 1.5 × 104 74.0
AP (SO2 eq) 1.0 × 106 56.0 1.7 × 104 0.1 2500 12.0

AQP (PM10 eq) 4.2 × 104 45.0 940.0 0.1 140.8 0.7
HTP (1,4-DB eq) 8.2 × 105 109.0 7500 0.4 2600 12.1
POCP (C2H2 eq) 2100 16.8 123.5 0.2 19.8 0.1

Total environmental impact index 2.0 × 104 100
1 Environmental impacts; 2 Environmental impact indicators (t); 3 Standardized benchmarks (kg); 4 Standardized
results (population equivalents); 5 Weighting factors; 6 Weighted results (population equivalents).

4. Conclusions

This paper simulates the spatial distribution the potential for the production of switchgrass-based
bioethanol, the energy efficiency, and the environmental impacts in China using the method that
coupled a land surface process model (GEPIC) with an LCA method. The following main conclusions
are reached:

(1) The marginal land suitable for switchgrass planting in China is approximately 59 million ha.
The switchgrass yields can reach a maximum production of 18.45 t/ha, and 22 million tons of
ethanol can be produced in the country. A potential NEG of 1.75 × 106 million MJ can be achieved

(2) The total environmental effect index of switchgrass-based bioethanol is approximately
20,300 population equivalents, and the most significant environmental impact category is the
GWP. According to the analysis of energy efficiency, it appears that Yunnan province could be
considered as a priority development zone for switchgrass-based bioethanol in China, followed
by the Guizhou, Hubei, and Guangxi Provinces.

This study explores the spatial distribution of switchgrass-based bioethanol production potential
at the national scale in China and presents a comprehensive analysis of the energy efficiency and the
environmental impacts in its life cycle. However, there are several limitations to this study. The yield
of switchgrass will be affected by soil and crop management strategies, including planting, storage and
transport management that are not considered in this study. In addition, the sweet switchgrass: ethanol
conversion coefficient used in this paper is a specific value that is not suitable for all switchgrass
varieties. However, this study provides an innovative approach for the switchgrass-based bioethanol
production estimates, net energy efficiency and the environmental impacts assessment based on high
spatial resolution GIS data by the GEPIC model, and this applies not only to China but also to other
regions and other types of energy plant.
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