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Abstract: A conductive direct-write process of multilayered coils for micro electromagnetic generators
is proposed. This novel approach of using silver ink to form the conductive structures largely reduces
the fabrication complexity, and it provides a faster alternative to the conventional semiconductor
methods. Multi-layered coils with insulation were accurately layered on a micro-machined
cantilevered diaphragm by a dispenser. Coils several layers thick could be used to increase the
power output and double coils were separated by a layer of insulation. Six prototypes, all capable of
efficient conversion of vibrational energy into electrical energy, were fabricated. The experimental
results, which include measurements of the electromotive force and power output, are presented.
Prototypes with two coils and thicker conducting layers had less resistance and the power output was
much more than that of a single-coil unit. This generator can produce 82 nW of power at a resonance
frequency of 275 Hz under 5 g excitation.
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1. Introduction

The miniaturization of consumer electronics and mechanical structures has been receiving a
great deal of attention for a considerable time. Extensive fabrication techniques have been developed
for complex structures, including gray-scale lithography, reactive ion etching, LIGA (lithography,
electroplating, and molding), and electron beam lithography [1–3]. Several three-dimensional (3D)
fabrication techniques have been developed recently for the fabrication of conductive structures with
electrical functionality, which include micro-stereolithography [4], micro-laser-sintering [5], inkjet
printing [6,7], and continuous writing [8–10]. These offer dramatic advantages over typical methods in
terms of low cost, large area, and a quick processing time, but still suffer from some limitations with
respect to the structure and material.

Laser writing creates patterned structures through ablation or selective sintering. Lee proposed a
micro-stereolithography process for the fabrication of metal microstructures that used a low-viscosity
metal powder suspension sintered by a focused laser beam [4]. Regenfuss realized structural features
and performed laser micro-sintering with sub-micrometer grained metal powders, where the challenge
was the high temperature and porosity [5]. These techniques often require expensive equipment or
costly photopolymers.

Lower-cost inkjet printing for the creation of functional 3D structures of material with specific
electrical properties, layer by layer, have also been extensively studied. Fuller additively built electrical
circuitry by inkjet printing using nanoparticle metal colloids which were then sintered at 300 ◦C [6].
Kullmann used piezoelectric inkjet printing to grow micro-wires and micro-walls, selectively combined
with simultaneous in situ laser annealing [7]. However, the printing performance was limited by the
rough edges and the low viscosity of the material.
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To achieve a good flat surface in a short time at a low cost, several direct-write processes using
micro-nozzles or syringe needles have been developed in one-step processes to make continuous
conducting structures. Lebel used direct-write micro-extrusion to fabricate carbon nanotube/polymer
nanocomposite coils through a micro-nozzle which were then cured using UV irradiation which
followed the extrusion point [8]. Lu presented a hybrid technology combined with direct-write and
projection micro-stereolithography with carbon nanotubes dispersed in a photopolymer solution for
3D conductive structures [9]. Ladd demonstrated free-standing 3D microstructures patterning by
extruding a low-viscosity liquid metal through a capillary [10].

In this study we used a three-axis dispenser to demonstrate conductive-structure fabrication on
micro electromagnetic generators [11,12]. To increase the output voltage and power, continuous
volumes of metallic or insulating material were stacked on a cantilever microstructure at
computer-defined positions, which enabled the all-additive fabrication of layers of coils without
using vacuum deposition or any high-temperature process. Movement of the coils in the magnetic
field from external permanent magnets causes the induction of an electromotive force according to
Faraday’s law. The output power would increase as the numbers of coil turns increase. A schematic of
the micro-generator with two coils is shown in Figure 1.
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2. Theory

A micro electromagnetic generator can be modeled as a second-order system, m
..
z(t) + c

.
z(t) +

kz(t) = −m
..
y(t), where z(t) is the relative displacement of the mass to the vibrating housing

(see Figure 2).
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For a given sinusoidal displacement input of the housing, y(t) = Ycos(ωt), the time response of
the system can be expressed by [13–15]

z(t) =
(ω/ωn)

2Y√
[1− (ω/ωn)

2]
2
+ [2ξ(ω/ωn)]

2
cos(ωt + φ), (1)
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φ = tan−1
(

cω

k−mω2

)
, (2)

where ωn is the natural frequency given by ωn =
√

k/m, ξ is the overall damping ratio given by
ξ = c/2mωn, and c is the overall damping coefficient. When the system is operated at the natural
frequency, ω = ωn, the phase (φ) equals −90◦, and the relative displacement, zm(t), is given by

zm(t) =
Y
2ξ

cos
(

ωt− 90
◦
)

, (3)

ξ = ξe + ξp =
ce + cp

2mωn
, (4)

where ce, cp, ξe and ξp are defined as the transducer damping coefficient, the parasitic damping
coefficient, the transducer damping ratio and the parasitic damping ratio, respectively.

The output power is generated by the relative motion between an external magnet and the coils
fabricated on the cantilevers. The instantaneous kinetic power dissipation of the mass due to the
damping is defined by p(t) = c

.
z(t)2. Part of the power is converted to electricity by electromagnetic

transduction, and the rest is lost through the parasitic damping of the system. For maximum electrical
power generation, the energy harvester is typically designed to operate at a resonance which results in
large coil displacement. The average power generation can be further expressed by [14–16]

Pe =
1
2

ce
∣∣ .
zm(t)

∣∣2 =
mξeωn

3Y2

4ξ2 , (5)

The power generation is therefore a function of the mass, damping ratio, natural frequency, and
input displacement.

3. Fabrication

The fabrication processes of the proposed energy harvester are schematically shown in Figure 3.
First, a silicon-based cantilever diaphragm was fabricated using a standard microelectromechanical
systems (MEMS) process. To make the coils on the 7 mm × 7 mm cantilevers, conductive ink was
extruded from a nozzle over a helical path to form the first coil (one to three layers) which was then
cured at 150 ◦C for 30 min. Insulating material was then extruded evenly over the top of the first coil
and cured, and then more conductive ink (one to three layers) was deposited to form the second coil
and a final 30 min curing at 150 ◦C was done. This technique gives better control over the thick metal
laid down, by means of pressure, speed, and temperature, than a typical micromachining process does.
Table 1 shows the detailed sizes of the fabricated generator.

Energies 2017, 10, 337 3 of 9 

 

For a given sinusoidal displacement input of the housing, ( ) = ( ), the time response 
of the system can be expressed by [13–15] ( ) = ( ⁄ )( ⁄ ) ( ⁄ ) cos( + ), (1)

= tan , (2)

where  is the natural frequency given by = / 	,  is the overall damping ratio given by = /2 , and  is the overall damping coefficient. When the system is operated at the natural 
frequency,	 = , the phase ( ) equals −90°, and the relative displacement, ( ), is given by ( ) = ( − 90), (3)

= + = , (4)

where , ,  and  are defined as the transducer damping coefficient, the parasitic damping 
coefficient, the transducer damping ratio and the parasitic damping ratio, respectively. 

The output power is generated by the relative motion between an external magnet and the coils 
fabricated on the cantilevers. The instantaneous kinetic power dissipation of the mass due to the 
damping is defined by ( ) = ( ) . Part of the power is converted to electricity by electromagnetic 
transduction, and the rest is lost through the parasitic damping of the system. For maximum electrical 
power generation, the energy harvester is typically designed to operate at a resonance which results 
in large coil displacement. The average power generation can be further expressed by [14–16] = | ( )| = , (5)

The power generation is therefore a function of the mass, damping ratio, natural frequency, and 
input displacement. 

3. Fabrication 

The fabrication processes of the proposed energy harvester are schematically shown in Figure 3. 
First, a silicon-based cantilever diaphragm was fabricated using a standard microelectromechanical 
systems (MEMS) process. To make the coils on the 7 mm × 7 mm cantilevers, conductive ink was 
extruded from a nozzle over a helical path to form the first coil (one to three layers) which was then 
cured at 150 °C for 30 min. Insulating material was then extruded evenly over the top of the first coil 
and cured, and then more conductive ink (one to three layers) was deposited to form the second coil 
and a final 30 min curing at 150 °C was done. This technique gives better control over the thick metal 
laid down, by means of pressure, speed, and temperature, than a typical micromachining process 
does. Table 1 shows the detailed sizes of the fabricated generator. 

 
Figure 3. Fabrication process steps. Figure 3. Fabrication process steps.



Energies 2017, 10, 337 4 of 8

Table 1. Parameters of the fabricated generator.

Parameter Size

cantilever size 7 mm × 7 mm × 0.02 mm
coil thickness 0.05 mm

insulation layer thickness 0.3 mm

Figure 4 shows the arrangement of several layers of metal used to form the coils and the insulation.
Figure 5 shows the cross-sectional photos for a single coil. Figure 6 shows photos of six electromagnetic
energy harvesters of one or two coils with one to three layers: (1a, 2a) one layer, (1b, 2b) two layers,
and (1c, 2c) three layers.
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100 and 600 Hz. An accelerometer was used to measure the acceleration of the generators. An external
magnet was placed at a distance of 0.5 mm from the generator.Energies 2017, 10, 337 5 of 9 
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Measurements which included resistance, voltage, and power were performed on six different
prototypes: 1a, 1b, 1c, 2a, 2b, 2c. We measured the resistance of the load, and calculated the power of
the generator by using Equation (6) as

P =
V2

2R
(6)

where V is the measured voltage, and R is the load resistance. Figure 8 shows the measured resistance
for micro-generators with different numbers of coil layers for a single or double coil. The resistance was
inversely proportional to the number of layers. Figure 9 shows the measured open-circuit peak-to-peak
voltages under an acceleration of 5 g with respect to the vibration frequencies as viewed on the
oscilloscope. The output voltages had maximum values at frequencies of 417, 445, and 475 Hz for a
single coil (1a, 1b, 1c) and 218, 246, and 275 Hz for a double coil (2a, 2b, 2c).
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For power measurements, the generator was connected to a resistive load and operated at its
fundamental frequency. Figure 10 shows the measured output power. For a single coil, the average
power produced was 16, 36, and 51 nW. For two coils, the average power produced was 22, 51, and
82 nW. This power increase was due to the greater number of coil turns. When a three-layer coil is
compared with a single-layer coil, the resistance decreases and the output power increases by 218% in
the case of a single coil, or 272% in the case of a double coil.
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5. Discussion

For energy harvesting, the typical vibrational frequencies are lower than 200 Hz, yet some have
higher frequencies [17–19]. According to Table 2, the proposed structures with resonant frequencies
from 218 to 475 Hz have the potential to be used in motorized equipment, such as transformers,
refrigerators, car engines, etc. [17–19]. To further reduce the resonant frequency, possible methods are
adding proof mass on the cantilever, modifying the coil structure, or making the cantilever thinner.

Table 2. Common vibration sources.

Source Frequency (Hz) Acceleration (g) Reference

car engine compartment 200 1.2 [17]
acoustics 100–10,000 5–500 [18]

transformers 50–400 0.01–0.08 [18]
refrigerator 240 0.01 [19]

wooden deck with foot traffic 385 0.13 [19]

Conventional semiconductor processes use sputtering, electroplating, laser micromachining, or
E-beam evaporating [20–27] to make conductive coils. In this work, we used a conductive direct-write
method with silver ink to fabricate the conductive structures. This method provides a faster or cheaper
alternative to the conventional methods. Table 3 shows the comparison of different fabrication methods
for making the conductive coils of the energy harvesters, and the output power of the proposed method
is acceptable.



Energies 2017, 10, 337 7 of 8

Table 3. Comparison of the coil formation processes for vibrational energy harvesters.

Reference Fabrication Method Frequency (Hz) Acceleration (g) Power (W)

Zhang et al., 2016 [20] Electroplated 250 1.5 1.43 × 10−5

Tao et al., 2012 [21] Electroplated 365 1 1.6 × 10−11

Hoffmann et al., 2009 [22] Electroplated 390 9 5 × 10−6

Zhang et al., 2015 [23] Electroplated 400 6.4 5.5 × 10−10

Sari et al., 2010 [24] Sputter deposited 95 40 2.5 × 10−10

Wang et al., 2009 [25] Sputter deposited 530 1 2.3 × 10−11

Ching et al., 2002 [26] Laser-micromachined 110 9.7 8.3 × 10−4

Zhang et al., 2011 [27] E-beam evaporated 350 4.9 2 × 10−12

This work Conductive direct-write 275 5 8.2 × 10−8

According to Equation (6), reducing the resistance of the coils or enhancing the induced voltage
would increase the generator’s power. In other words, the profile of the coil (turns and width)
would have influence on the energy harvester performance. Observed from the experimental results
(Figures 8 and 9), it can be found that the resistance decreases as the thickness of the coils increases,
and the output voltage increases as the number of coils increases. Therefore, by using the proposed
direct-write method, the coil resistance and coil loops can be adjusted without too much trouble, thus
improving the output performance of the generator.

6. Conclusions

Micro-generators fabricated by using direct-write conductive materials on cantilever diaphragms
are proposed. Thick coil structures were fabricated as a whole and then heat-cured, largely suppressing
the stress gradient. The generator vibrates around an external magnet and converts the vibrational
power into electrical power. The resistance, open circuit voltage, and output power of six prototypes
were measured. To increase the output power, the number of coils was increased and the resistance of
the coils was reduced by increasing the number of layers of metal used. A single coil can produce 16,
36, and 51 nW at 417, 445, and 475 Hz, and a double coil can produce 22, 51, and 82 nW at 218, 246,
and 275 Hz, both in response to 5 g vibration acceleration. This technique shows great promise for use
in applications such as the powering of intelligent sensor networks.
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