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Abstract: In this paper, an optimal day-ahead scheduling problem is studied for a microgrid with
multiple distributed resources. For the sake of coping with the prediction uncertainties of renewable
energies and loads and taking advantage of the time-of-use price for buying/selling electricity,
an interval-based optimization model for maximum profits is developed. To reduce the computational
complexity in solving the model, the possibility degree comparison between an interval and a real
number is used to convert the interval constraints into the general ones; meanwhile, some slack
variables and complementary conditions are introduced to eliminate the absolute-value operation.
Unlike the stochastic optimization, the interval optimization only needs the upper-lower bounds
of the uncertain variables instead of their probability distribution functions, which is beneficial to
the practical application. Furthermore, the possible profit interval and the expected optimal profit
can be determined by solving the optimization model. Numerical simulations are performed on
a microgrid system modified from the benchmark low voltage network in the European Union project
“Microgrid”, and the results demonstrate the effectiveness of the proposed method.
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1. Introduction

In recent years, the application of microgrids in power system has drawn growing attention.
A microgrid is characterized by flexibility, intelligence and compatibility. It is not only able to integrate
the small-scale distributed renewable resources, but also helps to enhance the reliability and efficiency
of the power system [1]. There are two operation modes for the microgrid, namely grid-connected
mode and islanded mode [2,3]. In the grid-connected mode, the microgrid usually provides ancillary
service to the main power grid. In the islanded mode, the microgrid needs to keep the supply-demand
balance by itself.

It is assumed that a microgrid comprises wind turbines (WTs), photovoltaic units (PVs) and
gas turbines (GTs), energy storage units (ESUs), electric vehicles (EVs) and loads (see Figure 1).
In order to provide high-quality and economical electricity, the microgrid operation needs to be
scheduled reasonably [4]. As the brain of the microgrid, the energy management system (EMS)
takes charge of coordinating the output power of the distributed resources and the exchanged power
with the main grid to minimize the operational cost or maximize the total profits, according to the
information from load prediction, power prediction of renewable energy and electricity price [5–7].
As far as the architecture of EMS is concerned, there exist three kinds of structures: the centralized
structure [8], the hierarchical structure [7,9] and the distributed structure [5,10]. The authors in [11]
give a comprehensive review about the EMS of microgrids and summarize the recent state of the
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art in control structures, strategies and technologies for the multi-time-scale energy management
of microgrids.
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Figure 1. Configuration of a microgrid.

Power generation scheduling in the EMS plays an important role in the microgrid operation,
which is used to dispatch various energy resources to meet the load demands at the minimum cost
subject to the physical constraints of the microgrid [12]. Generally speaking, the power generation
scheduling of the microgrid involves economic dispatch (ED) and optimal power flow (OPF). In essence,
both the ED and the OPF can be boiled down to the optimization issue.

In the past ten years, the optimization issue of the microgrid has been investigated by many
researchers. In [13], the authors present an optimization algorithm to minimize the total cost of buying
power from multiple generations under the microgrid framework. In [14], an optimization procedure
is developed to make a schedule for the distributed generators and the storage in the microgrid to
minimize the operating cost and the pollutant emission. For multiple interconnected microgrids,
the authors in [15] propose a pricing mechanism based on the potential game theory to study the
anticipated benefits in an open market. Considering the users’ thermal comfort and the system
constraints, the authors in [16] propose an optimal day-ahead price-based power scheduling scheme
for a community-scale microgrid for the purpose of maximizing the expected benefit and minimizing
the operational cost. For a multi-microgrid interconnected system, the authors in [7] present a two-level
hierarchical optimization method. Under the hierarchical framework, the lower level and the upper
level are responsible for an individual microgrid and the entire system, respectively. In [17], the authors
propose a hierarchical decision-making framework for a distribution company and a microgrid to
optimize their respective objective in a cooperative manner. It should be noted that the uncertainties of
renewable energies in microgrids have not been considered in the aforementioned works.

Comparing with the conventional power systems, more uncertainties will be confronted in the
generation scheduling of a microgrid due to less accuracy in the prediction of small-scale renewable
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energies and load demands [12,18]. Recently, some researchers have studied the problems about
the generation scheduling of microgrids considering the prediction uncertainties. Their works
can be categorized into stochastic optimization, fuzzy optimization, robust optimization and
interval optimization.

For the stochastic optimization for microgrid operation, some research works have been
done in recent years. In [19], the authors develop a cuckoo optimization algorithm to solve the
stochastic unit commitment problem of microgrids. In [20], the availability of distributed generators,
energy storage units and responsive loads are studied through analyzing their uncertainty natures,
and then, a stochastic optimization method based on Monte Carlo simulation is used to cope with the
uncertainties. For a typical microgrid with a diesel generator, renewable energies and energy storage,
the authors in [21] present a probabilistic constrained approach to model the uncertainties of load and
renewable power predictions and use stochastic dynamic programming to find the optimal day-ahead
scheduling of the microgrid. In [22], a hierarchical stochastic control scheme is proposed to coordinate
the charging power of the plug-in electric vehicles and the wind power. In this scheme, the truncated
Gaussian distribution is used to describe the uncertainty of wind power prediction. In [23], the authors
model the forecast errors of wind speed and solar irradiance using the probability distribution functions
and then take the Latin hypercube sampling to generate the possible scenarios of renewable generation
for day-head energy and reserve scheduling. It is known that the stochastic optimization approach
relies on the accurate probability distribution functions of the uncertain variables. However, it is
difficult for us to obtain the accurate probability distributions.

In fuzzy optimization methods, fuzzy variables are used to describe the uncertainties of
optimization model, fuzzy sets are composed of all of the uncertain constraints, and the degree
to meet constraints is defined as the membership function [24]. Recently, the fuzzy optimization
methods have been applied to microgrid scheduling preliminarily. For instance, the authors in [25]
present a fuzzy-logic expert system to handle uncertainties related to the forecasted parameters and
the fuzzy operational environment of the microgrid. In the context of multi-objective optimization of
the microgrid, the authors in [26] propose a fuzzy decision approach to represent microgrid operators’
preferences in compromising between two objectives. As far as the fuzzy optimization methods
are concerned, the fuzzy membership functions of the uncertainties often have some subjective
arbitrariness since they are determined by decision-maker’s personal experience [27].

To enhance the robustness of the generation scheduling, some researchers have studied several
robust optimization methods. Considering the prediction errors of energy generation and consumption
in a long time scale, the authors in [28] present a robust multi-objective scheduling approach for
dispatching distributed energy resources in the microgrid. In [29], the authors present a robust
optimization method to deal with the uncertainty of wind power output and provide a robust unit
commitment schedule in the day-ahead market. The authors in [30] propose a robust distributed
economic dispatch approach for a grid-connected microgrid with high-penetration renewable energy
and optimize the worst-case transaction cost stemming from the uncertainties of the renewable energy.
In [31], the authors present a multi-level robust optimization model for an energy-intensive corporate
microgrid to minimize the unbalance cost in the worst case considering the uncertainties of loads.
To save the cost and reduce the emission, the authors in [32] develop a multi-objective robust planning
approach for the microgrid with the consideration of multiple uncertainties during operation, for
the purpose of calculating the worst-case cost among possible scenarios. The authors in [33] develop
a robust EMS for a microgrid under the mathematical framework of model predictive control, in which
a fuzzy prediction interval model is used to describe the uncertainties of the renewable energy sources.
Though the robust optimization methods do not require the explicit probability distribution functions
of the uncertain variables, the obtained generation scheduling strategy tends to be conservative.

As we know, it is easier in practice to determine the upper and lower bounds of an uncertain
variable than to obtain its probability distribution function. Mathematically, an interval is usually
used to describe an uncertain variable whose upper-lower bounds are known [34,35]. Recently,
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the interval optimization for the generation scheduling of power system has drawn increasing attention.
For example, the authors in [36,37] present an interval-based optimization method to solve the unit
commitment problem of the power system considering the uncertainties of distributed energy resources
and loads. The authors in [38] adopt intervals to describe the uncertainty of load prediction in
the linear economic dispatch model and then formulate the optimistic and pessimistic solution.
In [39], the authors propose an improved interval optimization method based on differential evolution
for dynamic economic dispatch to minimize the economic and environmental costs of a microgrid.
Comparing robust optimization with interval optimization, we can draw the differences between them.
The robust optimization is to achieve the optimal decision under the worst case of uncertain parameters.
Therefore, the solution of the robust optimization has good robustness against uncertainties, but it has
much conservativeness, as well. The interval optimization uses the intervals to describe the uncertain
parameters in objective function and constraints. The solution of the interval optimization is related to
the possibility degree that the interval constraints are satisfied. In general, the bigger the possibility
degree the decision-maker chooses for the constraints, the better the robustness of the solution the
decision-maker obtains, but the more conservativeness the decision-maker needs to bear, and vice
versa. In comparison with the robust optimization, the interval optimization is very flexible, though it
has some subjectivity.

This paper focuses on the optimal day-ahead scheduling problem for a microgrid with multiple
distributed energy resources. The optimization objective is to maximize the profits of the microgrid
operation by scheduling the active and reactive power of all of the controllable energy resources under
the time-of-use price mechanism. In the optimization model, the uncertainties of renewable resource
prediction and load prediction are modeled by using intervals. Meanwhile, a set of interval decision
variables (active and reactive power output of a gas turbine) are designed to balance the fluctuations
of the renewable energies in the microgrid. To facilitate solving the optimization model, the possibility
degree comparison between an interval and a real number is adopted to simplify the objective function
and the constraints. In addition, some slack variables and complementary conditions are introduced to
eliminate the absolute-value function (ABS function). The solution of the optimization problem in this
paper provides a schedule for the active and reactive power output of all of the controllable energy
resources, as well as the possible profit interval and the expected optimal profit of the microgrid.

The rest of this paper is organized as follows. Section 2 formulates a day-ahead scheduling
model for the microgrid in which the interval variables are used to describe the uncertainties of the
renewable resource and load prediction. In Section 3, the mathematical transformations are adopted
to eliminate the ABS functions and the interval variables of the scheduling model for reducing the
model complexity. In Section 4, the case studies on a typical microgrid are presented to demonstrate
the effectiveness of the proposed method. Section 5 draws the conclusions of this paper.

2. Scheduling Problem Formulation

This paper considers a kind of microgrid consisting of gas turbines (GTs), photovoltaic units
(PVs), wind turbines (WTs), energy storage units (ESUs), electric vehicles (EVs) and a number of loads.
For the microgrid, the power predictions of PVs and WTs have inevitable uncertainties, since the
power of PVs and WTs is subject to the local weather conditions, such as irradiance, temperature and
wind speed [40]. In addition, load prediction is also inaccurate due to the randomness in load demand.

In this paper, intervals are adopted to describe the prediction values with uncertainties for PV
power, WT power and load power, i.e.,

PIwt,w(t) = [PLwt,w(t), PRwt,w(t)]

PIpv,v(t) = [PLpv,v(t), PRpv,v(t)]

PIload,i(t) = [PLload,i(t), PRload,i(t)]

QIload,i(t) = [QLload,i(t), QRload,i(t)]

(1)
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where the superscripts I , L andR denote an interval, left bound and right bound of the corresponding
power prediction, respectively. Generally, it is easy for us to determine the left bound and right bound
of the prediction interval by analyzing the historical predicted data and real data. Therefore, it is
assumed in this paper that the bounds of the above prediction intervals in (1) have been known
in advance.

According to the power balance requirements of the microgrid, the power output of the
controllable distributed resources should vary in a certain range to counteract the uncertainties of the
PV power, WT power and loads. Here, the power outputs of GTs are selected to take the counteracting
responsibility. Thus, the active power and the reactive power of a GT are designed to be two interval
variables, i.e.,

PIgt,g(t) = [PLgt,g(t), PRgt,g(t)]

QIgt,g(t) = [QLgt,g(t), QRgt,g(t)]
(2)

where PIgt,g(t) and QIgt,g(t) denote the active and reactive power intervals of the GT, respectively.
It should be noted that the power intervals PIgt,g(t) and QIgt,g(t) serve as decision variables,
not uncertain parameters.

2.1. Objective Function

This paper concerns the grid-connected microgrid, which allows bidirectional power flow at
the point of common coupling (PCC). This means that the microgrid operator is permitted to buy
the short electricity from (or sell the spare electricity to) the main grid at any time. The objective of
power generation scheduling can be to maximize the benefits or minimize the cost. Here, we take the
maximum profits as the objective of the power generation scheduling for the microgrid.

Generally, the profits of the microgrid are equal to the total earnings minus the total costs.
The objective function for the generation scheduling of the microgrid is formulated as:

max F =
T

∑
t=1

[FE(t)− FC(t)] (3)

where FE(t) and FC(t) denote the earnings and costs of the microgrid in the t−th time interval (1 h for
each time interval), respectively; T denotes the number of time intervals.

The earnings FE(t) are calculated by:

FE(t) = γs(t)Ps
pcc(t) + γb(t)

N
∑

i=1
PIload,i(t) + γsub(t)[

P
∑

p=1
PIpv,p(t) +

W
∑

w=1
PIwt,w(t)] (4)

where γs is the selling price; γb is the buying price; γsub is the subsidy price from the government;
Ps

pcc(t) is the power, which is sold to the main grid; P is the number of PVs;W is the number of WTs.
The costs FC(t) are calculated by:

FC(t) = γb(t)Pb
pcc(t) + γb(t)Ploss(t) + FC,gt(t) + FC,esu(t) + FC,ev(t) (5)

where Pb
pcc(t) is the power, which is bought from the main grid; Ploss(t) is the total power loss of

microgrid; FC,gt(t) is the total cost of GTs; FC,esu(t) is the total cost of ESUs; FC,ev(t) is the total cost
of EVs.

As we know, for a grid-connected microgrid, selling electricity to the main power grid and
buying electricity from the main power grid cannot occur at the same time. Therefore, to avoid this
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phenomenon appearing in the objective function, the sold power and the bought power at the t− th
time interval can be expressed as follows:

Ps
pcc(t) =

|Ppcc(t)|−Ppcc(t)
2

Pb
pcc(t) =

|Ppcc(t)|+Ppcc(t)
2

(6)

where Ppcc(t) denotes the actual power at the PCC (the direction of power flow is from the main grid
to the microgrid). Obviously, Ppcc(t) < 0 implies the selling-electricity transaction, otherwise implying
the buying-electricity transaction.

For the microgrid with N buses, the total active power loss is calculated as follows [41]:

Ploss (t) = 1
2

N
∑

i=1

N
∑

j=1
Rij(G2

ij + B2
ij)
[
V2

i (t) + V2
j (t)− 2Vi(t)Vj(t) cos θij(t)

]
(7)

where Vi(t) and Vj(t) denote the voltage at bus i and bus j, respectively; θij(t) = θi(t)− θj(t) denotes
the phase difference between bus i and bus j; Gij and Bij are the real component and the imaginary

component of the complex admittance matrix elements [Yij] ∈ CN×N , respectively; Rij is the resistance
of the line between bus i and bus j.

Assuming that the operational cost of a GT is proportional to the active power output, then the
total costs of all of the GTs can be calculated by:

FC,gt(t) =
G
∑
g=1

γgt,gPIgt,g(t) (8)

where PIgt,g(t) and γgt,g are the active power interval and the cost coefficient of the g-th GT, respectively;
G is the number of GTs.

The operational cost of an ESU is mainly related to the charging times of its storage battery.
The cost of an ESU for per charging/discharging cycle can be calculated by:

cesu,s =
Cinv

esu,s

Kesu,s
(9)

where Cinv
esu,s is the investment cost for the s-th ESU and Kesu,s is the total charging/discharging cycles.

In the t-th time interval, the total operational cost of all of the ESUs can be calculated by:

FC,esu(t) = 1
2

S
∑

s=1
cesu,s

|Pesu,s(t)|
Erate

esu,s
=

S
∑

s=1
γesu,s|Pesu,s(t)| (10)

where γesu,s = cesu,s/(2Erate
esu,s); Pesu,s(t) and Erate

esu,s are the active power and the rated capacity of the
s-th ESU, respectively; S is the number of ESUs.

Similarly, the total operational cost of all of the EVs in the t-th time interval is:

FC,ev(t) = 1
2

V
∑

v=1
cev,v

|Pev,v(t)|
Erate

ev,v
=
V
∑

v=1
γev,v|Pev,v(t)| (11)

where γev,v = cev,v/(2Erate
ev,v); Pev,v(t) and Erate

ev,v are the active power and the rated capacity of the v-th
EV, respectively; V is the number of EVs.

2.2. Operational Constraints

The optimal generation scheduling of microgrid operation is to maximize the profits on the
premise that all of the operational constraints of the system are satisfied.



Energies 2017, 10, 339 7 of 23

2.2.1. Constraints of Power Flow Balance

The microgrid operation needs to meet the power flow constraints. The power flow equations at
the i-th bus are given as follows [42]:

Pi(t) = Vi(t)
N
∑

j=1
Vj(t)

[
Gij cos θij(t) + Bij sin θij(t)

]
Qi(t) = Vi(t)

N
∑

j=1
Vj(t)

[
Gij sin θij(t)− Bij cos θij(t)

] (12)

where Gij and Bij are the real component and the imaginary component of the complex admittance
matrix elements [Yij] ∈ CN×N . Pi(t) and Qi(t) are the injected active and reactive power at bus i,
respectively, which can be expressed as follows:

Pi (t) = Pesu,i(t) + Pev,i(t) + Ppcc,i(t) + PIgt,i(t) + PIwt,i(t) + PIpv,i(t)− PIload,i(t)

Qi (t) = Qesu,i(t) + Qev,i(t) + Qpcc,i(t) + QIgt,i(t) + Qwt,i(t) + Qpv,i(t)−QIload,i(t)
(13)

where Ppcc,i(t), PIgt,i(t), PIwt,i(t), PIpv,i(t), Pesu,i(t), Pev,i(t) and PIload,i(t) denote the active power outputs

of PCC, GTs, WTs, PVs, ESUs, EVs and loads at bus i, respectively; Qpcc,i(t), QIgt,i(t), Qwt,i(t), Qpv,i(t),
Qesu,i(t), Qev,i(t) and QIload,i(t) denote the reactive powers of PCC, GTs, WTs, PVs, ESUs, EVs and
loads at bus i, respectively.

2.2.2. Constraints of Bus Voltage

The voltage at each bus is required not to exceed the prescribed bounds. Therefore, the constraint
of voltage at bus i is given by the following inequality:

Vmin
i ≤ Vi(t) ≤ Vmax

i (14)

where Vmin
i and Vmax

i are the lower bound and the upper bound, respectively.

2.2.3. Constraints of Power Exchange at PCC

The exchanged active and reactive power between the microgrid and the main grid at PCC need
to meet the following constraints:

Pmin
pcc ≤ Ppcc(t) ≤ Pmax

pcc

Qmin
pcc ≤ Qpcc(t) ≤ Qmax

pcc

(15)

where Pmin
pcc , Pmax

pcc , Qmin
pcc and Qmax

pcc denote the minimum and maximum values of the exchanged active
and reactive power at PCC, respectively.

2.2.4. Constraints of WTs and PVs

The constraints for the reactive power of WT and PV are given as follows:

Qmin
wt,w ≤ Qwt,w(t) ≤ Qmax

wt,w

Qmin
pv,p ≤ Qpv,p(t) ≤ Qmax

pv,p
(16)

where Qmin
wt,w, Qmax

wt,w, Qmin
pv,p and Qmax

pv,p denote the minimum and maximum values of the reactive power
of the w-th WT and the p-th PV, respectively.
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2.2.5. Constraints of GTs

The constraints for the active and reactive power outputs of the g-th GT are given as follows:

Pmin
gt,g ≤ PIgt,g(t) ≤ Pmax

gt,g

Qmin
gt,g ≤ QIgt,g(t) ≤ Qmax

gt,g

(17)

where Pmin
gt,g , Pmax

gt,g , Qmin
gt,g , and Qmax

gt,g denote the minimum and maximum values of the active and
reactive power of the g-th GT, respectively.

2.2.6. Constraints of ESUs

The ESU operation is required to meet the following constraints:

Pmin
esu,s ≤ Pesu,s(t) ≤ Pmax

esu,s (18)

Qmin
esu,s ≤ Qesu,s(t) ≤ Qmax

esu,s (19)

Emin
esu,s ≤ Eesu,s(t) ≤ Emax

esu,s (20)

Eesu,s(t) = Eesu,s(t− 1)− Pesu,s(t) (21)

Eesu,s(0) = Eesu,s(T) (22)

where the inequalities (18)–(20) represent constraints of the active power capacity, reactive
power capacity and energy capacity of the ESU, respectively; the equality (21) denotes the
charging/discharging energy balance; the equality (22) denotes the energy balance between the
initial and the final state of charge (SoC). Pmin

esu,s and Pmax
esu,s denote the minimum and the maximum

values of the active power of the s-th ESU, respectively; Qmin
esu,s and Qmax

esu,s denote the minimum and
the maximum values of the reactive power of the s-th ESU, respectively; Emin

esu,s and Emax
esu,s denote the

minimum and the maximum values of the energy of the s-th ESU, respectively.

2.2.7. Constraints of EVs

For the vehicle-to-grid EVs, at the grid-connected time, the operational constraints are similar to
the ones of the ESUs, i.e.,

Pmin
ev,v ≤ Pev,v(t) ≤ Pmax

ev,v , t ∈ Tev (23)

Qmin
ev,v ≤ Qev,v(t) ≤ Qmax

ev,v , t ∈ Tev (24)

Emin
ev,v ≤ Eev,v(t) ≤ Emax

ev,v , t ∈ Tev (25)

Eev,v(t) = Eev,v(t− 1)− Pev,v(t), t ∈ Tev (26)

Eev,v(0) = Eev,v(T) (27)

where Tev denotes the set of all of the grid-connected time intervals.
To satisfy the traveling requirements in the morning and afternoon, the energy of EVs should be

adequate for departing from and returning to the charging station. Therefore, at the departing time,
the energy of EVs should meet the minimum energy constraints:

Emin
ev,dep,v ≤ Eev,v(tmor,dep)

Emin
ev,dep,v ≤ Eev,v(taft,dep)

(28)

where Emin
ev,dep,v denotes the required minimum energy for the v-th EV traveling; tmor,dep and taft,dep

denote the departing time in the morning and afternoon, respectively.
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Assuming that the EV returns to the charging station after k hours, the residual energy of the EV
at the returning time can be calculated by:

Eev,v(tmor,ret) = Eev,v(tmor,dep)− kPav
ev

Eev,v(taft,ret) = Eev,v(taft,dep)− kPav
ev

(29)

where Pav
ev denotes the average traveling power of each EV; tmor,ret and taft,ret denote the returning time

in the morning and afternoon, respectively.
By combining the above objective function and constraints, we obtain the day-ahead scheduling

model of the microgrid operation. In the scheduling model, there exist some interval variables and
ABS functions, which increase the complexity of the model.

3. Scheduling Model Transformation

The scheduling model of the microgrid includes the ABS functions, the interval objective function
and the interval constraints. As we know, the ABS functions consume much of the calculation
resource, and the interval constraints cause many difficulties in solving the model. To simplify the
scheduling model, this paper adopts mathematical transformations to eliminate the ABS functions and
the interval variables.

3.1. Transformation for Interval Constraints and the Objective Function

3.1.1. Arithmetic Operations between Intervals

An interval is defined to be a set consisting of random variables with the left and right limits, i.e.,

AI = [AL, AR] = {a : AL ≤ a ≤ AR} (30)

Alternatively, the interval AI can also be represented by midpoint and width, i.e.,

AI =
〈

m(AI ), w(AI )
〉

(31)

where m(AI ) and w(AI ) represent the midpoint and width of the interval AI , respectively, which can
be expressed as follows:

m(AI ) = (AR + AL)/2
w(AI ) = (AR − AL)/2

(32)

Assuming that a constant λ and two interval numbers (AI and BI ) are given, the operation rules
for scalar multiplication, addition and subtraction are defined as follows [43,44]:

λ · AI =
{ [

λAL, λAR
]

if λ ≥ 0[
λAR, λAL

]
if λ < 0

(33)

λ + AI =
[
λ + AL, λ + AR

]
(34)

AI + BI =
[

AL + BL, AR + BR
]

(35)

AI − BI =
[

AL − BR, AR − BL
]

(36)

m(AI + BI ) = m(AI ) + m(BI ) (37)

m(AI − BI ) = m(AI )−m(BI ) (38)

w(AI + BI ) = w(AI − BI ) = w(AI ) + w(BI ) (39)
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3.1.2. Definition of Possibility Degree

In interval mathematics, there are two kinds of comparisons: AI ≤ BI and AI ≤ b (b is a real
number). It should be noted that AI ≤ BI does not mean BI is larger than AI as the comparison
between two real numbers; rather, it denotes that BI is superior to AI . In interval optimization theory,
the possibility degree is often used to describe the degree to which an interval is superior to another
interval [35]. The meanings of AI ≤ b are similar to those of AI ≤ BI . Considering that the interval
constraints in the scheduling model are related to the comparison between an interval and a real
number, we next introduce the possibility degree definition for AI ≤ b.

The geometric relation between an interval AI and a real number b is shown in Figure 2. On the
basis of the position relation shown in Figure 2a–c, the possibility degree for AI ≤ b is defined as
follows [35]:

P{AI ≤ b} =


0 for AL > b

b−AL
AR−AL for AL ≤ b ≤ AR

1 for AR < b
(40)

Equivalently,

P{AI ≤ b} =


0 for m(AI )− w(AI ) > b,
b−m(AI )+w(AI )

2w(AI ) for m(AI )− w(AI ) ≤ b

≤ m(AI ) + w(AI ),
1 for m(AI ) + w(AI ) < b.

(41)

(a)

AIAI w(AI)w(AI)

b

(b)

(c)

b

b

m(AI)m(AI)

w(AI)w(AI)

w(AI)w(AI)

m(AI)m(AI)

m(AI)m(AI)

ALAL ARAR

ALAL ARAR

ALAL ARAR

AIAI

AIAI

Figure 2. Relation between an interval and a real number. (a) AL ≥ b; (b) AL ≤ b ≤ AR; (c) AR ≤ b.

According to the arithmetic operations between intervals, we have P{AI ≥ b} = P{−AI ≤
−b} = P{A′I ≤ b′}, where A′I = −AI and b′ = −b. Therefore, the possibility degree definition for
P{AI ≥ b} is omitted for simplicity.

Assuming that a threshold ξ ∈ [0, 1] is given for the possibility degree of the interval constraint
AI ≤ b based on a decision-maker’s risk tolerance, we obtain P{AI ≤ b} ≥ ξ. Therefore, according
to the possibility degree definition in (41), the interval constraint AI ≤ b with the given ξ can be
converted into a deterministic inequality, i.e.,
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m(AI ) + (2ξ − 1)w(AI ) ≤ b (42)

The prescribed ξ represents the degree to which a decision-maker tolerates the risk on interval
uncertainties. Based on the possibility degree definition of the interval constraint AI ≤ b, it can
be concluded that the bigger ξ we prescribe, the more pessimistic decision we make. In particular,
the possibility degree ξ = 0 (namely P{AI ≤ b} ≥ 0) means an absolutely optimistic decision,
while ξ = 1 (namely P{AI ≤ b} ≥ 1) means an absolutely pessimistic decision.

3.1.3. Interval Constraint Transformation

After prescribing a threshold of the possibility degree for an interval constraint, we can transform
the interval constraint into a deterministic constraint.

Assuming the possibility degree ξeq is given for the interval equality constraints (12) and (13),
we can convert (12) and (13) into deterministic constraints, i.e.,

m(Pi(t)) + (2ξeq − 1)w(Pi(t)) ≤ Vi(t)
N
∑

j=1
Vj(t)

[
Gij cos θij(t) + Bij sin θij(t)

]
m(Pi(t)) + (2ξeq − 1)w(Pi(t)) ≥ Vi(t)

N
∑

j=1
Vj(t)

[
Gij cos θij(t) + Bij sin θij(t)

] (43)

m(Qi(t)) + (2ξeq − 1)w(Qi(t)) ≤ Vi(t)
N
∑

j=1
Vj(t)

[
Gij sin θij(t)− Bij cos θij(t)

]
m(Qi(t)) + (2ξeq − 1)w(Qi(t)) ≥ Vi(t)

N
∑

j=1
Vj(t)

[
Gij sin θij(t)− Bij cos θij(t)

] (44)

where:

m(Pi(t)) = Pesu,i(t) + Pev,i(t) + Ppcc,i(t) + m(PIgt,i(t)) + m(PIwt,i(t)) + m(PIpv,i(t))−m(PIload,i(t))

w(Pi(t)) = w(PIgt,i(t)) + w(PIwt,i(t)) + w(PIpv,i(t)) + w(PIload,i(t))
(45)

m(Qi(t)) = Qesu,i(t) + Qev,i(t) + Qpcc,i(t) + Qpv,i(t) + Qwt,i(t) + m(QIgt,i(t))−m(QIload,i(t))

w(Qi(t)) = w(QIgt,i(t)) + w(QIload,i(t))
(46)

Similarly, the interval inequality constraints (17) with a given possibility degree ξineq can be
converted into deterministic constraints, i.e.,

m(PIgt,g(t)) + (2ξineq − 1)w(PIgt,g(t)) ≤ Pmax
gt,g (t)

m(PIgt,g(t))− (2ξineq − 1)w(PIgt,g(t)) ≥ Pmin
gt,g (t)

(47)

m(QIgt,g(t)) + (2ξineq − 1)w(QIgt,g(t)) ≤ Qmax
gt,g (t)

m(QIgt,g(t))− (2ξineq − 1)w(QIgt,g(t)) ≥ Qmin
gt,g (t)

(48)

3.1.4. Objective Function Transformation

Since the objective function of the obtained scheduling model includes the interval variables
PIload(t), PIwt(t), PIpv(t) and PIgt(t), the value of the objective function is an interval, namely
FI =

〈
m(FI ) w(FI )

〉
, where m(FI ) and w(FI ) represent the midpoint and width of the objective

function, respectively. As far as the problem on maximizing profits is concerned, a decision-maker
tends to achieve the maximum midpoint for high profits and the minimum width for low uncertainty.
Thus, the objective function (3) can be represented by a multi-objective function, i.e.,

max{m(FI ),−w(FI )} (49)
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where:

m(FI ) =
T
∑

t=1

[
m(FIE )−m(FIC )

]
w(FI ) =

T
∑

t=1

[
w(FIE ) + w(FIC )

] (50)

For simplicity, this paper uses a linear weighting method to convert the multi-objective
function (49) into a single-objective function, i.e.,

max f = m(FI )− ξfunw(FI ) (51)

where ξfun ∈ [0, 1] denotes the weighting coefficient. Obviously, the smaller weighting coefficient ξfun
implies that the decision-maker cares more about the midpoint and less about the width. In other
words, the decision-maker is willing to obtain more profits at the cost of higher uncertain risks.

3.2. Transformation for Absolute-Value Function

To reduce the computational expense, we need to make a transformation for the ABS function.
In mathematics, for an arbitrary real number Y ∈ R, its ABS function |Y| can be expressed to be
|Y| = W + Z, where W and Z are called the slack variables, which should be meet the following
complementary conditions [38]:

Y = W − Z, WZ = 0, W ≥ 0, Z ≥ 0 (52)

According to the above mathematical transformation, the equality (6) can be transformed into:

Ps
pcc(t) = Zpcc

Pb
pcc(t) = Wpcc

Ppcc = Wpcc − Zpcc

WpccZpcc = 0
Wpcc ≥ 0, Zpcc ≥ 0

(53)

where Wpcc and Zpcc are slack variables; Ppcc = Wpcc − Zpcc, WpccZpcc = 0, Wpcc ≥ 0 and Zpcc ≥ 0 are
complementary conditions.

Similarly, the equality (10) can be transformed into:

FC,esu(t) =
S
∑

s=1
γesu,s [Wesu,s(t) + Zesu,s(t)]

Pesu,s = Wesu,s(t)− Zesu,s(t)
Wesu,s(t)Zesu,s(t) = 0
Wesu,s(t) ≥ 0, Zesu,s(t) ≥ 0

(54)

where Wesu,s(t) and Zesu,s(t) are slack variables; Pesu,s = Wesu,s(t) − Zesu,s(t), Wesu,sZesu,s = 0,
Wesu,s ≥ 0 and Zesu,s ≥ 0 are complementary conditions.

The equality (11) can be transformed into:

FC,ev(t) =
V
∑

v=1
γev,v [Wev,v(t) + Zev,v(t)]

Pev,v(t) = Wev,v(t)− Zev,v(t)
Wev,v(t)Zev,v(t) = 0
Wev,v(t) ≥ 0, Zev,v(t) ≥ 0

(55)

where Wev,v(t) and Zev,v(t) are slack variables; Pev,v(t) = Wev,v(t)−Zev,v(t), Wev,vZev,v = 0, Wev,v ≥ 0
and Zev,v ≥ 0 are complementary conditions.
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After the above transformations, the scheduling model of the microgrid has been converted into
a general nonlinear programming model without the interval constraints and the ABS functions. In the
following numerical simulations, considering that the optimization model is nonlinear and nonconvex,
this paper uses the professional optimization software (GAMS) to solve the model.

The details about the application for the proposed interval-based optimization model of the
microgrid are summarized in Figure 3.

Start

Initialize  system parameters and   

power prediction intervals of PVs 

WTs and loads

Formulate a  interval-based 

scheduling model 

Set the weighting coefficient and  

the possibility degree for model 

transformation

 Transform the constraints and  

objective function including 

intervals

 Transform  ABS  functions 

of the model

 Obtain a simplified 

scheduling model

 Solve the  simplified model 

by using optimization 

software

End

 Output the optimal solution 

Figure 3. Flow chart for solving the interval-based optimization model.

3.3. A Simple Example for Model Transformation

For readers to understand the above model transformation well, we take a simple example for
illustration. An optimization problem is given as follows:

max F = 3X2
1 + 2X2

2 + YIX2 (56a)

s.t. X3
1 + X2

2 + YI = 0 (56b)

X1 + X2 + YI ≤ 3 (56c)

|X1|+ X2
2 − X2 ≤ 4 (56d)

−5 ≤ X1 ≤ 5, 0 ≤ X2 (56e)

where X1 and X2 are the decision variables; YI = [1.2, 1.8] = {y : 1.2 ≤ y ≤ 1.8} denotes the
interval of uncertain variable y. The midpoint and width of YI are m(YI ) = (1.2 + 1.8)/2 = 1.5 and
w(YI ) = 1.8− 1.2 = 0.6, respectively.

The interval equality (56b) can be converted into two interval inequalities equivalently, i.e.,

X3
1 + X2

2 + YI ≤ 0
X3

1 + X2
2 + YI ≥ 0

(57)



Energies 2017, 10, 339 14 of 23

By choosing ξeq as the possibility degree of (57), we can convert (57) into two deterministic
constraints according to (42), i.e.,

m(X3
1 + X2

2 + YI ) + (2ξeq − 1)w(X3
1 + X2

2 + YI ) ≤ 0
m(X3

1 + X2
2 + YI ) + (2ξeq − 1)w(X3

1 + X2
2 + YI ) ≥ 0

(58)

namely,
X3

1 + X2
2 + m(YI ) + (2ξeq − 1)w(YI ) ≤ 0

X3
1 + X2

2 + m(YI ) + (2ξeq − 1)w(YI ) ≥ 0
(59)

By substituting m(YI ) = 1.5 and w(YI ) = 0.6 into (59), it yields:

X3
1 + X2

2 + 1.5 + 0.6(2ξeq − 1) ≤ 0
X3

1 + X2
2 + 1.5 + 0.6(2ξeq − 1) ≥ 0

(60)

namely,
X3

1 + X2
2 + 1.5 + 0.6(2ξeq − 1) = 0 (61)

Similarly, the interval inequality (56c) can be transformed into a deterministic constraint by
using (42), i.e.,

X1 + X2 + 1.5 + 0.6(2ξineq − 1) ≤ 3 (62)

where ξineq is the given possibility degree of the interval inequality (56c).
According to the mathematical transformation (52) for the ABS function, the constraint (56d) can

be converted into the following constraints, i.e.,

W + Z + X2
2 − X2 ≤ 4

X1 = W − Z

WZ = 0, W ≥ 0, Z ≥ 0

(63)

where W and Z are the slack variables; WZ = 0, W ≥ 0 and Z ≥ 0 are the complementary conditions.
Assuming that ξfun is the weighting coefficient of the interval objective function (56a),

we transform (56a) into a deterministic objective function by using (51), i.e.,

max f = m(FI )− ξfunw(FI ) (64)

namely,
max f = 3X2

1 + 2X2
2 + 1.5X2 − 0.6ξfunX2 (65)

Through the above transformations, the optimization problem (56) has been converted into
a general optimization model without intervals and the ABS function, i.e.,

max f = 3X2
1 + 2X2

2 + 1.5X2 − 0.6ξfunX2

s.t. X3
1 + X2

2 + 1.5 + 0.6(2ξeq − 1) = 0
X1 + X2 + 1.5 + 0.6(2ξineq − 1) ≤ 3

W + Z + X2
2 − X2 ≤ 4

X1 = W − Z
WZ = 0, W ≥ 0, Z ≥ 0
−5 ≤ X1 ≤ 5, 0 ≤ X2

(66)

where ξfun, ξeq and ξineq are the preassigned parameters.
For the optimization model (66), we can use the existing nonlinear programming algorithms or

the professional optimization software to calculate the optimal solution. Here, the calculation process
is omitted for brevity.
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4. Case Studies

In this section, a microgrid test system, which is modified from the benchmark LVnetwork in the
EU project “Microgrid” [45], is used to test the proposed scheduling method. The single-line diagram
of the microgrid test system is shown in Figure 4.
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Figure 4. Single-line diagram of the microgrid test system.

In the test system, the impedance parameters of the network lines (120 mm2 Al XLPEtwisted
cable) are given as: R = 0.284 Ω/km, X = 0.083 Ω/km and pole-to-pole distance L = 35 m.

The loads on Feeder 1 represent residential power consumption, while the loads on Feeders 2 and
3 represent industrial power consumption. The rated apparent power (Srate) and power factor (cos ψ)
of the loads are listed in Table 1, and the prediction intervals of loads in 24 h are shown in Figure 5.
The load prediction error is assumed to be ±10% of the prediction value (midpoint). The parameters
of PVs and WTs are given in Table 2, and the power prediction intervals in 24 h are shown in Figure 6.
The power prediction error of PVs and WTs is assumed to be ±15% of the prediction value (midpoint).
The parameters of ESUs, EVs and GT are given in Table 3.
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Figure 5. Prediction intervals of loads in 24 h (the dotted lines denote the upper and lower bounds,
and the real lines denote predicted value). (a) Loads on Feeder 1; (b) loads on Feeders 2 and 3.
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Table 1. Parameters of loads of the microgrid.

Name Node Srate (kVA) PF (cos ψ)

Load 1 2 40 0.85
Load 2 4 40 0.85
Load 3 5 40 0.85
Load 4 6 40 0.85
Load 5 8 40 0.85
Load 6 9 50 0.90
Load 7 10 50 0.90
Load 8 12 50 0.90
Load 9 13 50 0.90

Load 10 14 50 0.90
Load 11 15 50 0.90
Load 12 16 200 0.95

Table 2. Parameters of PVs and WTs of the microgrid.

Name Node Prate (kW) Qmin (kvar) Qmax (kvar)

PV1 3 20 −8.0 8.0
PV2 8 20 −8.0 8.0
PV3 11 20 −8.0 8.0
PV4 12 30 −10.0 10.0
PV5 14 30 −10.0 10.0
WT1 5 25 −5.0 5.0
WT2 7 25 −5.0 5.0
WT3 10 25 −5.0 5.0
WT4 13 25 −5.0 5.0

 

0 5 10 15 20 25
20

40

60

80

100

120

Time (h)
(a)     

W
T

 P
ow

er
 L

ev
el

 (
%

)

0 5 10 15 20 25
0

20

40

60

80

100

120

Time (h)
(b)     

PV
 P

ow
er

 L
ev

el
 (

%
)

Figure 6. Power prediction intervals of PVs and WTs in 24 h (the dotted lines denote the upper and
lower bounds, and the real lines denote predicted value). (a) Active power of WTs; (b) active power
of PVs.

Table 3. Parameters of energy storage units (ESUs), EVs and gas turbine (GT) of the microgrid.

Name Node γ
(CNY/kWh)

Pmin

(kW)
Pmax

(kW)
Qmin

(kvar)
Qmax

(kvar)
Emin

(kWh)
Emax

(kWh)
E(0)

(kWh)

ESU1 3 0.20 −100 100 −20 20 60 600 90
ESU2 11 0.20 −100 100 −20 20 60 600 90
EV1 7 0.25 −75 75 −10 10 40 400 60
EV2 15 0.25 −75 75 −10 10 40 400 60
GT 17 0.65 0.0 80 −15 15 – – –

The day-ahead price information from the electricity market is given in Table 4. In the tests,
it is assumed that the traveling time of EVs is two hours (8:00–9:00 and 17:00–18:00), the average
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traveling power of EVs is 100 kW, and the required minimum energy for EV traveling is 150 kWh.
Thus, the corresponding parameters of each EV for the simulations are set as: tmor,dep = 8, tmor,ret = 9,
taft,dep = 17, taft,ret = 18, k = 1, Pav

ev = 100 and Emin
ev,dep = 150.

Table 4. Time-of-use price in a day.

Periods γb
(CNY/kWh)

γs
(CNY/kWh)

γsub
(CNY/kWh)

00:00–08:00 0.39 0.30 0.42
08:00–12:00 1.65 0.95 0.42
12:00–17:00 0.87 0.56 0.42
17:00–21:00 1.65 0.95 0.42
21:00–24:00 0.87 0.56 0.42

For guaranteeing the voltage quality, the allowed deviation of all of the bus voltage is limited to
±5% of the rated value.

The scheduling strategy is affected by the weighting coefficient (ξfun) of the objective function,
the possibility degree (ξeq) of the interval equality constraints (13) and the possibility degree (ξineq)
of the interval inequality constraints (17). In order to reduce the difficulty in analysis, the possibility
degree of the interval inequality constraints is fixed to ξineq ≡ 1, which means that the scheduling
strategy completely satisfies the interval inequality constraints. In other words, the decision-maker is
absolutely pessimistic about the interval inequality constraints (17).

The numerical simulations are performed with different values of ξfun and ξeq, and the
corresponding profit intervals of the microgrid are listed in Table 5. From the results, we can see
that with the same weighting coefficient (ξfun), as the possibility degree (ξeq) increases, the midpoint,
the width and the expected value of the profit interval increase. The bigger possibility degree (ξeq)
means that the decision-maker expects the more power output of renewable resources and the higher
load level to increase the profits, at the cost of the bigger risk on the prediction uncertainties. If the
decision-maker fixes a small possibility degree (ξeq), as the weighting coefficient (ξfun) increases,
the midpoint and the width of the profit interval barely change, but the expected profit decreases since
the objective function (45) is inversely proportional to the weighting coefficient (ξfun).

Table 6 lists the iterations and the computation time for solving the optimization model. From the
comparative results, we can see that the computation time is reduced significantly after the ABS
functions are removed.

Table 5. Profit intervals of the microgrid.

ξfun ξeq
Midpoint

(CNY)
Width
(CNY)

Expected Profit
(CNY)

0.0 0.0 7142.81 1055.36 7142.81
0.0 0.5 7144.19 1087.78 7144.19
0.0 1.0 7702.77 1676.16 7702.77
0.5 0.0 7142.81 1055.36 6615.13
0.5 0.5 7144.19 1055.36 6616.51
0.5 1.0 7701.70 1669.45 6866.98
1.0 0.0 7142.81 1055.36 6087.45
1.0 0.5 7144.19 1055.36 6088.83
1.0 1.0 7401.33 1309.42 6091.91
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Table 6. Computation time for solving the optimization model.

Optimization Model Iterations Time (s)

Remove ABS Function 438 1.22
Include ABS Function 2826 13.76

Due to page limitations, we choose one of the simulation cases (ξeq = 0.5, ξfun = 0.5) for analysis.
The simulation results are shown in Figures 7–12.

Figure 7 shows the scheduling strategy for the active power of all of the controllable resources.
From the results, we can see that the ESUs and the EVs are charged in a low-price time and discharged
in a high-price time. In this way, the ESUs and the EVs generate profits by taking advantage of the
time-of-use price. It is worthy to note that the active power of the EVs is zero at 08:00 and 17:00 since
the EVs are not at the charging station. Seeing the active power curve of PCC, we can find that the
microgrid purchases the electricity from the main grid in low-price or mid-price periods (Ppcc > 0)
and sells the electricity to the main grid in high-price periods (Ppcc < 0). The GT outputs active power
in the high-price periods (08:00–12:00 and 17:00–21:00) because only in these periods, the electric price
is higher than the cost. Here, it should be noted that the active power PIgt of GT degenerates into a
real number to reduce the uncertainty of the profits, though PIgt is originally designed to be an interval
decision variable.
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Figure 7. Active power of ESUs, EVs, point of common coupling (PCC) and GT in 24 h.

The residual energy curves of ESUs and EVs in 24 h are shown in Figure 8. The initial energies
of ESUs and EVs are 90 kWh and 60 kWh, respectively. At 08:00, ESUs and EVs are fully charged;
in the high-price periods, ESUs and EVs feed their power to the grid; at the end of a day, the residual
energies of ESUs and EVs drop to the initial values, which means that the energies in ESUs and EVs
are kept balanced in a whole day.
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Figure 8. Energy of ESUs and EVs in 24 h.
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Figure 9 shows the reactive power of ESUs, EVs, WTs, PVs, PCC and GT in 24 h. The reactive
power outputs of the controllable resources are adjusted in different periods to keep all of the bus
voltages in the allowed range and reduce the active power loss of microgrid. It can be found from
the results that PV1 and PV3 absorb excess reactive power on Bus 3 and Bus 11, while the rest of the
resources provide the reactive power for the microgrid. Here, it should be noted that the reactive
power of PVs is nonzero in the periods without sunlight (before 6:00 a.m. and after 19:00 p.m. in
a day), though the active power of PVs is zero; see Figure 6b. The reason is that in these periods, the
PV converter serves as a static var generator (SVG) whose reactive power output does not depend on
sunlight. Therefore, the PV converter can generate reactive power in 24 h. As mentioned earlier, the
reactive power QIgt of GT is designed to be an interval decision variable for coping with the reactive
power uncertainties of loads. The lower bound, the upper bound and the midpoint of QIgt are shown
in the fourth subfigure of Figure 9. It can be seen that the width of QIgt varies in different periods, and
the widest interval reaches [−26, 28] kvar.
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Figure 9. Reactive power of ESUs, EVs, WTs, PVs, PCC and GT in 24 h.

The bus voltages in 24 h are shown in Figure 10. It can be seen that all of the bus voltages stay
in the prescribed range, which means that the optimal scheduling scheme can guarantee the voltage
quality of the microgrid.

The energy loss and the cost loss of the whole microgrid are illustrated in Figure 11. From the
results, we can find that the energy loss in 0:00–8:00 is higher than that in other periods. The reason is
that in 0:00–8:00, the amount of power flows from the main grid into the microgrid through distribution
lines to feed ESUs, EVs and loads, and thus, the energy loss on the distribution lines is relatively high.
By contrast, in other periods, the transmission loss is reduced greatly, since much power demand is
balanced locally. From the cost loss statistics, it can be seen that the cost loss in the high-price periods
is high, because the cost loss is equal to the product of the energy loss and the electric price.
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Figure 10. Voltage amplitude of the microgrid in 24 h.
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Figure 12 shows the income, the cost and the profits of the microgrid. It is illustrated that the
profits are gained in the high-price and mid-price periods. In these periods, the profits consist of
the electricity sales of ESUs, EVs, WTs, PVs, as well as the government’s subsidies to the renewable
energy. It should be noted that the profits in 0:00–08:00 are negative, since a large amount of power is
purchased from the main grid to charge ESUs and EVs in this period.

-200

0

200

400

600

800

1000

5 10 15In
co

m
e,

 C
o

st
 a

n
d

 P
ro

fi
t 

(C
N

Y
)

Time (h)

Total Income: 9661.33 

Total Cost:      3044.82

Total Profit:    6616.51 

Income Cost Profit

20 25

Figure 12. Income, cost and profits of the microgrid in 24 h.
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5. Conclusions

This paper studies the optimal scheduling problem of a grid-connected microgrid with ESUs, EVs,
PVs, WTs and GTs. The intervals are used to describe the uncertainties of the renewable resources and
the loads in the microgrid, since it is easier to know the bounds of the uncertain variables than to obtain
their probability distribution functions. To reduce the complexity caused by the interval variables,
the possibility degree comparison between an interval and a real number is adopted to remove the
interval variables in the optimization model. In addition, some slack variables and complementary
conditions are introduced to eliminate the ABS functions to save the computational cost. The simulation
results show that the proposed method can find the interval of profits and obtain the optimal expected
profits, as long as the decision-maker assigns the values for the weighting coefficient of the objective
function and the possibility degrees of the interval constraints. It should be pointed out that how to
reasonably choose the aforementioned values for the interval optimization problem will be studied in
further research.
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