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Abstract: In this study, a novel high step-up DC-DC converter was successfully integrated using
coupled inductor and switched capacitor techniques. High step-up DC-DC gain was achieved using
a coupled inductor when capacitors charged and discharged energy, respectively. In addition, energy
was recovered from the leakage inductance of the coupled inductor by using a passive clamp circuit.
Therefore, the voltage stress of the main power switch was almost reduced to 1/7 Vo (output voltage).
Moreover, the coupled inductor alleviated the reverse-recovery problem of the diode. The proposed
circuit efficiency can be further improved and high voltage gain can be achieved. The operation
principle and steady-state analysis of the proposed converter were discussed. Finally, a hardware
prototype circuit with input voltage of 24 V, output voltage of up to 400 V, and maximum power of
150 W was constructed in a laboratory; the maximum efficiency was almost 96.2%.
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1. Introduction

In recent years, air pollution and energy shortage have become major national concerns. When
the global temperature increases by 1 ◦C, the sea level will increase by 2.3 m [1]. This phenomenon
will considerably affect human life and safety. Therefore, previous studies have attempted to find
a solution, hoping to solve the problems of air pollution, global warming, and energy shortage by
using highly efficient renewable energy systems. The current more mature and widely used renewable
energy sources include solar, wind, and tidal energy sources [2–4]. Often these renewable energy
sources have low-voltage output and must pass through a set of high boost converter circuits to
increase the voltage, and then through a DC-AC inverter to convert AC voltage from the main supply
in parallel. Therefore, a DC-DC high boost ratio circuit affects the overall efficiency of the system [5–8].

The conventional DC-DC boost circuit is not applied in high boost ratio applications. In an
ideal scenario, when the duty cycle in a conventional boost circuit increases to 1 (unity), the boost
conversion ratio reaches infinity. However, high step-up gain is limited by the capacitor, inductor main
power switch, and resistance, because electromagnetic interference and reverse-recovery issues are
encountered at extreme duty cycles. Moreover, the leakage inductance of the transformer will cause
high power dissipation and high voltage spikes on the main power switch. Therefore, a main power
switch with high stress voltage must be selected because of excessive cost and space issues. Therefore,
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many studies have developed a new architecture to overcome the shortcomings of a conventional
boost circuit. In particular, switch capacitor [9–13], coupled inductor [14–21], and voltage lift [22,23]
techniques have been proposed. A coupled inductor step-up circuit with a simple inductive winding
structure was used to achieve low voltage stress of the main switch and a high voltage conversion ratio.
Therefore, this architecture is commonly used. However, the main drawback of this architecture is
that the coupled inductor has a considerable leakage inductance; this leakage inductance and parasitic
capacitance on the switch will resonate and cause voltage spikes. To solve the problems caused
by leakage inductance, capacitors, resistors, and diodes comprising a snubber circuit can be used;
however, the energy is consumed in the resistance, thus reducing circuit efficiency. Switched capacitor
and voltage lift technology can achieve a high boost ratio function but the main switch suffers a
high transient current, and the conduction loss is increased. A switched-clamp capacitor can store
energy when the switch is turned on. When the power is switched off afterwards, the energy in the
capacitor is delivered to the output loading. However, the electric system prevents current flow and
no direct conduction path is permitted. The voltage lift technique is similar the Cuk converter or the
single-ended primary inductor converter (SEPIC) converter, the energy transfer from one inductor
via the intermediate capacitor and then to the other inductor. Therefore, the transferred energy is
mainly determined by the capacitance, thus causing the current stress on the capacitor to be serious.
The coupled-inductor technique can achieve high step-up gain by adjusting the turn ratio. However,
the inductor leakage issue relates to the voltage spike on the power switch. Therefore, this study used a
coupled inductor step-up circuit with a clamp circuit, which absorbed energy from the leakage inductor
of the coupled inductor and supply the energy back to the output terminal of the capacitor during
the next period [24,25]. Using a clamp circuit prevents spikes on the switch, and the main switch
voltage stress is clamped at a voltage of 1/7 Vo. Moreover, the booster-circuit integrates a boost-flyback
converter with switched capacitor architecture to achieve a high step-up ratio. This circuit has boost
and flyback type features. When the switch is turned on, the first boost stage is similar to a boost
converter combined with a switched capacitor converter. Conversely, when the switch is turned off,
the second boost stage is similar to the flyback and switched capacitor converters [26–34]. The new
proposed converter architecture can achieve a high step-up ratio by adjusting the duty cycle; a clamp
circuit is used for energy recovery by the leakage inductor of the coupled inductor to achieve high
efficiency and step-up ratio.

2. Operation Principle of the Proposed Converter

Figure 1 illustrates the proposed converter circuit topology, where the DC input voltage is Vin,
main switch is S, and coupled inductors are Np and Ns.
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The clamp circuit has two diodes D1 and D2 and a capacitor C1. The step-up circuit has two diodes
D3 and D4 and two capacitors C2 and C3. The equivalent circuit of the coupled inductor comprises the
leakage inductor Lk, magnetizing inductor Lm, and an ideal transformer with turn numbers Np and Ns

of the primary and secondary windings, respectively. To simplify the analysis of the circuit operation
principles, the following conditions were assumed:

• Capacitors C1–C3 and Co1–Co2 are sufficiently large. Therefore, Vc1–Vc3 and Vco1–Vco2 are
considered constant during an operation.

• Power devices are ideal components, and the parasitic capacitors of power devices are
not neglected.

• The magnetizing inductance is Lm and leakage inductance is Lk; the coupling coefficient of the
coupled inductor is k and is equal to Lm/(Lm+Lk).

• The turn ratio n is equal to Ns/Np.
• The proposed converter operation can be divided into the continuous conduction mode (CCM)

and discontinuous conduction mode (DCM). The detail analysis is as follows:

2.1. CCM Operation

Figure 2 shows the main component current and voltage waveforms of the proposed converter
during CCM operation.
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This CCM operation can be divided into five operating modes as follows:

Mode I [t0, t1]: During this time interval, the power switch S is turned on, and D2, D4, Din,
and Do are forward-biased. The equivalent circuit is shown in Figure 3a. The primary-side leakage
magnetizing current iLk increases linearly, and the DC source Vin supplies energy to the magnetizing
inductor Lm. The secondary-side leakage inductor current is supplies energy to the capacitor C3, and
Vc3 is approximately equal to nVL1. The clamp capacitor C1 supplies energy to the high voltage output
capacitor Co2. When is equals zero at t = t1, this operation mode is terminated.

Mode II [t1, t2]: The switch S is still turned on, and D3 is forward-biased. The equivalent
circuit is shown in Figure 3b. The DC source Vin supplies energy to the magnetizing inductor
Lm. The secondary-side capacitor C2 is charged by the coupled inductor and capacitor C3. Vc3 is
approximately equal to Vc2 − nVL1. The output capacitors Co1 and Co2 provide energy to the output
load. This operating mode is terminated when the switch S is turned off at t = t2.
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Mode III [t2, t3]: At t = t2, the switch S is turned off, and D3 is forward-biased. The equivalent
circuit is shown in Figure 4a. The parasitic capacitor Cds of the main power switch S is charged rapidly
by the leakage inductor Lk and magnetizing inductor Lm. The secondary-side capacitor C2 is charged by
the coupled inductor and capacitor C3. The output capacitors Co1 and Co2 provide energy to the load.

Mode IV [t3, t4]: At t = t3, the switch S is turned off, and D1 and D3 are forward-biased.
The equivalent circuit is shown in Figure 4b. The passive clamp capacitor C1 is charged by the leakage
inductor Lk and magnetizing inductor Lm; the leakage inductor Lk is recovered and iLk decreases rapidly.
The capacitor C2 is charged continuously by the coupled inductor and capacitor C3. This mode is
terminated at t = t4 until the secondary-side current is equals zero. Therefore, D3 is turned off and D4,
Din, and Do are turned on.

Mode V [t4, t5]: At t = t4, the switch S is turned off, and D1, D4, Din, and Do are forward-biased.
The equivalent circuit is shown in Figure 4c. The coupled inductor, DC source Vin, and capacitor C2

are connected to supply energy to the high-output voltage side capacitor Co1 and load. This mode is
terminated at t = t5, and the power switch S is turned on again during the next mode.
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2.2. DCM Operation

Figure 5 shows the major component current and voltage waveforms of the proposed converter
during the DCM operation. To simplify the analysis, the leakage inductor Lk of the coupled inductor is
neglected during the DCM operation.
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Figure 6 shows the modes I–III operating stages. The operating modes are explained as follows:

Mode I [t0, t1]: During this time interval, the power switch S is turned on, and D2 and D3 are
forward-biased. The equivalent circuit is shown in Figure 6a. The primary current iLm increases linearly,
and the DC source Vin supplies energy to the magnetizing inductor Lm. The secondary-side coupled
inductor in series with the capacitor C3 supplies energy to the capacitor C2. The output capacitors Co1

and Co2 provide energy to the output load. The main switch S is turned off at t = t1, and this operation
mode is terminated.

Mode II [t1, t2]: During this time interval, the main switch S is turned off, and D1, D4, Din, and Do

are forward-biased. The equivalent circuit is shown in Figure 6b. The magnetizing inductor Lm, DC
source Vin, and capacitor C2 are charged by Din and Do and supply energy to the output capacitor Co1.
The magnetizing energy of Lm is transferred to capacitor C3 by coupled inductor. This operating mode
is terminated when the energy stored in Lm is depleted at t = t2.

Mode III [t2, t3]: During this time interval, the main switch S is turned off. The equivalent circuit
is shown in Figure 6c. The output capacitors Co1 and Co2 provide energy to the output load. This mode
is terminated at t = t3, and the main switch S is turned on again during the next mode.
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3. Steady-State Analysis of the Proposed Converter

3.1. CCM Operation

The turn ratio is defined as:
n =

Ns

Np
(1)

The coupling coefficient k of the coupled inductor is defined as:

k =
Lm

Lm + Lk
(2)

Modes I, III, and IV, which have considerably short time durations, are ignored to simplify the
steady state analysis; only modes II and V of the CCM operation are considered.

The voltage stresses of VLk, VL1, and VL2 at mode II can be derived on the basis of Figure 3b.

V I I
Lk =

Lk1
Lm + Lk1

Vin = (1 − k)Vin (3)

V I I
L1 =

Lm

Lm + Lk1
Vin = kVin (4)

V I I
L2 = nV I I

L1 = nkVin (5)

According to the volt–second balance principle and Lk, Np, and Ns, the following equations
are obtained: ∫ DTs

0
V I I

Lkdt +
∫ Ts

DTs
VV

Lkdt = 0 (6)

∫ DTs

0
V I I

L1dt +
∫ Ts

DTs
VV

L1dt = 0 (7)

∫ DTs

0
V I I

L2dt +
∫ Ts

DTs
VV

L2dt = 0 (8)
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By substituting (3)–(5) into (6)–(8), the voltage stresses of VLk, VL1, VL2, and Vo at mode V can be
expressed as:

VV
Lk =

−D(1 − k)
(1 − D)

Vin (9)

VV
L1 = − Dk

1 − D
Vin (10)

VV
L2 = − nDk

1 − D
Vin (11)

Vo = 2Vc1 + Vc2 − VV
L2 (12)

The capacitor C2 is charged in mode II, and the capacitors C1 and C3 are charged in mode V. The
voltage stress across capacitors C1, C2, and C3 can be represented on the basis of Figures 3b and 4c.

Vc3 = −VV
L2 =

nDk
1 − D

Vin (13)

Vc2 = V I I
L2 + Vc3 (14)

By substituting (5) and (13) into (14), the voltage stresses of the capacitors C1 and C2 are
expressed as:

Vc2 =
nk

1 − D
Vin (15)

Vc1 = Vin − VV
Lk − VV

L1

= (1 +
Dk

(1 − D)
+

D(1 − k)
(1 − D)

)Vin
(16)

By substituting (11), (15), and (16) into (12), the voltage gain is developed as:

MCCM =
Vo

Vin
=

2 + nk + nDk
1 − D

(17)

Assume k is equal to 1 and neglect the leakage inductor of the coupled inductor. At k = 1, the ideal
voltage gain can be derived as:

MCCM =
2 + n + nD

1 − D
(18)

Table 1 and Figure 7 are shows the voltage gain of the proposed converter and those of previous
converters during the CCM operation under coupling coefficient equal to 1. According to this Figure 7,
the voltage gain of the proposed converter is higher than those of the previous converters with
the same duty cycle. Proposed converter has achieved high step–up ratio and the efficiency of
proposed converter is higher than those of the previous converter, except that the converters [9,29].
The converter [9] has high efficiency but voltage stress of the switch is high, the peak voltage of
Vds is appropriately 71V during the switch-off period and large coupled inductor size is ETD-59.
The low efficiency in converter [29] under 150w and maximum output voltage is 200 V lesser than
proposed converter.

Table 1. Comparison of the proposed converter compared with some of the previous converters. NA:
Not showing efficiency in reference paper.

Converters No. of Components Efficiency Vin/Vout Voltage Gain (MCCM = Vo/Vin)

proposed converter 6 diodes,
96.20%

Vin = 24 V, MCCM = 2+n+nD
1−D5 capacitors Vo = 400 V

[6] 3 diodes,
NA

Vin = 48 V, MCCM = 1+n
1−D3 capacitors Vo = 380 V
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Table 1. Cont.

Converters No. of Components Efficiency Vin/Vout Voltage Gain (MCCM = Vo/Vin)

[8]
4 diodes,

95.88%
Vin = 24 V, MCCM = 1+n+nD

1−D4 capacitors Vo = 400 V

[9]
4 diodes,

96.70%
Vin = 24 V, MCCM = 2+n

1−D + n4 capacitors Vo = 400 V

[19]
5 diodes,

95.70%
Vin = 24 V, MCCM = n 1+D

1−D4 capacitors Vo = 200 V

[22]
5 diodes,

96.20%
Vin = 24 V,

MCCM = n(2−D)
1−D3 capacitors Vo = 200 V

[29]
5 diodes,

96.50%
Vin = 27–37.5 V, MCCM = 2+n

2(1−D)3 capacitors Vo = 200 V

[31] 3 diodes,
95.20%

Vin = 27–36.5 V, MCCM = (1 + n) + 1
1−D + D

1−D n3 capacitors Vo = 200 V
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3.2. DCM Operation

The DCM operation can be divided into three modes. Figure 5 shows the main component
current and voltage waveforms. Figure 6 shows the proposed converter during different modes of the
DCM operation. The mode I operation is shown in Figure 6a; the main power switch S is turned on.
Therefore, the voltage stresses VL1 and VL2 can be expressed as:

V I
L1 = Vin (19)

V I
L2 = nVin (20)

The magnetizing inductor peak current can be expressed as:

ILmp =
Vin
Lm

DTs (21)

Therefore, the voltage stresses of the capacitors C2, Co1, and Co2 can be expressed as:

Vc2 = V I
L2 + Vc3 (22)
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Vco2 = Vc1 (23)

Vco1 = Vo − Vc1 (24)

Figure 6b illustrates the mode II operation; the main power switch S is turned off. Therefore,
the voltage stresses during mode II can be expressed as:

V I I
L1 = Vin−Vc1 (25)

V I I
L2 = 2Vc1 + Vc2 − Vo (26)

V I I
L2 = −Vc3 (27)

Figure 6c illustrates the mode III operation; the main power switch S is turned off. The capacitors
Co1 and Co2 supply energy to the load, and the voltage stresses of VL1 and VL2 are expressed as:

V I I I
L1 = V I I I

L2 = 0 (28)

By applying the volt–second balance principle to the coupled inductor, the following equations
can be obtained: ∫ DTs

0
V I

L1dt +
∫ (D+DL)Ts

DTs
V I I

L1dt +
∫ Ts

(D+DL)Ts
V I I I

L1 dt = 0 (29)

∫ DTs

0
V I

L2dt +
∫ (D+DL)Ts

DTs
V I I

L2dt +
∫ Ts

(D+DL)Ts
V I I I

L2 dt = 0 (30)

By substituting (20), (27), and (28) into (30), the voltage across capacitor C3 can be expressed as:

Vc3 =
nD
DL

Vin (31)

Similarly, by substituting (19), (25), and (28) into (29) and (22), (27), and (28) into (30), the stress
voltages of capacitors C1 and C2 can be expressed as:

Vc1 =
D + DL

DL
Vin (32)

Vc2 = (n +
nD
DL

)Vin (33)

By substituting (20), (26), (28), (32), and (33) into (30), the voltage gain of the proposed converter
during the DCM can be expressed as:

Vo = [
2D
DL

(1 + n) + (n + 2)] Vin (34)

DL =
2D(1 + n)Vin

Vo − (2 + n)Vin
(35)

On the basis of Figure 5, the average current value ico1, can be expressed as:

ico1 =
1
2

DL
ILmp

2 + 2n
− Io (36)

In the steady state, ico1 is equal to zero and (21), (35), and ico1 = 0 can be substituted into (36).
Therefore, (37) can be obtained as:

D2(n + 1)Vin
2Ts

[Vo − (n + 2)Vin]·(2n + 2)·Lm
=

Vo

R
(37)
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The time constant of the magnetizing inductance is defined as:

τLm
def
=

Lm
RTs

(38)

By substituting (38) into (37), the voltage gain can be obtained as follows:

MDCM =
Vo

Vin
=

2n + 2
2

+

√
(2n + 2)2

4
+

D2(n + 1)
(2n + 2)·τLm

(39)

3.3. Boundary Operating Condition between the CCM and the DCM

While operating the proposed converter in boundary-condition mode the voltage gain is equal for
CCM and DCM operations. Based on (18) and (39), the time constant τLmB of the boundary normalized
magnetizing inductor can be expressed as:

τLmB =

D2(n+1)
2n+2

[
(

2+n+nD
1−D

)
− 2n+2

2 ]
2
− (2n+2)2

4

(40)

Figure 8 shows the curve of τ. The proposed converter is operated in the CCM when τ is higher
than iLmB. Otherwise, the proposed converter is operated in the DCM.
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4. Design and Experiment of the Proposed Converter

To test and measure the proposed converter performance, a prototype circuit of the proposed
converter at 150 W was constructed in the laboratory. The main specifications are as follows:

Input DC voltage Vin: 24 V.
Output DC voltage Vo : 400 V.
Maximum output power: 150 W.
Switch frequency: 50 kHz.
Switch: IXTH130N10T.
Diodes: D1–D3, Do: DSEI 30-10A; Din and D4: 25JPE40.
Capacitors: C1 and Cco2: 100 µ/100 V, C2: 100 µ/250 V, C3: 100 µ/100 V, and Co1: 220 µ/400 V
aluminium capacitors.
Transformer: ETD-49 core PC-32, Np:Ns = 1:3, Lm = 32 µH and Lk = 0.22 µH; k = 0.993.
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Figure 9a illustrates the secondary current is, primary-side leakage magnetizing current iLk, and
drain to source voltage of the main power switch at full load Po = 150 W and Vin = 24 V. The waveform
of the secondary current is of the coupled inductor shows that the proposed circuit does not have zero
current when the switch is turned on in the CCM. Figure 9b shows the waveforms of id1 and id2.
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Figure 9. Experiment waveform under full-load Po = 150 W. (a) Measured waveforms of Vds, iLk and
is; (b) Measured waveforms of Vds, id1 and id2; (c) Measured waveforms of Vds, id3 and id4; and (d)
Measured waveforms of Vds, idin and ido.

The current of the capacitor C1 flows to D2 and energy is transferred to the capacitor Co2 when
the switch is turned on. The capacitor C1 absorbs energy from Vin and parasitic capacitor on the switch
when the switch is turned off. Figure 9c shows the waveforms of id3 and id4; C2 and C3 are charged by
the DC source Vin and secondary-side coupled inductor. Figure 9d shows the waveforms of idin and ido.
The energy of Vin though Cin transfers to the step up circuit and current flow to Do and is released to
output capacitors.

Figure 10a shows that Vc1, Vc2, and Vc3 satisfy (14), (15), and (17). Figure 10b shows the input and
output voltages of capacitors Co1 and Co2. Figure 11 illustrates the efficiency of the proposed converter
at 20–150 W loads, and the maximum efficiency is 96.2% at 60 W.
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5. Conclusions

This study successfully integrated the proposed converter by using the coupled inductor and high
step-up circuit. High voltage gain was achieved using the coupled inductor when the capacitor charged
and discharged energy. For this paper is integrated coupled inductor and switch capacitor to achieve
a high step-up voltage gain without extreme duty cycle. In addition, energy was recovered from
the leakage inductor of the coupled inductor by using a passive clamp circuit. The primary-leakage
inductor recovered the energy function, and the switch clamp capacitor reduced the voltage spike of
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the switch. Therefore, when low conducting resistance Rds(on) and low voltage stresses component
were selected, the main power switch loss was reduced. Finally, a prototype circuit of the proposed
converter with an input voltage of 24 V converted to an output voltage of 400 V and maximum power
150 W was constructed in the laboratory. The experimental results proved the high efficiency and
voltage gain of the proposed converter. Moreover, it was proved that the main switch stress voltage is
clamped by the capacitor C1.
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