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Abstract: The accurate peak power estimation of a battery pack is essential to the power-train control
of electric vehicles (EVs). It helps to evaluate the maximum charge and discharge capability of the
battery system, and thus to optimally control the power-train system to meet the requirement of
acceleration, gradient climbing and regenerative braking while achieving a high energy efficiency.
A novel online peak power estimation method for series-connected lithium-ion battery packs is
proposed, which considers the influence of cell difference on the peak power of the battery packs.
A new parameter identification algorithm based on adaptive ratio vectors is designed to online
identify the parameters of each individual cell in a series-connected battery pack. The ratio vectors
reflecting cell difference are deduced strictly based on the analysis of battery characteristics. Based on
the online parameter identification, the peak power estimation considering cell difference is further
developed. Some validation experiments in different battery aging conditions and with different
current profiles have been implemented to verify the proposed method. The results indicate that
the ratio vector-based identification algorithm can achieve the same accuracy as the repetitive RLS
(recursive least squares) based identification while evidently reducing the computation cost, and the
proposed peak power estimation method is more effective and reliable for series-connected battery
packs due to the consideration of cell difference.

Keywords: power estimation; parameter identification; ratio vector; cell difference; recursive
least squares

1. Introduction

With the global issues of energy shortage and environmental degradation, the lithium-ion battery,
because of its high energy and power density and long service lifetime, has become one of the
most readily available and low-cost energy storage components in electric vehicles (EVs). However,
the lithium-ion battery cells are sensitive to over- and under-voltage, over- and under-temperature,
and some extreme working conditions may even lead to safety issues. Thus, to guarantee the safety of
the vehicle and to enhance the performance of the batteries, a battery system is generally equipped
with a battery management system (BMS). The most important task of a BMS is to provide an accurate
and real-time estimation of the internal states of the battery, such as state of Charge (SOC), state of
health (SOH) and peak power etc. [1].

The estimation of the peak power in the vehicular application is generally used to evaluate the
maximum charge and discharge capability of the battery system, and thus help to optimally control
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the power-train system to meet the requirement of acceleration, gradient climbing and regenerative
braking while achieving a high energy efficiency [2].

The peak power can be determined by three methods. The first one is the hybrid pulse power
characterization (HPPC) proposed by Partnership for New Generation Vehicles (PNGVs) [3]; the second
method considers the SOC limit of the battery, i.e., the peak power is calculated based on the limitation
of the permitted maximum and minimum SOC [4]; and the third method is the voltage-limited
method [4–12]. No matter what method is used, in a real BMS, the peak power estimation can be
implemented with two types of techniques: techniques based on a characteristic map and on dynamic
battery models [13].

Within the techniques based on the characteristic maps [14,15], the static interdependence existing
among the peak power, battery states (e.g., SOC and SOH), working conditions (e.g., voltage and
temperature) and pulse duration is applied. The dependencies are stored in the non-volatile memory
of the BMS in the form of look-up tables. When the battery system is working, the BMS determines
the peak power of the battery according to the present battery states, working conditions and the
requirement of the duration of power delivery. Normally, the characteristic map can be obtained in
advance by various test procedures, for example, the HPPC test procedure [3]. The main advantages of
this technique are its simplicity and straight forward implementation. However, this technique suffers
from the drawbacks that only static battery characteristics are considered, massive experiments should
be implemented to obtain the characteristic map, and a significant amount of non-volatile memory is
required which increases the cost of the BMS.

Another technique is the model-based estimation [4–12]. So far, there have been many researches
of model-based power estimation, and the main difference among the existing researches lies in the
type of models they used. If the model can track the battery dynamics well, then the peak power can
also be estimated accurately. One more important aspect that should be taken into consideration is
that the model should be adaptive to different aging states and temperatures. Thus, model adaption
techniques are often applied [5,7,8], in which the model parameters are identified online to improve
estimation accuracy. Generally, the model-based power estimation is more promising, and the above
mentioned researches have been validated and proven to be effective for the power estimation of a
single battery cell.

One common drawback of the above mentioned techniques is that the characteristic difference
among the cells of a battery pack has not been considered. As we know, in EV applications, due to
the requirement of voltage and power, the battery system is generally composed of tens to hundreds
of cells connected in series. Because of the restrictions of production technology and tolerances,
material defects and contaminations, small differences among cells may exist. Furthermore, in real
applications, the working conditions, e.g., temperature distributions, are also different among cells.
This non-homogeneity among cells leads to the peak power of the battery system being limited by the
weakest cell. Although this is a big challenge of battery management, to the best of our knowledge,
there are few researches on this problem so far.

An ideal solution of this problem is to estimate the peak power for each individual cell online,
i.e., to design an estimator which works well for estimating cell peak power, and to replicate that
estimator N times to estimate the peak power for all the N series-connected cells in the battery systems.
With the accurate power estimation of all the cells, we can determine the peak power for the battery
system by considering the limitation of the weakest cell. This method provides the best estimation
of the peak power for the battery system, however, it incurs a high computation cost, thus is not
suitable to implement online within a low-cost microcontroller-based BMS. In reference [5], Waag et al.
proposed a power estimation technique with consideration of the difference between the characteristics
of individual cells in a battery pack. The method has been validated with a software-in-the-loop
test. The adaption is implemented through a simplified relationship between cell voltage and pack
averaged voltage. The method is enlightening, however, it assumes the dynamic of each cell to be equal,
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which may not necessarily hold true in real battery systems; moreover, the difference of polarization
effect of each individual cell is not strictly considered.

In this paper, as the main scientific contribution, a peak power estimation technique which
comprehensively considers the cell difference in a pack is proposed. A novel model parameter
identification algorithm considering cell difference is firstly put forward. A mean battery cell model
is fabricated to describe the average characteristics of the battery pack. The average parameter of
the battery pack is estimated with the mean battery model, then several ratio vectors describing the
characteristic difference between the battery pack and each battery cell are used to yield the parameter
estimation for each cell. The ratio vectors are deduced strictly based on a comprehensive analysis of
the pack’s and cells’ characteristics. Based on the parameter identification, the peak power estimation
of the battery pack is further developed. Since the parameters for each cell are obtained, the limitation,
imposed by the weakest cell, on peak power is also taken into consideration in power estimation.
Some validation experiments are implemented in which the power estimations with 1 s, 10 s and 30 s
durations are obtained. The results indicate that with the online parameter identification considering
cell difference, the proposed power estimation method is adaptive to different aging states, working
currents and cell inconsistency.

2. Power Estimation for One Single Battery Cell

Peak power means, based on the present conditions, the maximum power that can be maintained
continuously for a specific time period, e.g., 1 s or 10 s, without violating the preset operational limits
on the cells. From this definition, the peak power is limited by the safe operation area of the battery,
which is normally defined by temperature, voltage, current and SOC etc. Since the forecast period
of power prediction is less than tens of seconds, the influence of temperature and SOC changes can
be neglected because they do not change rapidly. Thus, in this paper, the limitations by voltage and
current are mainly considered in power estimation.

2.1. Lumped Parameter Battery Model

Normally, in the model-based peak power estimation, the lumped-parameter battery model is
needed, and the equivalent circuit model shown in Figure 1 is widely used because of its simplicity and
acceptable accuracy. The model can be described in a mathematical way with Equation (1), where UOC
represents the open circuit voltage (OCV) which relates with SOC directly. RO is the ohmic resistance,
and RTH and CTH are the impedance parameters normally corresponding to charge transfer and double
layer capacitor effects. UB and UTH are the terminal voltage and the voltage on CTH respectively, IB is
the working current. All parameters (RO, RTH and CTH) change with different temperatures, SOC and
SOH of the battery. {

UB = Uoc −UTH − IBRO.
UTH = − UTh

RTHCTH
+ IB

CTH

(1)
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2.2. Online Model Parameter Identification

The accuracy of the battery model influences the estimate of the peak power. As we mentioned
above, all the parameters in the model vary along with the actual working conditions of the battery.
Moreover, the parameters cannot be obtained from direct measurements using sensors. Thus,
the accurate identification of the model parameters in various conditions is the key to guarantee
the accuracy of the power estimate.

For the online model parameter identification of li-ion batteries, many researches can be found.
Basically, the parameter identification techniques are the recursive least squares (RLS) type or adaptive
filtering (AF) type of methods [16–25], e.g., Xiong et al. [23] proposed a data-driven estimation
approach which can simultaneously obtain the model parameter and the internal state of the battery.
These techniques have been widely proven to be effective in online parameter identification. Because of
the recursive computation process, these methods are easy to implement in real time. In such
techniques, the parameters of the battery model are identified with only real-time measurements
of current and voltage needed. In this paper, we use the RLS-based parameter identification technique.

If we define the dynamic voltage response caused by the cell impedance as:

Ud = UB −UOC(SOC) (2)

then, the difference equation of the dynamic voltage shown in Figure 1 can be expressed with:

Ud,k+1 = aUd,k + bIB,k+1 + cIB,k (3)
a = e−

∆t
τ

b = −RO

c = e−
∆t
τ RO − (1− e−

∆t
τ )RTH

τ = RTHCTH

(4)

where ∆t is the sampling period of current and voltage, and k is the sampling point.
Define: 

zk = Ud,k
hk = [Ud,k−1, IB,k, IB,k−1]

θ̂LS,k = [a, b, c]
(5)

then the RLS-based model parameter identification can be implemented recursively with the
following equation: 

∧
θLS,k+1 =

∧
θLS,k + Lk+1(zk+1 − hT

k+1

∧
θLS,k)

Lk+1 = Pkhk+1(1 + hT
k+1Pkhk+1)

Pk+1 = Pk − Lk+1hT
k+1Pk

(6)

Note that, in this parameter identification method, the battery SOC should be obtained in
advance. The SOC estimation has been well studied in a lot of previous researches, for example,
Xiong et al. [26] proposed an online battery SOC estimation method. This method was applied based
on the hardware-in-loop (HIL) setup, where the novel adaptive H infinity filter was proposed to realize
the real-time estimation of the battery SOC. The experiment results indicated the high estimation
accuracy and strong robustness of the method to the model uncertainty and measurement noise. Thus,
the SOC estimation is not further studied in this paper.

Another factor which should be taken into account is the influence of current and its direction
on the parameters. Normally, the parameters of the equivalent circuit model change not only with
different temperature, SOC and SOH, but also with the current and current direction. In this paper,
however, the focus is the consideration of the influence of cell difference. Thus, the influence of the
current and its direction on the parameters has not been well considered. To take the influence of
current and its direction on the parameters into account, the identification algorithm can be divided
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into to two parts; each part deals with the parameter identification in a specific current direction.
In this case, the RLS-based parameter identification algorithms introduced in the paper will be divided
into two parts in a similar way. We believe that, with this design, the accuracy of the identification will
be improved. This will be considered in our future works.

2.3. Power Estimation

Normally, when the battery cells are used in an EV, the battery supplier will provide a current
limitation of the batteries. In any case, the current of the battery cell should never exceed this limitation
value. Besides this limitation, the peak power of the battery in real applications is also limited
by voltage. Thus, in this paper, the limitations by both voltage and current are considered in the
power estimation.

(1) Limitation by voltage

With a pulse current lasting for a period of m × ∆t, the terminal voltage of the battery will be [6]:

Um,m+k = Uoc(SOCk)− Im+k[
∆t
C

dUoc(SOC)
d(SOC)

∣∣∣
SOC=SOCk

+ RO + (1− e−
∆t
τ )RTH

m−1
∑

i=1
(e−

∆t
τ )

m−1−i

]− (e−
∆t
τ )

m
UTH,k (7)

thus, the maximum charge and discharge current considering the voltage limitation are:
Imin,vol,k+m =

Uoc(SOCk)−UTH,k(e−
∆t
τ )

m
−Umax

∆t
C

dUoc(SOC)
d(SOC)

∣∣∣
SOC=SOCk

+RO+RTH(1−e−
∆t
τ )

m−1
∑

i=1
(e−

∆t
τ )

m−1−i

Imax,vol,k+m =
Uoc(SOCk)−UTH,k(e−

∆t
τ )

m
−Umin

∆t
C

dUoc(SOC)
d(SOC)

∣∣∣
SOC=SOCk

+RO+RTH(1−e−
∆t
τ )

m−1
∑

i=1
(e−

∆t
τ )

m−1−i

(8)

where Umax and Umin are the allowed maximum and minimum voltages of the battery, Imin is the
maximum charge current and Imax is the maximum discharge current, k is the sampling point, and ∆t
is the sampling period.

(2) Power estimation

Considering all the limitations by current and voltage, the maximum charge and discharge current
of the battery lasting for the period of m × ∆t from sampling step k can be determined by:{

Imin = max(Imin,batt, Imin,vol,k+m)

Imax = min(Imax,batt, Imax,vol,k+m)
(9)

where Imin,batt and Imax,batt are the permitted maximum charge and discharge currents suggested by the
battery suppliers. Then, the peak power estimation of the battery can be obtained by:


Pmin = Um,k+m Imin = {Uoc(SOCk)− Imin[

∆t
C

dUoc(SOC)
d(SOC)

∣∣∣
SOC=SOCk

+ RO + RTH(1− e−
∆t
τ )

m−1
∑

i=1
(e−

∆t
τ )

m−1−i
]− (e−

∆t
τ )

m
UTH,k}Imin

Pmax = Um,k+m Imax = {Uoc(SOCk)− Imax[
∆t
C

dUoc(SOC)
d(SOC)

∣∣∣
SOC=SOCk

+ RO + RTH(1− e−
∆t
τ )

m−1
∑

i=1
(e−

∆t
τ )

m−1−i
]− (e−

∆t
τ )

m
UTH,k}Imax

(10)

According to the elaborations above, the online adaptive peak power estimation of a single battery
cell can be illustrated in Figure 2. The process illustrated in Figure 2 has now been widely used and
proven to be effective in the power estimation of a single battery cell.
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Figure 2. Peak power estimation of a single battery cell. SOC: state of charge; and OCV: open
circuit voltage.

3. Power Prediction of Series-Connected Battery Packs

For a battery pack consisting of tens to hundreds of cells connected in series, it is the performance
of each individual cell which limits the peak power. In a battery pack, the peak power is actually
limited by the weakest cell, which is the cell that first reaches the predefined voltage or current limit
during charging or discharging. Normally, the weakest cell limiting power delivery is the cell with
the largest impedance. The SOC of each cell also influences the power capability; in any case, in a
full-featured BMS, the problem caused by SOC imbalance can be alleviated by cell balancing [27] or
cell SOC estimation [28]. Thus, in this paper, the influence of SOC imbalance to power capability is
neglected, and the main focus of this study is the influence of cell impedance.

To determine the weakest cell, a straight forward method is to online identify the parameters of all
individual cells. This method requires a huge computation cost, and is not suitable to be implemented
on a low-cost microcontroller-based BMS. In reference [29], Roscher et al. proposed a reliable state
estimation of multi-cell Li-ion battery systems, where a dimensionless vector reflecting the ratio of
all the cells’ total impedances is used to determine the impedance parameters of all individual cells,
and Waag et al. [5] used a similar method to deal with the problem caused by cell difference. The works
of Roscher and Waag are enlightening, however, they assume the dynamic of each cell to be equal,
which may not necessarily hold true in real battery systems; moreover, the difference of polarization
effect of each individual cell is not strictly considered. We propose a peak power estimation technique
which comprehensively considers the cell difference in a pack.
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3.1. Improved Parameter Identification for Series Connected Battery Systems

(1) Basic idea

For simplicity, a small battery pack consisting of two series-connected cells is taken as an example
to develop the improved parameter identification for series-connected battery systems. The impedance
parameters of the two cells are RO1, RHT1, CTH1, and RO2, RTH2, CTH2. A battery cell, called “mean cell”,
with the mean characteristics of the two individual cells is constructed; the impedance parameters of
the mean cell are ROm, RTHm, CTHm. With the fabricated mean cell, the battery pack can be considered
to be composed of two same mean cells, and the system is shown in Figure 3.Energies 2017, 10, 390 7 of 21 

 

 
Figure 3. A simplified battery pack consisting of two series-connected individual cells. 

We define three ratio vectors, which reflect the differences among the battery characteristics: 

1 2

1 2

1 2

=[ , ]

exp( / ) exp( / )
[ , ]
exp( / ) exp( / )

[ , ]

O O

Om Om

m m

TH TH

THm THm

R R
A

R R

t t
B

t t

R R
C

R R




 −Δ τ −Δ τ = −Δ τ −Δ τ


=


 
(11) 

For the battery pack, during charge and discharge, the mean parameters can be easily 
identified online with the RLS-based algorithm as introduced above when we consider that the 
pack is composed of two same mean battery cells. Then, the parameters of each individual cell can 
be obtained by combining the ratio vectors and the online identified mean parameters by the 
following equation. We can see that the determination of the ratio vectors is critical in the proposed 
method. 

1

2

1

2

1

2

[1]
[2]

exp( / ) [1]exp( / )
exp( / ) [2]exp( / )

[1]
[2]

O Om

O Om

m

m

TH THm

TH THm

R A R

R A R

t B t

t B t

R C R

R C R

=
 =
 −Δ τ = −Δ τ
 −Δ τ = −Δ τ
 =


=

 
(12) 

(2) Determination of ratio vector A 

When the battery pack works under a current I, we have: 

1 2 1 2/ /O O O OR R U U=  (13) 

where UO1 and UO2 are the voltages of RO1 and RO2 under current I (shown in Figure 1). Then, 
theoretically, vector A can be determined with: 

= [ , ] = [ , ]O1 O2 O1 O2

Om Om Om Om

R R U U
A

R R U U
 (14) 

In real applications, it is difficult to obtain UO1, UO2 and UOm online because they cannot be 
directly measured, thus it is difficult to get the value of A with Equation (14). However, according 
to the model shown in Figure 1, we can find that, if the current changes suddenly, RO will cause a 
sudden voltage change. Based on this analysis, we can determine A with the sudden voltage 
changes of each individual cell and the mean cell, as shown in Equation (15), where ΔUs1, ΔUs2 and 
ΔUsm are the sudden voltage changes of the cells respectively. 
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We define three ratio vectors, which reflect the differences among the battery characteristics:
A = [ RO1

ROm
, RO2

ROm
]

B = [
exp(−∆t/τ1)
exp(−∆t/τm)

, exp(−∆t/τ2)
exp(−∆t/τm)

]

C = [ RTH1
RTHm

, RTH2
RTHm

]

(11)

For the battery pack, during charge and discharge, the mean parameters can be easily identified
online with the RLS-based algorithm as introduced above when we consider that the pack is composed
of two same mean battery cells. Then, the parameters of each individual cell can be obtained by
combining the ratio vectors and the online identified mean parameters by the following equation.
We can see that the determination of the ratio vectors is critical in the proposed method.

RO1 = A[1]ROm
RO2 = A[2]ROm
exp(−∆t/τ1) = B[1] exp(−∆t/τm)

exp(−∆t/τ2) = B[2] exp(−∆t/τm)

RTH1 = C[1]RTHm
RTH2 = C[2]RTHm

(12)

(2) Determination of ratio vector A

When the battery pack works under a current I, we have:

RO1/RO2 = UO1/UO2 (13)
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where UO1 and UO2 are the voltages of RO1 and RO2 under current I (shown in Figure 1). Then,
theoretically, vector A can be determined with:

A = [ RO1
ROm

, RO2
ROm

] = [ UO1
UOm

, UO2
UOm

] (14)

In real applications, it is difficult to obtain UO1, UO2 and UOm online because they cannot be
directly measured, thus it is difficult to get the value of A with Equation (14). However, according to
the model shown in Figure 1, we can find that, if the current changes suddenly, RO will cause a sudden
voltage change. Based on this analysis, we can determine A with the sudden voltage changes of each
individual cell and the mean cell, as shown in Equation (15), where ∆Us1, ∆Us2 and ∆Usm are the
sudden voltage changes of the cells respectively.

A = [ RO1
ROm

, RO2
ROm

] = [ ∆Us1
∆Usm

, ∆Us2
∆Usm

] (15)

We here illustrate the voltage responses of the two cells under a current cycle, as shown in
Figure 4a. The RLS-based identification results of RO for the cells in this case are shown in Figure 4b.
We can find, from Figure 4, that the sudden voltage change ratio of the cells is very close to the RO
ratio of the cells (in this case, the ratio is close to 1.05), which proves that Equation (15) can be used to
determine vector A.
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By substituting Equation (18) with Equation (17), we have: 
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Figure 4. Voltage and ohmic resistance of the two cells: (a) voltage of the two cells; and (b) ohmic
resistance of the two cells.

(3) Determination of ratio vector B

The polarization voltages of the cells can be obtained by:{
UTH1,k = exp(− ∆t

τ1
)UTH1,k−1 + (1− exp(− ∆t

τ1
))RTH1 IB,k

UTH2,k = exp(− ∆t
τ2
)UTH2,k−1 + (1− exp(− ∆t

τ2
))RTH2 IB,k

(16)

From Equation (16), we have:

UTH1,k

UTH2,k
=

exp(− ∆t
τ1
)UTH1,k−1 + (1− exp(− ∆t

τ1
))RTH1 IB,k

exp(− ∆t
τ2
)UTH2,k−1 + (1− exp(− ∆t

τ2
))RTH2 IB,k

(17)
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Normally, the time constant of the RTHCTH network is much larger than the sampling period
(generally several or tens of mini seconds), thus:{

1− exp(− ∆t
τ1
)→ 0

1− exp(− ∆t
τ2
)→ 0

(18)

By substituting Equation (18) with Equation (17), we have:

UTH1,k

UTH2,k
≈

exp(− ∆t
τ1
)UTH1,k−1

exp(− ∆t
τ2
)UTH2,k−1

(19)

Thus:
exp(− ∆t

τ1
)

exp(− ∆t
τ2
)
=

UTH1,k/UTH1,k−1

UTH2,k/UTH2,k−1
(20)

If we define: 
Kτ1 = UTH1,k/UTH1,k−1
Kτ2 = UTH2,k/UTH2,k−1
Kτm = UTHm,k/UTHm,k−1

(21)

then, from Equation (21), we can define ratio vector B as:

B = [
exp(−∆t/τ1)
exp(−∆t/τm)

, exp(−∆t/τ2)
exp(−∆t/τm)

] = [ Kτ1
Kτm

, Kτ2
Kτm

] (22)

On the other hand, during charge and discharge, the polarization voltages can also be
calculated as: {

UTH1 = Ud1 − IBRO1
UTH2 = Ud2 − IBRO2

(23)

in which Ud is the dynamic voltage response caused by the impedance, and can be calculated by
Equation (2).

After measuring the terminal voltages of each cell and the pack, the dynamic voltage caused by
the impedance can be calculated with Equation (2). Then, with Equation (23) and the identified ohmic
resistances of cell 1, cell 2 and the mean cell, the polarization voltages can be obtained. Finally, the ratio
vector reflecting the difference of polarization time constants, B can be calculated with Equations (21)
and (22).

(4) Determination of ratio vector C

Based on Equation (17), we have:
RTH1 =

UTH1,k−exp(− ∆t
τ1

)UTH1,k−1

(1−exp(− ∆t
τ1

))

RTH2 =
UTH2,k−exp(− ∆t

τ2
)UTH2,k−1

(1−exp(− ∆t
τ2

))

(24)

If we define: 

KRTH1 =
UTH1,k−exp(− ∆t

τ1
)UTH1,k−1

(1−exp(− ∆t
τ1

))

KRTH2 =
UTH2,k−exp(− ∆t

τ2
)UTH2,k−1

(1−exp(− ∆t
τ2

))

KRTHm =
UTHm,k−exp(− ∆t

τm )UTHm,k−1

(1−exp(− ∆t
τm ))

(25)
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then, the ratio vector C can be determined as:

C = [ RTH1
RTHm

, RTH2
RTHm

] = [ KRTH1
KRTHm

, KRTH2
KRTHm

] (26)

With vector B, and the identified time constant of the mean cell τm, we can get τ1 and τ2 with
Equation (22), then with Equations (25) and (26), we can finally determine vector C, as shown in Figure 5.Energies 2017, 10, 390 10 of 21 
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(5) Online update of the ratio vectors

For a battery system composed of N series-connected battery cells, the ratio vectors reflecting the
characteristics differences among the cells are:

A = [ ∆Us1
∆UsM

, ∆Us2
∆UsM

, . . . , ∆Usn
∆UsM

]

B = [ Kτ1
KτM

, Kτ2
KτM

, . . . , Kτn
KτM

]

C = [ KRTH1
KRTHM

, KRTH2
KRTHM

, . . . , KRTHn
KRTHM

]

(27)

When using the ratio vectors to determine the parameters for each individual cell, to avoid the
possible fluctuations and errors, an AF is further designed. We here take the design of the AF of vector
A as an example.

According to Equation (15), at the sampling step k, the sudden voltage change vector of all the
individual cells can be estimated with:

∆Upre
s,k = Ak−1∆UsM,k (28)

If the ratio vector A carries some errors, then the estimated sudden voltage changes of the
individual cells should be different from the true values; then, we can adjust A with the errors as:

Ak = Ak−1 + gA(∆Us,k − ∆Upre
s,k ) (29)

in which, gA is an adjustment gain for vector A.
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Similarly, we design the filters for vectors B and C as shown below:{
Kpre
τ,k = KτM,kBk−1

Bk = Bk−1 + gB(Kτ,k − Kpre
τ,k)

(30)

{
Kpre

RTH,k = KRTHM,kCk−1

Ck = Ck−1 + gC(KRTH,k − Kpre
RTH,k)

(31)

in which, gB and gC are the adjustment gains for vectors B and C respectively.

3.2. Power Estimation Considering Cell Difference

For a battery pack consisting of N series-connected battery cells, the current limitation of each
battery cell can be calculated with Equation (8) and the identified cell parameters based on the proposed
identification method. The peak power estimation will be: Psysmin = N × min

i=1:N
(Uchg

B,i,k+m Ii,min)

Psysmax = N × max
i=1:N

(Udis
B,i,k+m Ii,max)

(32)

In conclusion, the power estimation of the battery system considering the cell difference is
illustrated in Figure 6. The main advantage of this method is that the power estimation takes the cell
difference into consideration with an acceptable computation cost.
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4. Case Study

4.1. Experimental Setups

A small battery pack composed of 10 series-connected cells is constructed to validate the proposed
peak power estimation method. Table 1 lists the basic information and the allowed voltage and current
limitations of the battery cell suggested by the supplier at 25 ◦C.

Table 1. Basic information of the battery cell provided by the supplier.

No. Parameter Value

1 Nominal capacity (Ah) 80
2 Nominal voltage (V) 3.7
3 Discharge cut-off voltage (V) 2.8
4 Charge cut-off voltage (V) 4.2
5 Allowed maximum 30 s pulse discharge current (15%–85% SOC) (A) 480
6 Allowed maximum 30 s pulse charge current (15%–85% SOC) (A) 240

Several tests with different current profiles are designed to thoroughly investigate the
performance of the method. During the tests, the battery pack is put in an environmental chamber,
and the temperature is set to 25 ◦C. The current profiles are obtained from an EV during the
J1015, New European Driving Cycle (NEDC) and Federal Test Procedure-75 (FTP-75) cycle tests,
and are shown in Figure 7. The tests are then implemented by a battery tester (Arbin BTS 2000,
Arbin, College Station, TX, USA) with the obtained current profiles.
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Figure 7. Current profiles of the tests: (a) current profile of the J1015 cycle test; (b) current profile of the
New European Driving Cycle (NEDC) cycle test; and (c) current profile of the Federal Test Procedure-75
(FTP-75) cycle test.

To investigate the performance of the proposed method in different cell aging conditions and
different current profiles, the battery pack is firstly tested with the NEDC current profile, followed by
50 constant full charge/discharge cycles. Then, the battery pack is tested with the J1015 current profile,
followed by another 50 full charge/discharge cycles. At last, the battery pack is tested with the FTP-75
current profile. The overall test procedure is illustrated in Figure 8.
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Figure 8. The overall test procedure.

The actual battery current and voltage, and the voltages of the 10 cells during the tests are all
simultaneously measured by the BMS. With all the measured currents and voltages, we obtained the
parameters of each individual cell by the repetitive implementation of the RLS-based identification,
and the identification results are considered as the reference values of the parameters. On the other
hand, the cell parameters are also identified by the newly proposed method, and the identification
results of the new method are then compared with the reference values obtained from the repetitive
RLS-based identification to investigate the performance of the proposed method.

Meanwhile, the power of the battery pack is estimated by the measured signals and the identified
parameters. Both the peak power estimations with and without considering cell differences are
obtained. The peak power estimation without considering cell differences is based on the parameters
of the mean battery cell, and the process is shown in Figure 2, while the power estimation considering
cell differences is realized with the method shown in Figure 6. The estimation results with and without
considering cell differences are compared to investigate how cell differences affect the peak power of
the battery pack. In the identification, the parameters are arbitrarily initialized with zero.

4.2. Results and Discussions

Figures 9–11 show the parameter identification results obtained by the repetitive RLS algorithm
and the proposed method during the tests. In all tests, we find that the parameters obtained by the
proposed method are very close to the reference values identified by the repetitive RLS algorithm,
especially after the convergence of the algorithm. We also find that, because of the design of the AF of
the ratio vectors, the convergence of the proposed method is a little slower than the repetitive RLS
algorithm. This can be seen more clearly by a close look at the identified results during the interval
from 0 s to 200 s. In this time interval, the parameters identified by the different methods show big
differences. Before convergence, the parameters identified by both methods have large errors, and the
errors are also different in different methods. Thus, during convergence, the parameters are not the
same in different methods. However, the convergence of the repetitive RLS-based algorithm is faster
than the ratio vector-based algorithm. This is because the ratio vector-based algorithm should first use
the results identified by traditional RLS as the mean value of the parameters, and then determine the
parameters for each individual cell with the ratio vectors. Moreover, to avoid the possible fluctuations
and errors, the adaptive filters are further designed, and the adaptive filters slow down the convergence
of the algorithm further. Normally, the RLS-based algorithm converges within less than 150 iteration
steps, and according to the results, the presented method converges within less than 250 iteration steps.
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Figure 9. Identified parameters under the NEDC cycle test: (a) RO identified by the repetitive 

recursive least squares (RLS); (b) RO identified by the proposed new method; (c) RTH identified by 
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Figure 9. Identified parameters under the NEDC cycle test: (a) RO identified by the repetitive
recursive least squares (RLS); (b) RO identified by the proposed new method; (c) RTH identified
by the repetitive RLS; (d) RTH identified by the proposed new method; (e) CTH identified by the
repetitive RLS; and (f) CTH identified by the proposed new method.
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Figure 10. Identified parameters under the J1015 cycle test: (a) RO identified by the repetitive
RLS; (b) RO identified by the proposed new method; (c) RTH identified by the repetitive RLS;
(d) RTH identified by the proposed new method; (e) CTH identified by the repetitive RLS;
and (f) CTH identified by the proposed new method.
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Figure 11. Identified parameters under the FTP-75 cycle test: (a) RO identified by the repetitive
RLS; (b) RO identified by the proposed new method; (c) RTH identified by the repetitive
RLS; (d) RTH identified by the proposed new method; (e) CTH identified by the repetitive RLS;
and (f) CTH identified by the proposed new method.

To validate the accuracy of the parameters identified by the proposed method, we focus on the
identification results at the end of the tests, which are also shown in Figures 9–11. We can see that the
parameters identified by the two methods respectively are almost the same. A clear convergence of the
ratio vectors can be found in the identification results. By comparing the impedance results shown
in Figures 9–11, we can also conclude from the results that, during the aging process, the internal
impedances of the battery cells are getting larger, regardless of the ohmic resistance or the charge
transfer resistance. The larger impedance during the aging process is caused by increasing the thickness
of the SEI layer, and the decreasing the conductivity of the electrolyte etc. [30,31].
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Table 2 lists the comparison of the computation time cost by the two methods, from which we
can conclude that the proposed method can achieve the same identification accuracy while evidently
reducing the computation cost. Note that the time listed in Table 2 is the total computation time cost
by the algorithms in different test cycles when they are executed on a PC with a 2.4 GHz CPU.

Table 2. Computation time cost of the identification algorithms.

Test Cycles Computation time of
the RLS (s)

Computation Time of the
New Method (s) Time Reduced (%)

J1015 1.46 0.67 54.1
NEDC 2.74 1.28 53.2
FTP75 5.71 2.66 53.4

Figures 12 and 13 show the peak power estimation results of the battery pack during the
tests. Both the estimations with and without considering cell differences are shown in the figures.
Some conclusions can be drawn from the results.
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Figure 12. Power estimation results under the NEDC cycle test: (a) 1 s discharge power estimation
result; (b) 1 s charge power estimation result; (c) 10 s discharge power estimation result; (d) 10 s
charge power estimation result; (e) 30 s discharge power estimation result; and (f) 30 s charge power
estimation result.



Energies 2017, 10, 390 18 of 22

Energies 2017, 10, 390 17 of 21 

 

capability of the batteries. The difference of polarization impedance among the cells then affects the 

power capability more and more evidently as the current excitation continues. 

  
(a) (b) 

  
(c) (d) 

 
 

(e) (f) 

Figure 12. Power estimation results under the NEDC cycle test: (a) 1 s discharge power estimation 

result; (b) 1 s charge power estimation result; (c) 10 s discharge power estimation result; (d) 10 s 

charge power estimation result; (e) 30 s discharge power estimation result; and (f) 30 s charge power 

estimation result. 

  
(a) (b) 

Energies 2017, 10, 390 18 of 21 

 

 
 

(c) (d) 

  

(e) (f) 

Figure 13. Power estimation results under the FTP75 cycle test: (a) 1 s discharge power estimation 

result; (b) 1 s charge power estimation result; (c) 10 s discharge power estimation result; (d) 10 s 

charge power estimation result; (e) 30 s discharge power estimation result; and (f) 30 s charge power 

estimation result. 

5. Conclusions 

This paper proposed a new method to online estimate the power capability of the battery 

packs composed of series-connected cells. The main contribution is that the cell inconsistency is 

considered in the estimation by designing a novel ratio vector-based parameter identification 

algorithm. The main conclusions and summarizations are drawn below. 

(1) A ratio vector-based parameter identification algorithm is proposed which can achieve the 

same identification accuracy as the repetitive RLS-based identification while evidently reducing the 

computation cost. This facilitates the online implementation of the algorithm. 

(2) Based on the ratio vector-based parameter identification, the estimation of the power 

capability of the battery pack composed of series-connected cells is further developed. Validation 

results indicate that the proposed method is effective to estimate the power capability considering 

cell difference. 

(3) Due to cell difference, the power estimation considering cell difference is smaller than the 

estimation results without considering cell difference. 

(4) The influence of the cell difference on the pack power capability is dependent on the power 

duration. For instant power capability estimations, it is not necessary to consider the influence of 

cell difference. However, if the estimation of continuous power capability is needed, the 

consideration of cell difference is critical. 

Acknowledgment: This work is financially supported by the National Natural Science Foundation of China 

(NSFC, Grant No. 51677136). 

Author Contributions: Bo Jiang performed the experiments and wrote the paper; Haifeng Dai conceived the 

idea and designed the experiments; Xuezhe Wei and Letao Zhu analyzed the data; Zechang Sun contributed 

helpful suggestions in the design of the algorithm. All authors read and approved the manuscript. 

Figure 13. Power estimation results under the FTP75 cycle test: (a) 1 s discharge power estimation
result; (b) 1 s charge power estimation result; (c) 10 s discharge power estimation result; (d) 10 s
charge power estimation result; (e) 30 s discharge power estimation result; and (f) 30 s charge power
estimation result.

(1) The power capability of the battery pack is firstly influenced by the required power duration;
the longer the duration required, the smaller the power capability will be. The power capability lasting
for 1 s is obviously larger than the power capabilities lasting for 10 s and 30 s. This is reasonable
because during charge/discharge, the impedance caused by the internal polarization of the battery
plays a more and more dominant role, which limits the power capability of the batteries. This can also
be deduced from Equations (8) and (10).

(2) In the middle SOC range, the charging power capability is smaller than the discharging
power capability within the same condition. From Equations (8) and (10), we can see that, if the
difference between the charge and discharge impedances is neglected, the main factors affecting
charging and discharging power capabilities are the cut-off voltages, Umax and Umin. Generally,
the difference between the OCV and Umin is much larger than the difference between the OCV and
Umax, especially when the battery works in a middle SOC range, which makes the charging power
capability smaller than the discharging power capability.

(3) During the aging process, the power capability of the battery pack is getting smaller. We can
see this phenomenon by comparing the estimation results shown in Figures 12 and 13. We can clearly
find that the peak power estimations during the FTP-75 test are smaller than those during the NEDC
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test. As introduced above, between the FTP-75 and NEDC tests, there exist 50 full charge/discharge
cycles, in which the impedances of the battery cells are getting larger. The larger impedance introduces
a smaller power capability.

(4) Due to cell difference, the power estimation results considering cell difference are smaller
than the estimation results without considering cell difference. This result supports the statement that,
because of the cell difference, the peak power of the battery pack is limited by the characteristics of the
weakest cell. In the estimation without considering cell difference, an equivalent battery module that
consisted of mean battery cells is used (Figure 2). The performance of the mean cell will of course be
better than the worst cell in the pack.

(5) The influence of the cell difference on the pack power capability is dependent on the power
duration. For the charge/discharge powers with a 1 s duration, the influence of cell difference
can be neglected. This means that, for instant power capability estimations, it is not necessary to
consider the influence of cell difference. However, if the estimation of continuous power capability
is needed, then the consideration of cell difference is critical. We can see from the results that, in the
estimations of the 30 s power capability, the results considering cell difference are much smaller
than those without considering cell difference. The phenomenon can actually be deduced from
Equations (8) and (10). During the process of charge/discharge, the impedance caused by the internal
polarization of the battery plays a more and more dominant role, limiting the power capability of the
batteries. The difference of polarization impedance among the cells then affects the power capability
more and more evidently as the current excitation continues.

5. Conclusions

This paper proposed a new method to online estimate the power capability of the battery packs
composed of series-connected cells. The main contribution is that the cell inconsistency is considered
in the estimation by designing a novel ratio vector-based parameter identification algorithm. The main
conclusions and summarizations are drawn below.

(1) A ratio vector-based parameter identification algorithm is proposed which can achieve the
same identification accuracy as the repetitive RLS-based identification while evidently reducing the
computation cost. This facilitates the online implementation of the algorithm.

(2) Based on the ratio vector-based parameter identification, the estimation of the power capability
of the battery pack composed of series-connected cells is further developed. Validation results indicate
that the proposed method is effective to estimate the power capability considering cell difference.

(3) Due to cell difference, the power estimation considering cell difference is smaller than the
estimation results without considering cell difference.

(4) The influence of the cell difference on the pack power capability is dependent on the power
duration. For instant power capability estimations, it is not necessary to consider the influence of cell
difference. However, if the estimation of continuous power capability is needed, the consideration of
cell difference is critical.

Acknowledgments: This work is financially supported by the National Natural Science Foundation of China
(NSFC, Grant No. 51677136).

Author Contributions: Bo Jiang performed the experiments and wrote the paper; Haifeng Dai conceived the idea
and designed the experiments; Xuezhe Wei and Letao Zhu analyzed the data; Zechang Sun contributed helpful
suggestions in the design of the algorithm. All authors read and approved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2017, 10, 390 20 of 22

Nomenclature

UB Battery terminal voltage
UOC Battery open circuit voltage
IB Battery working current
RO Ohmic resistance of the battery
UTH Voltage on network describing the charge transfer effect
RTH Resistance of charge transfer
CTH Double layer capacitor
Ud Dynamic voltage on the impedance under current excitation
∆t Sampling period
k Sampling point
θ Parameter vector of the battery model
Umax Allowed maximum voltage of the battery
Umin Allowed minimum voltage of the battery
Imax,batt Allowed maximum discharge current of the battery suggested by the battery suppliers
Imin,batt Allowed maximum charge current of the battery suggested by the battery suppliers
Imax,volt Allowed maximum discharge current of the battery limited by voltage
Imin,volt Allowed maximum charge current of the battery limited by voltage
ROm Ohmic resistance of the mean battery cell
RTHm Charge transfer resistance of the mean battery cell
CTHm Equivalent capacitor of charge transfer effect of the mean battery cell
UO Voltage on the ohmic resistance under current excitation
∆Usm Sudden voltage change during current pulse of the mean battery cell
∆Us Sudden voltage change during current pulse of the battery
A Vector reflecting the difference of ohmic resistance
B Vector reflecting the difference of time constant of charge transfer effect
C Vector reflecting the difference of charge transfer resistance
∆Upre

s Predicted sudden voltage change during current pulse
N Number of the battery cells connected in series
gA Adjustment gain for vector A
gB Adjustment gain for vector B
gC Adjustment gain for vector C
Psysmin Maximum charge power of the battery system
Psysmax Maximum discharge power of the battery system
Kpre
τ,k Predicted ratio of the charge transfer voltages at sampling point k

Kτ Ratio of charge transfer voltages
KRTH Ratio of the charge transfer resistance
Kpre

RTH,k Predicted ratio of the charge transfer resistance at sampling point

References

1. Lu, L.; Han, X.; Li, J.Q.; Hu, J.F.; Ouyang, M. Review on the key issues for lithium-ion battery management
in electric vehicles. J. Power Source 2013, 226, 272–288. [CrossRef]

2. Castaings, A.; Lhomme, W.; Trigui, R.; Bouscayrol, A. Comparison of energy management strategies of
a battery/supercapacitors system for electric vehicle under real-time constraints. Appl. Energy 2016, 163,
190–200. [CrossRef]

3. PNGV Battery Test Manual: Revision 3; US Department of Energy: Washington, DC, USA, 2001.
4. Gregory, L.P. High-performance battery-pack power estimation using a dynamic cell model. IEEE Trans.

Veh. Technol. 2004, 53, 1586–1593. [CrossRef]
5. Waag, W.; Fleischer, C.; Sauer, D.U. Adaptive on-line prediction of the available power of lithium-ion

batteries. J. Power Source 2013, 242, 548–559. [CrossRef]
6. Sun, F.C.; Xiong, R.; He, H.W.; Li, W.Q.; Aussems, J.E.E. Model-based dynamic multi-parameter method for

peak power estimation of lithium-ion batteries. Appl. Energy 2012, 96, 378–386. [CrossRef]

http://dx.doi.org/10.1016/j.jpowsour.2012.10.060
http://dx.doi.org/10.1109/TVT.2004.832408/j.apenergy.2015.11.020
http://dx.doi.org/10.1109/TVT.2004.832408
http://dx.doi.org/10.1016/j.jpowsour.2013.05.111
http://dx.doi.org/10.1016/j.apenergy.2012.02.061


Energies 2017, 10, 390 21 of 22

7. Pei, L.; Zhu, C.B.; Wang, T.S.; Lu, R.G.; Chan, C.C. Online peak power prediction based on a parameter and
state estimator for lithium-ion batteries in electric vehicles. Energy 2014, 66, 766–779. [CrossRef]

8. Burgos-Mellado, C.; Orchard, M.E.; Kazerani, M.; Cardenas, R.; Saez, D. Particle-filtering-based estimation
of maximum available power state in lithium-ion batteries. Appl. Energy 2016, 161, 349–363. [CrossRef]

9. Xiong, R.; Sun, F.C.; He, H.W.; Nguyen, T.D. A data-driven adaptive state of charge and power capability a
data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery
used in electric vehicles. Energy 2013, 63, 295–308. [CrossRef]

10. Zhang, W.; Shi, W.; Ma, Z.Y. Adaptive unscented Kalman filter based state of energy and power capability
estimation approach for lithium-ion battery. J. Power Source 2015, 289, 50–62. [CrossRef]

11. Malysz, P.; Ye, J.; Gu, R.; Yang, H.; Emadi, A. Battery state-of-power peak current calculation and verification
using an asymmetric parameter equivalent circuit model. IEEE Trans. Veh. Tech. 2016, 65, 4512–4522.
[CrossRef]

12. Wang, S.Q.; Verbrugge, M.; Wang, J.S.; Liu, P. Power prediction from a battery state estimator that
incorporates diffusion resistance. J. Power Source 2012, 214, 399–406. [CrossRef]

13. Waag, W.; Fleischer, C.; Sauer, D.U. Critical review of the methods for monitoring of lithium-ion batteries in
electric and hybrid vehicles. J. Power Source 2014, 258, 321–339. [CrossRef]

14. Bohlen, O.; Gerschler, J.B.; Sauer, D.U. Robust algorithms for a reliable battery diagnosis-managing batteries
in hybrid electric vehicles. In Proceedings of the 22nd Electric Vehicle Symposium (EVS22), Yokohama,
Japan, 23–28 October 2006.

15. Kim, D.Y.; Jung, D.Y. Method of Estimating Maximum Output of Battery for Hybrid Electric Vehicle. U.S.
Patent 7,518,375 B2, 14 April 2009.

16. Duong, V.H.; Bastawrous, H.A.; Lim, K.C.; See, K.W.; Zhang, P.; Dou, S.X. Online state of charge and model
parameters estimation of LiFePO4 battery in electric vehicles using multiple adaptive forgetting factors
recursive least-squares. J. Power Source 2015, 296, 215–224. [CrossRef]

17. Wei, Z.B.; Lim, T.M.; Skyllas-Kazacos, M.; Wai, N.; Tseng, K.J. Online state of charge and model parameter
co-estimation based on a novel multi-time scale estimator for vanadium redox flow battery. Appl. Energy
2016, 172, 169–179. [CrossRef]

18. Plett, L.G. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs:
Part 2. Modeling and identification. J. Power Source 2004, 134, 262–276. [CrossRef]

19. Dai, H.F.; Wei, X.Z.; Sun, Z.C. Recursive parameter identification of lithium-ion battery for EVs based on
equivalent circuit model. J. Comput. Theor. Nanosci. 2013, 10, 2813–2818. [CrossRef]

20. Zou, Y.; Hu, X.S.; Ma, H.M.; Li, S.E. Combined state of charge and state of health estimation over lithium-ion
battery cell cycle lifespan for electric vehicles. J. Power Source 2015, 273, 793–803. [CrossRef]

21. Nejad, S.; Gladwin, D.T.; Stone, D.A. A systematic review of lump-parameter equivalent circuit models for
real-time estimation of lithium-ion battery states. J. Power Source 2016, 316, 183–196. [CrossRef]

22. Feng, T.H.; Yang, L.; Zhao, X.W.; Zhang, H.D.; Qiang, J.X. Online identification of lithium-ion battery
parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power
prediction. J. Power Source 2015, 281, 192–203. [CrossRef]

23. Sun, F.; Xiong, R.; He, H. A systematic state-of-charge estimation framework for multi-cell battery pack in
electric vehicles using bias correction technique. Appl. Energy 2016, 162, 1399–1409. [CrossRef]

24. Lim, K.C.; Bastawrous, H.A.; Duong, V.H.; See, K.W.; Zhang, P.; Dou, S.X. Fading Kalman filter-based
real-time state of charge estimation in LiFePO4 battery-powered electric vehicles. Appl. Energy 2016, 169,
40–48. [CrossRef]

25. Partovibakhsh, M.; Liu, G.J. An adaptive unscented Kalman filtering approach for online estimation of
model parameters and state-of-charge of lithium-ion batteries for autonomous mobile robots. IEEE Trans.
Control Syst. Technol. 2015, 23, 357–363. [CrossRef]

26. Chen, C.; Xiong, R.; Shen, W. A lithium-ion battery-in-the-loop approach to test and validate multi-scale
dual H infinity filters for state of charge and capacity estimation. IEEE Trans. Power Electr. 2017. [CrossRef]

27. Hua, Y.; Cordoba-Arenas, A.; Warner, N.; Rizzoni, G.A. multi time-scale state-of-charge and state-of-health
estimation framework using nonlinear predictive filter for lithium-ion battery pack with passive balance
control. J. Power Source 2015, 280, 293–312. [CrossRef]

28. Dai, H.A.; Wei, X.Z.; Sun, Z.C.; Wang, J.Y.; Gu, W.J. Online cell SOC estimation of Li-ion battery packs using
a dual time-scale Kalman filtering for EV applications. Appl. Energy 2012, 95, 227–237. [CrossRef]

http://dx.doi.org/10.1016/j.energy.2014.02.009
http://dx.doi.org/10.1016/j.apenergy.2015.09.092
http://dx.doi.org/10.1016/j.energy.2013.10.027
http://dx.doi.org/10.1016/j.jpowsour.2015.04.148
http://dx.doi.org/10.1109/TVT.2015.2443975
http://dx.doi.org/10.1016/j.jpowsour.2012.04.070
http://dx.doi.org/10.1016/j.jpowsour.2014.02.064
http://dx.doi.org/10.1016/j.jpowsour.2015.07.041
http://dx.doi.org/10.1016/j.apenergy.2016.03.103
http://dx.doi.org/10.1016/j.jpowsour.2004.02.032
http://dx.doi.org/10.1166/jctn.2013.3283
http://dx.doi.org/10.1016/j.jpowsour.2014.09.146
http://dx.doi.org/10.1016/j.jpowsour.2016.03.042
http://dx.doi.org/10.1016/j.jpowsour.2015.01.154
http://dx.doi.org/10.1016/j.apenergy.2014.12.021
http://dx.doi.org/10.1016/j.apenergy.2016.01.096
http://dx.doi.org/10.1109/TCST.2014.2317781
http://dx.doi.org/10.1109/TPEL.2017.2670081
http://dx.doi.org/10.1016/j.jpowsour.2015.01.112
http://dx.doi.org/10.1016/j.apenergy.2012.02.044


Energies 2017, 10, 390 22 of 22

29. Roscher, M.A.; Bohlen, O.S.; Sauer, D.U. Reliable state estimation of multicell lithium-ion battery systems.
IEEE Trans. Energy Convers. 2011, 26, 7373–7743. [CrossRef]

30. Barre, A.; Deguilhem, B.; Grolleau, S.; Gerard, M.; Suard, F.; Riu, D. A review on lithium-ion battery ageing
mechanisms and estimations for automotive applications. J. Power Source 2013, 241, 680–689. [CrossRef]

31. Waag, W.; Kabitz, S.; Sauer, D.U. Experimental investigation of the lithium-ion battery impedance
characteristic at various conditions and aging states and its influence on the application. Appl. Energy
2013, 102, 885–897. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TEC.2011.2155657
http://dx.doi.org/10.1016/j.jpowsour.2013.05.040
http://dx.doi.org/10.1016/j.apenergy.2012.09.030
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Power Estimation for One Single Battery Cell 
	Lumped Parameter Battery Model 
	Online Model Parameter Identification 
	Power Estimation 

	Power Prediction of Series-Connected Battery Packs 
	Improved Parameter Identification for Series Connected Battery Systems 
	Power Estimation Considering Cell Difference 

	Case Study 
	Experimental Setups 
	Results and Discussions 

	Conclusions 

