
energies

Article

Research on Unstructured Text Data Mining and Fault
Classification Based on RNN-LSTM with
Malfunction Inspection Report

Daqian Wei 1, Bo Wang 1,*, Gang Lin 1, Dichen Liu 1, Zhaoyang Dong 2, Hesen Liu 3

and Yilu Liu 3

1 School of Electrical Engineering, Wuhan University, Wuhan 430072, China; weidq.whu@gmail.com (D.W.);
glin@whu.edu.cn (G.L.); dcliu@whu.edu.cn (D.L.)

2 School of Electrical Engineering and Telecommunications, University of NSW, Sydney 2052, Australia;
zydong@ieee.org

3 Department of Electrical Engineering and Computer Science, The University of Tennessee,
Knoxville, TN 37996, USA; liuhesen@gmail.com (H.L.); liu@utk.edu (Y.L.)

* Correspondence: whwdwb@whu.edu.cn; Tel.: +86-159-7297-6215; Fax: +86-27-6877-2299

Academic Editor: Shuhui Li
Received: 23 December 2016; Accepted: 8 March 2017; Published: 21 March 2017

Abstract: This paper documents the condition-based maintenance (CBM) of power transformers,
the analysis of which relies on two basic data groups: structured (e.g., numeric and categorical)
and unstructured (e.g., natural language text narratives) which accounts for 80% of data required.
However, unstructured data comprised of malfunction inspection reports, as recorded by operation
and maintenance of the power grid, constitutes an abundant untapped source of power insights.
This paper proposes a method for malfunction inspection report processing by deep learning, which
combines the text data mining–oriented recurrent neural networks (RNN) with long short-term
memory (LSTM). In this paper, the effectiveness of the RNN-LSTM network for modeling inspection
data is established with a straightforward training strategy in which we replicate targets at each
sequence step. Then, the corresponding fault labels are given in datasets, in order to calculate the
accuracy of fault classification by comparison with the original data labels and output samples.
Experimental results can reflect how key parameters may be selected in the configuration of the key
variables to achieve optimal results. The accuracy of the fault recognition demonstrates that the
method we proposed can provide a more effective way for grid inspection personnel to deal with
unstructured data.

Keywords: deep learning; recurrent neural network (RNN); natural language processing (NLP);
long short-term memory (LSTM); unstructured data; malfunction inspection report

1. Introduction

With the higher requirements of the economy and safety of the power grid, online condition-based
maintenance (CBM) of power transformers without power outages is an inevitable trend for equipment
maintenance mode [1,2]. The transformer CBM analysis relies on two basic groups: structured (e.g.,
numeric and categorical) and unstructured (e.g., natural language text narratives). Using structured
data analysis, researchers have proposed a variety of transformer fault diagnosis algorithms such as the
Bayesian method [3–5], evidence reasoning method [6], grey target theory method [7], support vector
machine (SVM) method [8–10], artificial neural network method [11,12], extension theory method [13],
etc. These algorithms have achieved good results in engineering practice. However, for more
unstructured data found in practice [14–17] (i.e., the malfunction inspection report), traditional artificial

Energies 2017, 10, 406; doi:10.3390/en10030406 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/journal/energies

Energies 2017, 10, 406 2 of 22

means of massive original document annotation and classification are not only time-consuming, but are
also unable to achieve the desired results. For this reason, it has not been possible to adapt development
of network information needs to the grid. Therefore, compared with structured data processing, it is
more comprehensive for grid inspection personnel to effectively identify the massive unstructured text
in the inspection malfunction report.

Deep learning achieved great success in speech recognition, natural language processing (NLP),
machine vision, multimedia, and other fields in recent years. The most famous was the face recognition
test set Labeled Faces in the Wild [18], in which the final recognition rate of a non-deep learning
algorithm was 96.33% [19], whereas deep learning could reach 99.47% [20].

Deep learning also consistently exhibits an advantage in regards to NLP. After Mikolov et al. [21]
presented language modeling using recurrent neural networks (RNNs) in 2010, he then proposed
two novel model architectures (Continuous Bag-of-Words and Skip-gram) for computing continuous
vector representations of words from very large data sets in 2013 [22]. However, the model is not
designed to capture the fine-grained sentence structure. When using the back-propagation algorithm to
learn the model parameters, RNN needs to expand into the parameter-sharing multi-layer feed-forward
neural network with the length of historical information corresponding to the number of layers to
expand. Many layers not only make the training speed become very slow, but the most critical problem
is also the disappearance of the gradient and the explosion of the gradient [23–25].

Long short-term memory (LSTM) networks were developed in [26] to address the difficulty
of capturing long-term memory in RNNs. It has been successfully applied to speech recognition,
which achieves state-of-the-art performance [27,28]. In text analysis, LSTM-RNN treats a sentence
as a sequence of words with internal structures, i.e., word dependencies. Tai et al. [29] introduce the
Tree-LSTM, a generalization of LSTMs to tree-structured network topologies. Tree-LSTMs outperform
all existing systems and strong LSTM baselines on two tasks: predicting the semantic relatedness
of two sentences and sentiment classification. Li et al. [30] explored an important step toward
this generation task: training an LSTM auto-encoder to preserve and reconstruct multi-sentence
paragraphs. They introduced an LSTM model that hierarchically builds a paragraph embedding from
that of sentences and words, and then decodes this embedding to reconstruct the original paragraph.
Chanen [31] showed how to use ensembles of word2vec (word to vector) models to automatically
find semantically similar terms within safety report corpora and how to use a combination of human
expertise and these ensemble models to identify sets of similar terms with greater recall than either
method alone. In Chanen’s paper, an unsupervised method was shown for comparing several
word2vec models trained on the same data in order to estimate reasonable ranges of vector sizes to
induce individual word2vec models. This method is based on measuring inter-model agreement
on common word2vec similar terms [31]. Palangi [32] developed a model that addresses sentence
embedding, a hot topic in current NLP research, using RNN with LSTM cells.

In the above papers, the RNN-LSTM is continuously improved and developed in the process
of deep learning applied to NLP. At present, RNN-LSTM has many applications in NLP, but it has
not been applied to the unstructured data in the grid. Unstructured data accounts for about 80% of
power grid enterprises, which contain important information about the operation and management of
the grid. In the malfunction inspection report, the unstructured data processing method is urgently
needed to analyze the effective information.

The primary objective of this paper is to provide insight on how to apply the principles of deep
learning via NLP to the unstructured data analysis in grids based on RNN-LSTM. The remaining
parts in the paper are organized as follows. In Sections 2 and 3, the description of the text data
mining–oriented RNN and LSTM model are presented. In Section 4, the malfunction inspection report
analysis method based on RNN-LSTM is proposed. Experimental results are provided to demonstrate
the proposed method in Section 5. Conclusions are drawn in Section 6.

Energies 2017, 10, 406 3 of 22

2. Text Data Mining–Oriented Recurrent Neural Network

2.1. Text Model Representation

For the vector form of voice and text in the mathematical model, each word represents a vector,
and each dimension of the vector represents a single word. If the word appears in the text, it is set to 1;
otherwise, it is set to 0. The number of vectors is equal to the dimension of the vocabulary words.

dj =
(
w1,j, w2,j, ..., wt,j

)
(1)

2.2. Recurrent Neural Networks

In the past, voice text processing was usually a combination of a neural network and a hidden
Markov model. Taking advantage of algorithms and computer hardware, the acoustics model
established through deep forward-propagation networks has made considerable progress in recent
years. Taking sound into account, text processing is an internal dynamic processing, and a RNN can
be used as one of its candidate models. Dynamic means that the currently processed text vector is
associated with the context of the content, and it cannot be an independent analysis of the current
sample, but should be set before and after the memory unit of the text information for a comprehensive
analysis of the semantic information. This approach applies a larger data state space and a more
abundant model dynamic performance.

In a neural network, each neuron is a processing unit which is connected to the output of its
node as the input. Before the output is issued, each neuron will first apply a nonlinear activation
function. It is precisely because of this activation function that neural networks have the ability
to model nonlinear relationships. However, the general neural model cannot clearly simulate the
time relationship. All data points are composed of a fixed-length vector hypothesis. When there
is a strong correlation with the input phasor, the model will greatly reduce the processing effect.
Therefore, we introduce the recurrent neural network by given the ability of modeling with explicit
time. The explicit time can not only into the output, but also in the next time step hidden layer,
by adding across time points from the hidden layer and hidden layer feedback connection.

The traditional neural network has no middle layer of the cycle process. When the specified input
x0, x1, x2, ..., xt, after the process of neurons there will be some corresponding output, h0, h1, h2, ..., ht.
In each training, no information needs to transfer between the neurons. The difference between RNNs
and traditional neural networks is that in every training for RNN, neurons need to transfer some
information. In this training, the neurons need to use the role of the last neuron after the stated
information, similar to the recursive function. The basic structure of the RNN is shown in Figure 1,
and the expansion is shown in Figure 2, where A is the hidden layer; xi is the input vector; hi is the
output of the hidden layer. As can be seen from Figure 2, the output of each hidden layer is input as
an input vector to the next hidden layer. The output on the impact of the following can be considered in
the next paragraph of the unstructured text. The algorithm of the model is analyzed in the Appendix A.

Energies 2017, 10, 406 3 of 23

2. Text Data Mining–Oriented Recurrent Neural Network

2.1. Text Model Representation

For the vector form of voice and text in the mathematical model, each word represents a vector,
and each dimension of the vector represents a single word. If the word appears in the text, it is set to
1; otherwise, it is set to 0. The number of vectors is equal to the dimension of the vocabulary words.

()1, 2, ,, ,...,j j j t jd w w w= (1)

2.2. Recurrent Neural Networks

In the past, voice text processing was usually a combination of a neural network and a hidden
Markov model. Taking advantage of algorithms and computer hardware, the acoustics model
established through deep forward-propagation networks has made considerable progress in recent
years. Taking sound into account, text processing is an internal dynamic processing, and a RNN can
be used as one of its candidate models. Dynamic means that the currently processed text vector is
associated with the context of the content, and it cannot be an independent analysis of the current
sample, but should be set before and after the memory unit of the text information for a
comprehensive analysis of the semantic information. This approach applies a larger data state space
and a more abundant model dynamic performance.

In a neural network, each neuron is a processing unit which is connected to the output of its
node as the input. Before the output is issued, each neuron will first apply a nonlinear activation
function. It is precisely because of this activation function that neural networks have the ability to
model nonlinear relationships. However, the general neural model cannot clearly simulate the time
relationship. All data points are composed of a fixed-length vector hypothesis. When there is a
strong correlation with the input phasor, the model will greatly reduce the processing effect.
Therefore, we introduce the recurrent neural network by given the ability of modeling with explicit
time. The explicit time can not only into the output, but also in the next time step hidden layer, by
adding across time points from the hidden layer and hidden layer feedback connection.

The traditional neural network has no middle layer of the cycle process. When the specified
input 0 1 2, , ,..., tx x x x , after the process of neurons there will be some corresponding output,

0 1 2, , ,..., th h h h . In each training, no information needs to transfer between the neurons. The difference
between RNNs and traditional neural networks is that in every training for RNN, neurons need to
transfer some information. In this training, the neurons need to use the role of the last neuron after
the stated information, similar to the recursive function. The basic structure of the RNN is shown in
Figure 1, and the expansion is shown in Figure 2, where A is the hidden layer; ix is the input
vector; ih is the output of the hidden layer. As can be seen from Figure 2, the output of each hidden
layer is input as an input vector to the next hidden layer. The output on the impact of the following
can be considered in the next paragraph of the unstructured text. The algorithm of the model is
analyzed in the Appendix A.

Figure 1. Recurrent neural network (RNN) basic structure. Figure 1. Recurrent neural network (RNN) basic structure.

Energies 2017, 10, 406 4 of 22
Energies 2017, 10, 406 4 of 23

Figure 2. Recurrent neural network expansion.

3. Long Short-Term Memory Model

Although the RNN performs the transformation from the sentence to a vector in a principled
manner, it is generally difficult to learn the long-term dependency within the sequence due to the
vanishing gradients problem. The RNN has two limitations: first, the text analysis is in fact
associated with the surrounding context, while the RNN only contacts the previous text, but not the
following text; second, compared to the time step, RNN has more difficulties in the learning time
correlation. A bidirectional LSTM (BLSTM) network can be used in the first problem, while the
LSTM model can be used for the second. The RNN repeats the module as shown in Figure 3, which
only contains one neuron. The LSTM model is an improvement of the traditional RNN model; based
on the RNN model, the cellular control mechanism is added to solve the long-term dependence
problem of the RNN and the gradient explosion problem caused by the long sequence. The model
can make the RNN model memorize long-term information by designing a special structure cell. In
addition, through the design of three kinds of “gate” structures, the forget gate layer, the input gate
layer, and the output gate layer, it can selectively increase and remove the information through the
cell structure when controlling information through the cell. These three “gates” act on the cell to
form the hidden layer of the LSTM, also known as the block. The LSTM repeat module is shown in
Figure 4, which contains four neurons.

Figure 3. The repeating module in a standard RNN contains a single layer.

Figure 4. The repeating module in a long short-term memory (LSTM) contains four interacting
layers.

Figure 2. Recurrent neural network expansion.

3. Long Short-Term Memory Model

Although the RNN performs the transformation from the sentence to a vector in a principled
manner, it is generally difficult to learn the long-term dependency within the sequence due to the
vanishing gradients problem. The RNN has two limitations: first, the text analysis is in fact associated
with the surrounding context, while the RNN only contacts the previous text, but not the following
text; second, compared to the time step, RNN has more difficulties in the learning time correlation.
A bidirectional LSTM (BLSTM) network can be used in the first problem, while the LSTM model can
be used for the second. The RNN repeats the module as shown in Figure 3, which only contains one
neuron. The LSTM model is an improvement of the traditional RNN model; based on the RNN model,
the cellular control mechanism is added to solve the long-term dependence problem of the RNN and
the gradient explosion problem caused by the long sequence. The model can make the RNN model
memorize long-term information by designing a special structure cell. In addition, through the design
of three kinds of “gate” structures, the forget gate layer, the input gate layer, and the output gate layer,
it can selectively increase and remove the information through the cell structure when controlling
information through the cell. These three “gates” act on the cell to form the hidden layer of the LSTM,
also known as the block. The LSTM repeat module is shown in Figure 4, which contains four neurons.

Energies 2017, 10, 406 4 of 23

Figure 2. Recurrent neural network expansion.

3. Long Short-Term Memory Model

Although the RNN performs the transformation from the sentence to a vector in a principled
manner, it is generally difficult to learn the long-term dependency within the sequence due to the
vanishing gradients problem. The RNN has two limitations: first, the text analysis is in fact
associated with the surrounding context, while the RNN only contacts the previous text, but not the
following text; second, compared to the time step, RNN has more difficulties in the learning time
correlation. A bidirectional LSTM (BLSTM) network can be used in the first problem, while the
LSTM model can be used for the second. The RNN repeats the module as shown in Figure 3, which
only contains one neuron. The LSTM model is an improvement of the traditional RNN model; based
on the RNN model, the cellular control mechanism is added to solve the long-term dependence
problem of the RNN and the gradient explosion problem caused by the long sequence. The model
can make the RNN model memorize long-term information by designing a special structure cell. In
addition, through the design of three kinds of “gate” structures, the forget gate layer, the input gate
layer, and the output gate layer, it can selectively increase and remove the information through the
cell structure when controlling information through the cell. These three “gates” act on the cell to
form the hidden layer of the LSTM, also known as the block. The LSTM repeat module is shown in
Figure 4, which contains four neurons.

Figure 3. The repeating module in a standard RNN contains a single layer.

Figure 4. The repeating module in a long short-term memory (LSTM) contains four interacting
layers.

Figure 3. The repeating module in a standard RNN contains a single layer.

Energies 2017, 10, 406 4 of 23

Figure 2. Recurrent neural network expansion.

3. Long Short-Term Memory Model

Although the RNN performs the transformation from the sentence to a vector in a principled
manner, it is generally difficult to learn the long-term dependency within the sequence due to the
vanishing gradients problem. The RNN has two limitations: first, the text analysis is in fact
associated with the surrounding context, while the RNN only contacts the previous text, but not the
following text; second, compared to the time step, RNN has more difficulties in the learning time
correlation. A bidirectional LSTM (BLSTM) network can be used in the first problem, while the
LSTM model can be used for the second. The RNN repeats the module as shown in Figure 3, which
only contains one neuron. The LSTM model is an improvement of the traditional RNN model; based
on the RNN model, the cellular control mechanism is added to solve the long-term dependence
problem of the RNN and the gradient explosion problem caused by the long sequence. The model
can make the RNN model memorize long-term information by designing a special structure cell. In
addition, through the design of three kinds of “gate” structures, the forget gate layer, the input gate
layer, and the output gate layer, it can selectively increase and remove the information through the
cell structure when controlling information through the cell. These three “gates” act on the cell to
form the hidden layer of the LSTM, also known as the block. The LSTM repeat module is shown in
Figure 4, which contains four neurons.

Figure 3. The repeating module in a standard RNN contains a single layer.

Figure 4. The repeating module in a long short-term memory (LSTM) contains four interacting
layers.

Figure 4. The repeating module in a long short-term memory (LSTM) contains four interacting layers.

Energies 2017, 10, 406 5 of 22

3.1. Core Neuron

LSTM is used to control the transmission of information, it is usually expressed by sigmoid function.
The key to LSTMs is the cell state, the horizontal line running through the top of the diagram. The cell
state is kind of like a conveyor belt. It runs straight down the entire chain, with only some minor linear
interactions. It is very easy for information to just flow along it unchanged. The LSTM does have the
ability to remove or add information to the cell state, carefully regulated by structures called gates.
Gates are a way to optionally let information through. They are composed of a sigmoid neural net layer
and a pointwise multiplication operation. The state of the LSTM core neuron is shown in Figure 5.

Energies 2017, 10, 406 5 of 23

3.1. Core Neuron

LSTM is used to control the transmission of information, it is usually expressed by sigmoid
function. The key to LSTMs is the cell state, the horizontal line running through the top of the
diagram. The cell state is kind of like a conveyor belt. It runs straight down the entire chain, with
only some minor linear interactions. It is very easy for information to just flow along it unchanged.
The LSTM does have the ability to remove or add information to the cell state, carefully regulated by
structures called gates. Gates are a way to optionally let information through. They are composed of
a sigmoid neural net layer and a pointwise multiplication operation. The state of the LSTM core
neuron is shown in Figure 5.

Figure 5. Neuron state transfer.

3.2. Forget Gate Layer

The role of the gate layer is to determine the upper layer of input information which may be
discarded, and it is used to control the hidden layer nodes stored in the last moment of historical
information. The forget gate computes a value between 0 and 1 according to the state of the hidden
layer at the previous time and the input of the current time node, and acts on the state of the cell at
the previous time to determine what information needs to be retained and discarded. The value “1”
represents “completely keep”, while “0” represents “completely get rid of information”. The output
of the hidden layer cell (historical information) can be selectively processed by the processing of the
forget gate.

The forget gate layer is shown in Figure 6, when the input is 1th − and the output is tx :

[]()1 ,t f t t ff W h x b−= σ ⋅ + (2)

Figure 6. Forget gate layer.

Figure 5. Neuron state transfer.

3.2. Forget Gate Layer

The role of the gate layer is to determine the upper layer of input information which may be
discarded, and it is used to control the hidden layer nodes stored in the last moment of historical
information. The forget gate computes a value between 0 and 1 according to the state of the hidden
layer at the previous time and the input of the current time node, and acts on the state of the cell at
the previous time to determine what information needs to be retained and discarded. The value “1”
represents “completely keep”, while “0” represents “completely get rid of information”. The output
of the hidden layer cell (historical information) can be selectively processed by the processing of the
forget gate.

The forget gate layer is shown in Figure 6, when the input is ht−1 and the output is xt:

ft = σ
(

W f · [ht−1, xt] + b f

)
(2)

Energies 2017, 10, 406 5 of 23

3.1. Core Neuron

LSTM is used to control the transmission of information, it is usually expressed by sigmoid
function. The key to LSTMs is the cell state, the horizontal line running through the top of the
diagram. The cell state is kind of like a conveyor belt. It runs straight down the entire chain, with
only some minor linear interactions. It is very easy for information to just flow along it unchanged.
The LSTM does have the ability to remove or add information to the cell state, carefully regulated by
structures called gates. Gates are a way to optionally let information through. They are composed of
a sigmoid neural net layer and a pointwise multiplication operation. The state of the LSTM core
neuron is shown in Figure 5.

Figure 5. Neuron state transfer.

3.2. Forget Gate Layer

The role of the gate layer is to determine the upper layer of input information which may be
discarded, and it is used to control the hidden layer nodes stored in the last moment of historical
information. The forget gate computes a value between 0 and 1 according to the state of the hidden
layer at the previous time and the input of the current time node, and acts on the state of the cell at
the previous time to determine what information needs to be retained and discarded. The value “1”
represents “completely keep”, while “0” represents “completely get rid of information”. The output
of the hidden layer cell (historical information) can be selectively processed by the processing of the
forget gate.

The forget gate layer is shown in Figure 6, when the input is 1th − and the output is tx :

[]()1 ,t f t t ff W h x b−= σ ⋅ + (2)

Figure 6. Forget gate layer.

Figure 6. Forget gate layer.

Energies 2017, 10, 406 6 of 22

3.3. Input Gate Layer

The output gate layer is used to control the input of the cell state of the hidden gate layer. It can
input the information through a number of operations to determine what needs to be retained to
update the current cell state. First the input gate layer is established through a sigmoid function to
determine which information should be updated. The output of the input gate layer is a value between
0 and 1 of the sigmoid output, and then it acts on the input information to determine whether to update
the corresponding value of the cell state, where 1 indicates that the information is allowed to pass,
and the corresponding value needs to be updated, and 0 indicates that it may not be allowed as the
corresponding values do not need to be updated. It can be seen that the input gate layer can remove
some unnecessary information. Then a tanh layer can be established by adding the candidate state
of the neuron phase phasor, and the two jointly calculate the updated value. The input gate layer is
shown in Figure 7.

it = σ(Wi · [ht−1, xt] + bi) (3)

C̃t = tanh(WC · [ht−1, xt] + bC) (4)

Energies 2017, 10, 406 6 of 23

3.3. Input Gate Layer

The output gate layer is used to control the input of the cell state of the hidden gate layer. It can
input the information through a number of operations to determine what needs to be retained to
update the current cell state. First the input gate layer is established through a sigmoid function to
determine which information should be updated. The output of the input gate layer is a value
between 0 and 1 of the sigmoid output, and then it acts on the input information to determine
whether to update the corresponding value of the cell state, where 1 indicates that the information is
allowed to pass, and the corresponding value needs to be updated, and 0 indicates that it may not be
allowed as the corresponding values do not need to be updated. It can be seen that the input gate
layer can remove some unnecessary information. Then a tanh layer can be established by adding
the candidate state of the neuron phase phasor, and the two jointly calculate the updated value. The
input gate layer is shown in Figure 7.

[]()1,t i t t ii W h x b−= σ ⋅ + (3)

[]()1,t C t t CC tanh W h x b−= ⋅ + (4)

Figure 7. Input gate layer.

3.4. Update the State of Neurons

It is time to update the old cell state, 1tC − , into the new cell state tC . The previous steps already
decided what to do, and now we just need to actually do it. Multiply the old state by tf , forgetting

the information we decided to forget earlier; then add
tti C× . These are the new candidate values,

scaled by how much we decided to update each state value. In the case of the language model, this is
where we would actually drop the information about the old subject’s gender and add the new
information, as we decided in the previous steps. The neurons’ state update process is shown in
Figure 8.

1t t t t tC f C i C−= ∗ + ∗ (5)

Figure 8. Neuron status update.

Figure 7. Input gate layer.

3.4. Update the State of Neurons

It is time to update the old cell state, Ct−1, into the new cell state Ct. The previous steps already
decided what to do, and now we just need to actually do it. Multiply the old state by ft, forgetting
the information we decided to forget earlier; then add it × C̃t. These are the new candidate values,
scaled by how much we decided to update each state value. In the case of the language model,
this is where we would actually drop the information about the old subject’s gender and add the
new information, as we decided in the previous steps. The neurons’ state update process is shown
in Figure 8.

Ct = ft ∗ Ct−1 + it ∗ C̃t (5)

Energies 2017, 10, 406 6 of 23

3.3. Input Gate Layer

The output gate layer is used to control the input of the cell state of the hidden gate layer. It can
input the information through a number of operations to determine what needs to be retained to
update the current cell state. First the input gate layer is established through a sigmoid function to
determine which information should be updated. The output of the input gate layer is a value
between 0 and 1 of the sigmoid output, and then it acts on the input information to determine
whether to update the corresponding value of the cell state, where 1 indicates that the information is
allowed to pass, and the corresponding value needs to be updated, and 0 indicates that it may not be
allowed as the corresponding values do not need to be updated. It can be seen that the input gate
layer can remove some unnecessary information. Then a tanh layer can be established by adding
the candidate state of the neuron phase phasor, and the two jointly calculate the updated value. The
input gate layer is shown in Figure 7.

[]()1,t i t t ii W h x b−= σ ⋅ + (3)

[]()1,t C t t CC tanh W h x b−= ⋅ + (4)

Figure 7. Input gate layer.

3.4. Update the State of Neurons

It is time to update the old cell state, 1tC − , into the new cell state tC . The previous steps already
decided what to do, and now we just need to actually do it. Multiply the old state by tf , forgetting

the information we decided to forget earlier; then add
tti C× . These are the new candidate values,

scaled by how much we decided to update each state value. In the case of the language model, this is
where we would actually drop the information about the old subject’s gender and add the new
information, as we decided in the previous steps. The neurons’ state update process is shown in
Figure 8.

1t t t t tC f C i C−= ∗ + ∗ (5)

Figure 8. Neuron status update. Figure 8. Neuron status update.

Energies 2017, 10, 406 7 of 22

3.5. Output Gate Layer

The output gate layer is used to control the output of the current hidden layer node, and to
determine whether to output to the next hidden layer or output layer. Through the output of the
control, we can determine which information needs to be output. The value of its state is “0” or “1”.
The value “1” represents a need to output, and “0” represents that it does not require output. Output
control information on the current state of the cell for some sort of value can be found after the final
output value.

Determine the output of the neurons as (6) and (7), and the output gate layer is shown in Figure 9.

ot = σ(Wo[ht−1, xt] + bo) (6)

ht = ot ∗ tanh(Ct) (7)

Energies 2017, 10, 406 7 of 23

3.5. Output Gate Layer

The output gate layer is used to control the output of the current hidden layer node, and to
determine whether to output to the next hidden layer or output layer. Through the output of the
control, we can determine which information needs to be output. The value of its state is “0” or “1”.
The value “1” represents a need to output, and “0” represents that it does not require output. Output
control information on the current state of the cell for some sort of value can be found after the final
output value.

Determine the output of the neurons as (6) and (7), and the output gate layer is shown in
Figure 9.

[]()1,t o t t oo W h x b−= σ + (6)

()t t th o tanh C= ∗ (7)

Figure 9. Output gate layer.

4. Malfunction Inspection Report Analysis Method Based on RNN-LSTM

To learn a good semantic representation of the input sentence, our objective is to make the
embedding vectors for sentences of similar meanings as close as possible, and to make sentences of
different meanings as far apart as possible. This is challenging in practice since it is hard to collect a
large amount of manually labeled data that give the semantic similarity signal between different
sentences. Nevertheless, a widely used commercial web search engine is able to log massive
amounts of data with some limited user feedback signals. For example, given a particular query, the
click-through information about the user-clicked document among many candidates is usually
recorded and can be used as a weak (binary) supervision signal to indicate the semantic similarity
between two sentences (on the query side and the document side). We try to explain how to leverage
such a weak supervision signal to learn a sentence embedding vector that achieves the
aforementioned training objective. The above objective to make sentences with similar meaning as
close as possible is similar to machine translation tasks where two sentences belong to two different
languages with similar meanings, and we want to make their semantic representation as close as
possible.

In this paper, the algorithm, parameter setting and experimental environment are introduced as
follows:

Input: training samples and test sample (including various types of reports and their labels).
The number of truncated words: maxlen = 200. Minimum number of words: min_count = 5. The
parameters of the model: Dropout = 0.5, Dense = 1. Activation function type: Sofamax, Relu, tanh and
sigmoid. Number of LSTM units: 32; 64; 128; 259; 512. Output: classification results and fault
recognition accuracy of test samples. Initialization: set all parameters of the model to small random
numbers

Experimental operating environment: operating system: Windows 10; RAM: 32 G; CPU:
XeonE5 8-core; graphics: NVIDIA 980M; program computing environment: Theano and Keras.

Figure 9. Output gate layer.

4. Malfunction Inspection Report Analysis Method Based on RNN-LSTM

To learn a good semantic representation of the input sentence, our objective is to make the
embedding vectors for sentences of similar meanings as close as possible, and to make sentences of
different meanings as far apart as possible. This is challenging in practice since it is hard to collect
a large amount of manually labeled data that give the semantic similarity signal between different
sentences. Nevertheless, a widely used commercial web search engine is able to log massive amounts of
data with some limited user feedback signals. For example, given a particular query, the click-through
information about the user-clicked document among many candidates is usually recorded and can be
used as a weak (binary) supervision signal to indicate the semantic similarity between two sentences
(on the query side and the document side). We try to explain how to leverage such a weak supervision
signal to learn a sentence embedding vector that achieves the aforementioned training objective.
The above objective to make sentences with similar meaning as close as possible is similar to machine
translation tasks where two sentences belong to two different languages with similar meanings, and we
want to make their semantic representation as close as possible.

In this paper, the algorithm, parameter setting and experimental environment are introduced
as follows:

Input: training samples and test sample (including various types of reports and their labels).
The number of truncated words: maxlen = 200. Minimum number of words: min_count = 5.
The parameters of the model: Dropout = 0.5, Dense = 1. Activation function type: Sofamax, Relu,
tanh and sigmoid. Number of LSTM units: 32; 64; 128; 259; 512. Output: classification results and
fault recognition accuracy of test samples. Initialization: set all parameters of the model to small
random numbers.

Experimental operating environment: operating system: Windows 10; RAM: 32 G; CPU: XeonE5
8-core; graphics: NVIDIA 980M; program computing environment: Theano and Keras.

The process of the training method for RNN-LSTM is presented in Appendix B.

Energies 2017, 10, 406 8 of 22

5. Experimental Verification Based on Malfunction Inspection Report

The full learning formula for all the model parameters was elaborated on in the previous section.
The training method was described in Section 4. In this section, we will take the power grid malfunction
inspection report of a regional power grid in the China Southern Power Grid as the object of analysis.
Through RNN-LSTM processing, we can use machine learning to classify and analyze the unstructured
data in different situations.

5.1. Database

The description of the corpus is as follows. The malfunction inspection report records come in from
the grid personnel by the inspection of the power grid equipment, lines, and protection devices during
daily maintenance. The accumulation of fault-by-statement constitutes the main body of the report.
Among them, the information in the malfunction inspection report is mainly composed of six main
information bodies such as “DeviceInfo”, “TripInfo”, “Faultinfo”, “DigitalStatus”, “DigitalEvent”,
“SettingValue”, and other common information. The TripInfo information body can contain multiple
optional FaultInfo information. The FaultInfo information body indicates the current and voltage of
the action, and it can clearly reflect and display the fault condition and the operation process through
the report. The content source of DeviceInfo information can be a fixed value or a configuration file.
The information of Faultinfo, DigitalStatus, DigitalEvent, and SettingValue can be different according
to the type of protection or manufacturers. Faultinfo can be used as the auxiliary information of a single
action message or as a fault parameter of the whole action group. The contents of each message are
as follows:

(1) DeviceInfo: Description information portion of the recording apparatus.
(2) TripInfo: Partially records protection action events during the failure process.
(3) FaultInfo: Records the fault current, fault voltage, fault phase, fault distance and other information

in the process of recording the fault.
(4) DigialStatus: Records the signal before the device into the self-test signal status.
(5) DigitalEvent: Records the change of events such as the self-test signal during the process of fault

protection; all the switches are sorted according to the action time, and the action time and return
time are recorded at the same time.

(6) SettingValue: Records the actual value of the device setting at the fault time.

According to the dynamic fault records of the power system, we divide all the faults into the
following five categories and give the corresponding labels after each record: mechanical fault;
electrical fault; secondary equipment fault; fault caused by external environment; fault caused by
human factors.

We have selected the malfunction inspection report of the China Southern Power Grid for nearly
10 years as the data set of this paper. In the used data set, the specific types of faults and causes of
faults, and the percentage of their statistics, are shown in Table 1. A single sample data size range is
between 21 kb to 523 kb. Training samples and test samples were randomly selected to ensure the
versatility of the model test.

In the semantic analysis, we also analyze the data sets used. In this paper, nine categories were
selected to cover the semantic relations among most pairs of entities, and they make no overlap
between them. However, there are some very similar relationships that can cause difficulties in
recognition tasks, such as Entity-Origin (EO), Entity-Destination (ED), and Content-Container (CC),
often appearing in one sample at the same time. Similarly, there are Component-Whole (CW) and
Member-Collection (MC). Nine types of relationship profiles and examples are as follows:

(1) Cause-Effect (CE): Those cancers were caused by radiation exposures.
(2) Instrument-Agency (IA): Phone operator.

Energies 2017, 10, 406 9 of 22

(3) Product-Producer (PP): A factory manufactures suits.
(4) Content-Container (CC): A bottle full of honey was weighted.
(5) Entity-Origin (EO): Letters from foreign countries.
(6) Entity-Destination (ED): The boy went to bed.
(7) Component-Whole (CW): My apartment has a large kitchen.
(8) Member-Collection (MC): There are many trees in the forest.
(9) Message-Topic (MT): The lecture was about semantics.

Table 1. Different fault type statistics in the dataset.

Fault Category Fault Reason Amount Percentage

Mechanical Fault

Turbine cooler fault 2736 25.6%

29.2%
Switch mechanism oil leakage 312 2.9%

Monitor computer fault 39 0.3%
Low air pressure of equipment 44 0.4%

Electrical Fault

Circuit breakers, disconnectors fault 3375 31.3%

43.5%

Capacitor fault 502 4.7%
Unbalanced voltage and current 429 4.0%

Arrester fault 87 0.8%
Voltage and current transformer

fault 126 1.2%

Battery fault 55 0.6%
Insulators blew 97 0.9%

Fault caused by human factors Wire facilities or referrals stolen 432 4.0% 4.0%

Fault caused by external environment Lines and trees are too close 1991 18.6% 18.6%

Secondary equipment fault Electromagnetic locking fault 55 0.6%
4.7%Remote control fault 445 4.1%

Test sample 3217 30%

Training sample 7508 70%

Total 10725 100%

The specific distribution of the number of samples in each category is shown in Table 2.

Table 2. Statistical distribution of relationship categories in samples.

Relation Sample Quantity Proportion of Sample

Cause-Effect (CE) 1331 12.4%
Instrument-Agency (IA) 1253 11.7%
Product-Producer (PP) 1137 10.6%

Content-Container (CC) 974 9.1%
Entity-Origin (EO) 948 8.8%

Entity-Destination (ED) 923 8.6%
Component-Whole (CW) 895 8.4%
Member-Collection (MC) 732 6.8%

Message-Topic (MT) 660 6.2%
Other 1872 17.4%

Total 10725 100%

5.2. Result and Analysis

Based on the RNN-LSTM training with massive single-fault samples, the test set is imported
for fault-type accuracy testing. In this paper, three variables were selected. By comparing the fault
recognition results under three different variables and the fault report, we obtained the fault recognition
accuracy. When the other two variables are fixed, the test samples are verified by using different

Energies 2017, 10, 406 10 of 22

traverse times. These three variables are: number of LSTM units, type of activation unit, batch size.
Batch size is the size of each batch processing data and unique training methods of deep learning.
The proper adjustment of Batch size not only can reduce the weight adjustment times to prevent
over-fitting, also speeding up training.

5.2.1. Fault Recognition Accuracy and Number of LSTM Units

This experiment takes the activation unit and batch size at a constant rate, while the number
of LSTM units gradually increases, and improves the number of traversals in the same LSTM units’
number conditions. The number of LSTM training samples is 10,000, and the number of test samples is
3000; the activation unit is a sigmoid; the batch size is 20. The relationship between the accuracy rate
and the number of LSTM units is shown in Table 3, and its trend is shown in Figure 10.

Table 3. Accuracy of fault recognition under different LSTM units.

Epoch (Traversal Times)
Number of LSTM Units

32 64 128 256 512

1 0.36045 0.38296 0.38847 0.41947 0.34154
5 0.41832 0.43441 0.46547 0.47669 0.38457

10 0.42052 0.48952 0.48952 0.50712 0.38457
15 0.47633 0.49903 0.50058 0.53964 0.39541
20 0.47633 0.50567 0.50856 0.58585 0.37854
30 0.49817 0.53811 0.53585 0.58684 0.36845
50 0.52576 0.53811 0.54273 0.61058 0.39574

Energies 2017, 10, 406 10 of 23

5.2.1. Fault Recognition Accuracy and Number of LSTM Units

This experiment takes the activation unit and batch size at a constant rate, while the number of
LSTM units gradually increases, and improves the number of traversals in the same LSTM units’
number conditions. The number of LSTM training samples is 10,000, and the number of test samples
is 3000; the activation unit is a sigmoid; the batch size is 20. The relationship between the accuracy
rate and the number of LSTM units is shown in Table 3, and its trend is shown in Figure 10.

Table 3. Accuracy of fault recognition under different LSTM units.

Epoch (Traversal Times)
Number of LSTM Units

32 64 128 256 512
1 0.36045 0.38296 0.38847 0.41947 0.34154
5 0.41832 0.43441 0.46547 0.47669 0.38457
10 0.42052 0.48952 0.48952 0.50712 0.38457
15 0.47633 0.49903 0.50058 0.53964 0.39541
20 0.47633 0.50567 0.50856 0.58585 0.37854
30 0.49817 0.53811 0.53585 0.58684 0.36845
50 0.52576 0.53811 0.54273 0.61058 0.39574

Figure 10. Accuracy of fault recognition under different LSTM units.

As can be observed from Table 3 and Figure 10, when the number of units in the LSTM remains
constant, with the increase of the number of traversals, the higher the fault recognition accuracy rate
is. When the number of LSTM units is the same, the greater the number of LSTM units, and the
better the performances; however, a significant decline in the accuracy rate emerges when the
number of LSTM units stays at 512. The reason for the decrease of the accuracy rate is that, as the
required data volume increases, if more than 512 LSTM units are needed, the parameters need to be
adjusted and optimized.

To further analyze the data, the receiver operating characteristic (ROC) curve system is added
to the results. Due to the different performances by different numbers of LSTM units, we repeated
experiments under different epoch conditions and chose three worth analyzing: 64, 128, 256. The
area under the curve (AUC) reflects the ability of the recognition algorithm to correctly distinguish
two types of targets. The larger the AUC is, the better the performance of the algorithm is. False
negative (FN), false positive (FP), true negative (TN), and true positive (TP) are important
parameters in the ROC curve. Specificity is defined as the true negative rate (TNR), and sensitivity is
defined as the true positive rate (TPR). In the following experiment, the threshold was set to 0.5. The
test was positive if the accuracy of the fault recognition under different activation units was higher
than the threshold value. As can be seen from Table 4 and Figure 11, in the proposed algorithm, the
performance of the algorithm tends to be better in a certain interval with the increase of the number
of LSTM units.

Figure 10. Accuracy of fault recognition under different LSTM units.

As can be observed from Table 3 and Figure 10, when the number of units in the LSTM remains
constant, with the increase of the number of traversals, the higher the fault recognition accuracy rate is.
When the number of LSTM units is the same, the greater the number of LSTM units, and the better the
performances; however, a significant decline in the accuracy rate emerges when the number of LSTM
units stays at 512. The reason for the decrease of the accuracy rate is that, as the required data volume
increases, if more than 512 LSTM units are needed, the parameters need to be adjusted and optimized.

To further analyze the data, the receiver operating characteristic (ROC) curve system is added
to the results. Due to the different performances by different numbers of LSTM units, we repeated
experiments under different epoch conditions and chose three worth analyzing: 64, 128, 256. The area
under the curve (AUC) reflects the ability of the recognition algorithm to correctly distinguish two types
of targets. The larger the AUC is, the better the performance of the algorithm is. False negative (FN),
false positive (FP), true negative (TN), and true positive (TP) are important parameters in the ROC
curve. Specificity is defined as the true negative rate (TNR), and sensitivity is defined as the true
positive rate (TPR). In the following experiment, the threshold was set to 0.5. The test was positive if

Energies 2017, 10, 406 11 of 22

the accuracy of the fault recognition under different activation units was higher than the threshold
value. As can be seen from Table 4 and Figure 11, in the proposed algorithm, the performance of the
algorithm tends to be better in a certain interval with the increase of the number of LSTM units.

Table 4. Area under the curve (AUC) analysis of receiver operating characteristic (ROC) curves under
different LSTM unit numbers.

Number of LSTM Units AUC Standard Error Lower Bound (95%) Upper Bound (95%)

64 0.6994 0.0785 0.5456 0.8533
128 0.7724 0.0666 0.6419 0.9030
256 0.8319 0.0588 0.7165 0.9473

Energies 2017, 10, 406 11 of 23

Table 4. Area under the curve (AUC) analysis of receiver operating characteristic (ROC) curves
under different LSTM unit numbers.

Number of LSTM Units AUC Standard Error Lower Bound (95%) Upper Bound (95%)
64 0.6994 0.0785 0.5456 0.8533
128 0.7724 0.0666 0.6419 0.9030
256 0.8319 0.0588 0.7165 0.9473

(a) (b)

(c) (d)

Figure 11. (a) Comparison of ROC curves under different LSTM unit numbers. The percentage of
FN/FP/TN/TP under (b) 64 LSTM units; (c) 128 LSTM units; and (d) 256 LSTM units. FN/FP/TN/TP:
false negative/false positive/true negative /true positive.

5.2.2. Fault Recognition Accuracy and Activation Unit Type

This experiment keeps the number of LSTM units and the batch size at a constant rate, while
selecting four different activation units, and improving the number of traversals in the same
activation unit conditions. The number of LSTM training samples is 10,000, and the number of test
samples is 3000; the number of LSTM units is 128; the batch size is 20. The relationship between the
accuracy rate and the different activation units is shown in Table 5, and its trend is shown in
Figure 12.

Figure 11. (a) Comparison of ROC curves under different LSTM unit numbers. The percentage of
FN/FP/TN/TP under (b) 64 LSTM units; (c) 128 LSTM units; and (d) 256 LSTM units. FN/FP/TN/TP:
false negative/false positive/true negative /true positive.

5.2.2. Fault Recognition Accuracy and Activation Unit Type

This experiment keeps the number of LSTM units and the batch size at a constant rate,
while selecting four different activation units, and improving the number of traversals in the same
activation unit conditions. The number of LSTM training samples is 10,000, and the number of test
samples is 3000; the number of LSTM units is 128; the batch size is 20. The relationship between the
accuracy rate and the different activation units is shown in Table 5, and its trend is shown in Figure 12.

Energies 2017, 10, 406 12 of 22

Energies 2017, 10, 406 12 of 23

Figure 12. Accuracy of fault recognition under different activation units.

As can be observed from Table 5 and Figure 12, under the same activation unit condition, with
the increase of the number of traversals, the fault recognition accuracy is higher. With the same
number of traversals, the use of Sofamax and the sigmoid activation unit will obtain a better accuracy,
the Relu’s performance followed. It can be seen that the greater the number of traversals, the Relu
and sigmoid performances become closer, but the results obtained using the tanh change are not
obvious. Thus, in the choice of activation function, Sofamax and sigmoid are more suitable for text
processing.

Table 5. Accuracy of fault recognition under different activation units.

Epoch (Traversal Times)
Activation Unit Activation Unit Activation Unit Activation Unit

Sofamax Relu tanh Sigmoid
1 0.42797 0.40868 0.37974 0.41947
5 0.48042 0.45259 0.39684 0.47669
10 0.52669 0.50478 0.35741 0.50712
20 0.59572 0.58163 0.40587 0.58585

We also selected the above four activation functions for ROC analysis by repeated experiments
under different epoch conditions. In the following experiment, threshold was set to 0.5. The test was
positive if the accuracy of the fault recognition under different activation units was higher than the
threshold value. As can be seen from Table 6 and Figures 13 and 14, Sofamax and sigmoid activation
performed the best. It also confirms the above conclusions.

Table 6. AUC analysis of ROC curves under different activation units.

Activation Unit AUC Standard Error Lower Bound (95%) Upper Bound (95%)
Sofamax 0.8889 0.0477 0.7953 0.9824

Relu 0.7743 0.0692 0.6386 0.9099
tanh 0.6267 0.0817 0.4665 0.7868

sigmoid 0.7916 0.0667 0.6607 0.9225

Figure 13. Comparison of ROC curves under different activation units.

Figure 12. Accuracy of fault recognition under different activation units.

As can be observed from Table 5 and Figure 12, under the same activation unit condition, with the
increase of the number of traversals, the fault recognition accuracy is higher. With the same number of
traversals, the use of Sofamax and the sigmoid activation unit will obtain a better accuracy, the Relu’s
performance followed. It can be seen that the greater the number of traversals, the Relu and sigmoid
performances become closer, but the results obtained using the tanh change are not obvious. Thus,
in the choice of activation function, Sofamax and sigmoid are more suitable for text processing.

Table 5. Accuracy of fault recognition under different activation units.

Epoch (Traversal Times)
Activation Unit Activation Unit Activation Unit Activation Unit

Sofamax Relu tanh Sigmoid

1 0.42797 0.40868 0.37974 0.41947
5 0.48042 0.45259 0.39684 0.47669

10 0.52669 0.50478 0.35741 0.50712
20 0.59572 0.58163 0.40587 0.58585

We also selected the above four activation functions for ROC analysis by repeated experiments
under different epoch conditions. In the following experiment, threshold was set to 0.5. The test was
positive if the accuracy of the fault recognition under different activation units was higher than the
threshold value. As can be seen from Table 6 and Figures 13 and 14, Sofamax and sigmoid activation
performed the best. It also confirms the above conclusions.

Table 6. AUC analysis of ROC curves under different activation units.

Activation Unit AUC Standard Error Lower Bound (95%) Upper Bound (95%)

Sofamax 0.8889 0.0477 0.7953 0.9824
Relu 0.7743 0.0692 0.6386 0.9099
tanh 0.6267 0.0817 0.4665 0.7868

sigmoid 0.7916 0.0667 0.6607 0.9225

Energies 2017, 10, 406 12 of 23

Figure 12. Accuracy of fault recognition under different activation units.

As can be observed from Table 5 and Figure 12, under the same activation unit condition, with
the increase of the number of traversals, the fault recognition accuracy is higher. With the same
number of traversals, the use of Sofamax and the sigmoid activation unit will obtain a better accuracy,
the Relu’s performance followed. It can be seen that the greater the number of traversals, the Relu
and sigmoid performances become closer, but the results obtained using the tanh change are not
obvious. Thus, in the choice of activation function, Sofamax and sigmoid are more suitable for text
processing.

Table 5. Accuracy of fault recognition under different activation units.

Epoch (Traversal Times)
Activation Unit Activation Unit Activation Unit Activation Unit

Sofamax Relu tanh Sigmoid
1 0.42797 0.40868 0.37974 0.41947
5 0.48042 0.45259 0.39684 0.47669
10 0.52669 0.50478 0.35741 0.50712
20 0.59572 0.58163 0.40587 0.58585

We also selected the above four activation functions for ROC analysis by repeated experiments
under different epoch conditions. In the following experiment, threshold was set to 0.5. The test was
positive if the accuracy of the fault recognition under different activation units was higher than the
threshold value. As can be seen from Table 6 and Figures 13 and 14, Sofamax and sigmoid activation
performed the best. It also confirms the above conclusions.

Table 6. AUC analysis of ROC curves under different activation units.

Activation Unit AUC Standard Error Lower Bound (95%) Upper Bound (95%)
Sofamax 0.8889 0.0477 0.7953 0.9824

Relu 0.7743 0.0692 0.6386 0.9099
tanh 0.6267 0.0817 0.4665 0.7868

sigmoid 0.7916 0.0667 0.6607 0.9225

Figure 13. Comparison of ROC curves under different activation units. Figure 13. Comparison of ROC curves under different activation units.

Energies 2017, 10, 406 13 of 22
Energies 2017, 10, 406 13 of 23

(a) (b)

(c) (d)

Figure 14. The percentage of FN/FP/TN/TP under the activation unit of (a) Sofamax; (b) Relu; (c) tanh;
and (d) sigmoid.

5.2.3. Accuracy of Fault Recognition and Batch Size

This experiment keeps the number of LSTM units and the activation unit at a constant rate,
while the single-batch processing data size gradually increases, and improves the number of
traversals in the same batch size condition. The number of LSTM training samples is 10,000, and the
number of test samples is 3000; the number of LSTM units is 128; and the activation unit is sigmoid.
The relationship between the accuracy rate and the different batch sizes is shown in Table 7, and its
trend is shown in Figure 15.

Table 7. Accuracy of fault recognition under different batch sizes.

Epoch (Traversal Times) Batch Size: 10 Batch Size: 20 Batch Size: 50
1 0.31189 0.47369 0.31947
5 0.39451 0.49687 0.37669
10 0.50321 0.51476 0.40712
15 0.50147 0.55684 0.43964
20 0.53697 0.59548 0.48585
50 0.55876 0.64587 0.51058

Figure 14. The percentage of FN/FP/TN/TP under the activation unit of (a) Sofamax; (b) Relu; (c) tanh;
and (d) sigmoid.

5.2.3. Accuracy of Fault Recognition and Batch Size

This experiment keeps the number of LSTM units and the activation unit at a constant rate,
while the single-batch processing data size gradually increases, and improves the number of traversals
in the same batch size condition. The number of LSTM training samples is 10,000, and the number of
test samples is 3000; the number of LSTM units is 128; and the activation unit is sigmoid. The relationship
between the accuracy rate and the different batch sizes is shown in Table 7, and its trend is shown
in Figure 15.

Table 7. Accuracy of fault recognition under different batch sizes.

Epoch (Traversal Times) Batch Size: 10 Batch Size: 20 Batch Size: 50

1 0.31189 0.47369 0.31947
5 0.39451 0.49687 0.37669
10 0.50321 0.51476 0.40712
15 0.50147 0.55684 0.43964
20 0.53697 0.59548 0.48585
50 0.55876 0.64587 0.51058

Energies 2017, 10, 406 14 of 22
Energies 2017, 10, 406 14 of 23

Figure 15. Accuracy of fault recognition under different batch size.

As can be observed from Table 7 and Figure 15, under the same batch size conditions, with the
increase of the number of traversals, the fault recognition accuracy is higher. With the same number
of traversals, when the batch size was valued at 20, the accuracy was higher than with the other two
sizes. When the batch size was valued 10, the accuracy rate increased with the increase of the
number of traversals, but the lack of continuous improvement was an under-fitting state. When the
batch size was valued at 50, the accuracy rate was significantly decreased compared to the previous
two sizes, as too much data in each batch processing caused an over-fitting phenomenon.

We also selected the above three batch sizes for ROC analysis by repeated experiments under
different epoch conditions. In the following experiment, the threshold was set to 0.48. The test was
positive if the accuracy of the fault recognition under different batch sizes was higher than the
threshold value. As can be seen from Table 8 and Figure 16, when the batch size was valued at 20, it
performed best. However, when the batch size was valued at 50, the overall ROC curve tended to be
smoother. It should be noted that, for different datasets showing different characteristics, the batch
size should not have a fixed range of selection. As the inspection report requires a certain word
length that can express the corresponding characteristics, the best value for the batch size is 20.

Table 8. AUC analysis of ROC curves under different batch sizes.

Batch Size AUC Standard Error Lower Bound (95%) Upper Bound (95%)
10 0.6996 0.0773 0.5481 0.8512
20 0.9107 0.0386 0.8349 0.9865
50 0.8814 0.0477 0.7878 0.9751

(a) (b)

Figure 15. Accuracy of fault recognition under different batch size.

As can be observed from Table 7 and Figure 15, under the same batch size conditions, with the
increase of the number of traversals, the fault recognition accuracy is higher. With the same number of
traversals, when the batch size was valued at 20, the accuracy was higher than with the other two sizes.
When the batch size was valued 10, the accuracy rate increased with the increase of the number of
traversals, but the lack of continuous improvement was an under-fitting state. When the batch size
was valued at 50, the accuracy rate was significantly decreased compared to the previous two sizes,
as too much data in each batch processing caused an over-fitting phenomenon.

We also selected the above three batch sizes for ROC analysis by repeated experiments under
different epoch conditions. In the following experiment, the threshold was set to 0.48. The test was
positive if the accuracy of the fault recognition under different batch sizes was higher than the threshold
value. As can be seen from Table 8 and Figure 16, when the batch size was valued at 20, it performed
best. However, when the batch size was valued at 50, the overall ROC curve tended to be smoother.
It should be noted that, for different datasets showing different characteristics, the batch size should
not have a fixed range of selection. As the inspection report requires a certain word length that can
express the corresponding characteristics, the best value for the batch size is 20.

Table 8. AUC analysis of ROC curves under different batch sizes.

Batch Size AUC Standard Error Lower Bound (95%) Upper Bound (95%)

10 0.6996 0.0773 0.5481 0.8512
20 0.9107 0.0386 0.8349 0.9865
50 0.8814 0.0477 0.7878 0.9751

Energies 2017, 10, 406 14 of 23

Figure 15. Accuracy of fault recognition under different batch size.

As can be observed from Table 7 and Figure 15, under the same batch size conditions, with the
increase of the number of traversals, the fault recognition accuracy is higher. With the same number
of traversals, when the batch size was valued at 20, the accuracy was higher than with the other two
sizes. When the batch size was valued 10, the accuracy rate increased with the increase of the
number of traversals, but the lack of continuous improvement was an under-fitting state. When the
batch size was valued at 50, the accuracy rate was significantly decreased compared to the previous
two sizes, as too much data in each batch processing caused an over-fitting phenomenon.

We also selected the above three batch sizes for ROC analysis by repeated experiments under
different epoch conditions. In the following experiment, the threshold was set to 0.48. The test was
positive if the accuracy of the fault recognition under different batch sizes was higher than the
threshold value. As can be seen from Table 8 and Figure 16, when the batch size was valued at 20, it
performed best. However, when the batch size was valued at 50, the overall ROC curve tended to be
smoother. It should be noted that, for different datasets showing different characteristics, the batch
size should not have a fixed range of selection. As the inspection report requires a certain word
length that can express the corresponding characteristics, the best value for the batch size is 20.

Table 8. AUC analysis of ROC curves under different batch sizes.

Batch Size AUC Standard Error Lower Bound (95%) Upper Bound (95%)
10 0.6996 0.0773 0.5481 0.8512
20 0.9107 0.0386 0.8349 0.9865
50 0.8814 0.0477 0.7878 0.9751

(a) (b)

Figure 16. Cont.

Energies 2017, 10, 406 15 of 22

Energies 2017, 10, 406 15 of 23

(c) (d)

Figure 16. (a) Comparison of ROC curves under different batch sizes. The percentage of
FN/FP/TN/TP under batch size (b) 10; (c) 20; and (d) 50.

In this paper, three key parameters are selected as experimental variables, and the experimental
results can be reflected: the unstructured data processing method based on RNN-LSTM proposed in
this paper can achieve the current research level in machine learning when it is applied to
malfunction inspection reports. This means that this method can provide a more effective way for
grid inspectors to deal with unstructured text.

6. Conclusions

How to efficiently handle large numbers of unstructured text data such as malfunction
inspection reports is a long-standing problem faced by operation engineers. This paper proposes a
deep learning method for malfunction inspection report processing by using the text data
mining–oriented RNN-LSTM. An effective training strategy for an effective RNN-LSTM network for
modeling inspection data is presented. From the obtained results, and an effectiveness analysis, it
was demonstrated that RNN-LSTM, especially with target replication, can successfully classify
diagnoses of labeled malfunction inspection reports given unstructured data. It is emphasized that
the experiment via different variables can be reflected in the configuration of key variables in how
we should select parameters to achieve optimal results, including the selection of the maximum
LSTM unit number, the processing capacity of the activation unit and the prevention of over-fitting.
In this paper, we used fault labels without timestamps, but we are obtaining timestamped
diagnoses, which will enable us to train models to perform early fault diagnosis by predicting future
conditions in a larger inspection data set.

Acknowledgments: The authors are grateful for the projects supported by the National Natural Science
Foundation of China No. 51477121 and the China Southern Power Grid No. GZ2014-2-0049.

Author Contributions: Daqian Wei, Gang Lin and Bo Wang designed the main parts of the study, including
RNN-LSTM modeling and the implementation of the algorithms, the neural network training process and the
experiments. Daqian Wei, Gang Lin and Hesen Liu mainly contributed to the writing of the paper. Yilu Liu was
responsible for guidance, a number of key suggestions, and manuscript editing. Zhaoyang Dong and Dichen
Liu were also responsible for some constructive suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. The Detailed Description of Recurrent Neural Network

Appendix A.1. Forward Propagation

Figure 16. (a) Comparison of ROC curves under different batch sizes. The percentage of FN/FP/TN/TP
under batch size (b) 10; (c) 20; and (d) 50.

In this paper, three key parameters are selected as experimental variables, and the experimental
results can be reflected: the unstructured data processing method based on RNN-LSTM proposed in
this paper can achieve the current research level in machine learning when it is applied to malfunction
inspection reports. This means that this method can provide a more effective way for grid inspectors
to deal with unstructured text.

6. Conclusions

How to efficiently handle large numbers of unstructured text data such as malfunction inspection
reports is a long-standing problem faced by operation engineers. This paper proposes a deep
learning method for malfunction inspection report processing by using the text data mining–oriented
RNN-LSTM. An effective training strategy for an effective RNN-LSTM network for modeling
inspection data is presented. From the obtained results, and an effectiveness analysis, it was
demonstrated that RNN-LSTM, especially with target replication, can successfully classify diagnoses of
labeled malfunction inspection reports given unstructured data. It is emphasized that the experiment
via different variables can be reflected in the configuration of key variables in how we should select
parameters to achieve optimal results, including the selection of the maximum LSTM unit number,
the processing capacity of the activation unit and the prevention of over-fitting. In this paper, we used
fault labels without timestamps, but we are obtaining timestamped diagnoses, which will enable us to
train models to perform early fault diagnosis by predicting future conditions in a larger inspection
data set.

Acknowledgments: The authors are grateful for the projects supported by the National Natural Science
Foundation of China No. 51477121 and the China Southern Power Grid No. GZ2014-2-0049.

Author Contributions: Daqian Wei, Gang Lin and Bo Wang designed the main parts of the study, including
RNN-LSTM modeling and the implementation of the algorithms, the neural network training process and the
experiments. Daqian Wei, Gang Lin and Hesen Liu mainly contributed to the writing of the paper. Yilu Liu was
responsible for guidance, a number of key suggestions, and manuscript editing. Zhaoyang Dong and Dichen Liu
were also responsible for some constructive suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. The Detailed Description of Recurrent Neural Network

Appendix A.1. Forward Propagation

u = Wxh × x (A1)

Energies 2017, 10, 406 16 of 22

ht = tanh(Whh × ht−1 + u) = tanh(zt + u) (A2)

u′ = Why × h (A3)

y = u′ (A4)

where u is the input of the hidden layer, h is the output of the hidden layer, u′ is the input of the output
layer, y is the input of the input layer, and because the output layer is linear, y = u′. Specific calculation
of each neuron is as follows:

ui =
V

∑
j=1

Wxh(i, j)× xj (A5)

zt
i =

H

∑
j=1

Whh(i, j)× ht−1
j (A6)

hi = tanh
(
ui + zt

i
)

(A7)

ui
′ =

H

∑
j=1

Why(i, j)× hj (A8)

yi = ui
′ (A9)

Appendix A.2. Loss Function

There are two kinds of loss function: quadratic error function and cross-entropy error function.
Assuming that t is the true value of the training sample, y is the output of the neural network, and a
training sample is (x, t).

(1) Quadratic error function

E(t, y) =
1
2
(t− y)2 (A10)

(2) Cross-entropy error function

E(t, y) = −[t ln(y) + (1− t) ln(1− y)] (A11)

When the activation function does not adopt through the output layer of the neural network,
the quadratic error function should be used, which can give relatively fast gradient parameter
estimation. If the output layer uses the sigmoid activation function, we use the cross-entropy
error function to estimate the parameters. As long as the sigmoid activation function is selected,
the cross-entropy error function can be used to eliminate the sigmoid function at the time of derivation,
which can speed up the gradient descent.

(3) Partial derivation of error to the output of the output layer

(a) Quadratic error function

∂E
∂y

=
∂

∂y
1
2
(t− y)2 = y− t (A12)

(b) Cross-entropy error function

∂E
∂y = ∂

∂y (−[t ln(y) + (1− t) ln(1− y)]) = −t
y + 1−t

1−y

= −t(1−y)+y(1−t)
y(1−y) = y−t

y(1−y)
(A13)

(4) Partial derivation of error to the input of the output layer

Energies 2017, 10, 406 17 of 22

(a) Linear output layer

If the output layer is without an activation function, the different cost functions are solved
separately: ∂E

∂u′ =
∂E
∂y .

(b) Sigmoid output layer

Calculate the derivative of the error on input to the output layer, z denotes the input to the output
layer, z = u′, y = sigmoid(z). In the neural network, the error of the output layer is defined as the
derivative of the loss function to the input layer, denoted by δL.

Sigmoid function: σ(x) = 1
1+e−x , where the partial derivative of the sigmoid function is:

∂σ(x)
∂x = σ(x)(1− σ(x)).

δL =
∂E
∂z

=
∂E
∂y
∗ ∂y

∂z
=

y− t
y(1− y)

∂y
∂z

=
y− t

y(1− y)
σ(z)(1− σ(z)) =

y− t
y(1− y)

y(1− y) = y− t (A14)

Appendix A.3. Back Propagation

(1) Partial derivation of the error to the input of the output layer.

∂E
∂yi

=
∂

∂yi

1
2
(ti − yi)

2 = yi − ti (A15)

Matrix obtained:
∂E
∂y

=
∂

∂y
1
2
(t− y)2 = y− t (A16)

(2) Partial derivation of the error to the output of the output layer

If the output layer does not use the activation function, then ui
′ = yi

∂E
∂ui
′ =

∂E
∂yi

= yi − ti (A17)

Matrix obtained:
∂E
∂u′

=
∂E
∂y

= y− t (A18)

(3) Partial derivative of the error to Why

∂E
∂Why(i,j)

= ∂E
∂ui
′ ∗ ∂ui

′

∂Why(i,j)

= (yi − ti) ∗ ∂
∂Why(i,j)

(
H
∑

j=1
Why(i, j) ∗ hj

)
= (yi − ti) ∗ hj

(A19)

Matrix obtained:
∂E

∂Why
=

∂E
∂y
∗ HT (A20)

(4) Partial derivation of the error to the hidden layer output

Since h is affected by the following two Equations (A21) and (A22), when calculating the partial
derivative of the loss function to the hidden layer output, it is necessary to compute the partial
derivatives of h with respect to both formulas.

ht+1
i = tanh

(
ut

i + zt
i
)
, zt

i =
H

∑
j=1

Whh(i, j) ∗ ht−1
j , ui =

V

∑
j=1

Wxh(i, j) ∗ xj (A21)

Energies 2017, 10, 406 18 of 22

ui
′ =

H

∑
j=1

Whh(i, j) ∗ hj (A22)

The matrix of Equation (A21): ut+1
i = ut

i + zt
i , ut+1 = Whh ∗ ht + Whx ∗ x, dnext is defined as the

partial derivative of the error to the hidden layer input at the next moment.

∂E
∂hi

=
V
∑

k=1

∂E
∂uk
′ ∗ ∂uk

′

∂hi
=

V
∑

k=1

∂E
∂yk
∗ ∂uk

′

∂hi

=
V
∑

k=1
(yk − tk) ∗ ∂uk

′

∂hi
=

V
∑

k=1
(yk − tk) ∗Why(k, i)

(A23)

dhnext = ∂E
∂ht

i
=

H
∑

j=1

∂E
∂ut+1

j

∂ut+1
j

∂ht
i

=
H
∑

j=1

∂E
∂ut+1

j

∂
∂ht

i

(
H
∑

i=1
Whh(j, i) ∗ ht

i +
V
∑

i=1
Wxh(j, i) ∗ xi

)
=

H
∑

j=1

∂E
∂ut+1

j

(
∂

∂ht
i

H
∑

i=1
Whh(j, i) ∗ ht

i +
∂

∂ht
i

V
∑

i=1
Wxh(j, i) ∗ xi

)
=

H
∑

j=1

∂E
∂ut+1

j

(
∂

∂ht
i

H
∑

i=1
Whh(j, i) ∗ ht

i + 0
)

=
H
∑

j=1

∂E
∂ut+1

j
(Whh(j, i) + 0) =

H
∑

j=1

∂E
∂ut+1

j
Whh(j, i)

(A24)

Matrix obtained:
dhnext = WT

hh
∂E
∂u

(A25)

∂E
∂h

= WT
hy ∗

∂E
∂u′

+ dhnext (A26)

∂E
∂h

= WT
hy ∗

∂E
∂y

+ dhnext (A27)

(5) Partial derivation of the loss function to the hidden layer input

∂E
∂ui

=
∂E
∂hi

∂hi
∂ui

=
∂E
∂hi

∂

∂ui
(tanh(ui)) =

∂E
∂hi

(
1−

(
tanh(ui)

2
))

(A28)

Matrix obtained:
∂E
∂u

= (1− h� h)
∂E
∂h

(A29)

(6) Partial derivation of the error to Wxh

∂E
∂Wxh(i, j)

=
∂

∂ui

∂ui
∂Wxh(i, j)

=
∂

∂ui

∂

∂Wxh(i, j)

(
V

∑
j=1

Wxh(i, j) ∗ xj

)
=

∂

∂ui
xj (A30)

As known ui = ∑V
j=1 Wxh(i, j) ∗ xj, matrix obtained:

∂E
∂Wxh

=
∂E
∂u

xT (A31)

(7) Partial derivation of the error to Whh(i, j)

Energies 2017, 10, 406 19 of 22

∂E
∂Whh(i,j)

= ∂E
∂ui

∂ui
∂Whh(i,j)

= ∂
∂ut

i

∂
∂Whh(i,j)

(
H
∑

i=1
Whh(j, i) ∗ ht−1

i +
V
∑

i=1
Wxh(j, i) ∗ xi

)
= ∂

∂ut
i

(
∂

∂Whh(i,j)

H
∑

i=1
Whh(j, i) ∗ ht−1

i + ∂
∂Whh(i,j)

V
∑

i=1
Wxh(j, i) ∗ xi

)
= ∂

∂ut
i

(
∂

∂Whh(i,j)

H
∑

i=1
Whh(j, i) ∗ ht−1

i + 0
)
= ∂

∂ut
i
ht−1

i

(A32)

where ut
i = ∑H

i=1 Whh(j, i) ∗ ht−1
i + ∑V

i=1 Wxh(j, i) ∗ xi, matrix obtained:

∂E
∂Whh

=
∂E
∂u
∗
(

ht−1
)T

(A33)

By calculating the partial derivatives of all the parameter matrices with respect to the errors,
the parameters can be updated according to the gradient descent of the partial derivatives.

∂E
∂Why

=
∂E
∂y
∗ HT (A34)

∂E
∂Wxh

=
∂E
∂u

xT (A35)

∂E
∂Whh

=
∂E
∂u
∗
(

ht−1
)T

(A36)

∂E
∂u

= (1− h� h)
∂E
∂h

(A37)

∂E
∂h

= WT
hy ∗

∂E
∂y

+ dhnext (A38)

dhnext = WT
hh

∂E
∂u

(A39)

Appendix B. The Process of the Training Method for RNN-LSTM

The forward pass process of the training method is shown in Table A1.

Table A1. Forward pass process.

Process 1: Forward Pass

input units: y = current external input;
roll over: activation: ŷ = y; cell state: ŝcv

j
= scv

j
;

Loop over memory blocks, indexed j
Step 1a: input gates (1):
netinj = ∑m winjm ŷm + ∑

Sj
v=1 winjcv

j
ŝcv

j
; yinj = finj

(
netinj

)
;

Step 1b: forget gate (2):
netϕj = ∑m wϕjm ŷm + ∑

Sj
v=1 wϕjcv

j
ŝv

cj
; yϕj = fϕj

(
netϕj

)
;

Step 1c: the cell states (3):
Loop over the Sj cells in blocks j, index v

{netcv
j
= ∑m wcv

j m ŷm; scv
j
= yϕj ŝcv

j
+ yinj g

(
netcv

j

)
};

Step 2:
Output gate activation (4):
netoutj = ∑m woutjm ŷm + ∑

Sj
v=1 woutjcv

j
scv

j
; youtj = foutj

(
netoutj

)
;

Cell outputs (5):
Loop over the Sj cells in block j, indexed v

{ycv
j = youtj scv

j
};

End loop over memory blocks
Output units (6): netk = ∑m wkmym; yk = fk(netk);

Energies 2017, 10, 406 20 of 22

The partial derivatives process of the training method is shown in Table A2.

Table A2. Partial derivatives process.

Process 2: Partial Derivatives

Loop over memory blocks, index j
{Loop over the Sj cells in block j, indexed v

{Cells,
(

dSjv
cm :=

∂scv
j

∂wcv
j m

)
:

dSjv
cm = dSjv

cmyϕj + g′
(

netcv
j

)
yinj ŷm;

Input gates, dSjv
in,m :=

∂scv
j

∂winj m
, dSjv

in,cv′
j

:=
∂scv

j
∂w

inj cv′
j

;

dSjv
in,m = dSjv

in,myϕj + g
(

netcv
j

)
f ′inj

(
netinj

)
ŷm;

Loop over peephole connections from all cells, indexed v′

{dSjv
in,cv′

j
= dSjv

in,cv′
j

yϕj + g(netcv
j
) f ′inj

(netinj)ŝ
v′
c ;};

Forget gates, (dSjv
ϕm :=

∂scv
j

∂wϕjm
, dSjv

ϕcv′
j

:=
∂scv

j
∂w

ϕj cv′
j

)

dSjv
ϕm = dSjv

ϕmyϕj + ŝcv
j

f ′ϕj

(
netϕj

)
ŷm;

Loop over peephole connections from all cells, indexed v′

{dSjv
ϕcv′

j
= dSjv

ϕcv′
j

yϕj + ŝcv
j

f ′ϕj

(
netϕj

)
ŝv′

c ;}}}

End loops over cells and memory blocks

The backward pass process of the training method is shown in Table A3.

Table A3. Backward pass process.

Process 3: Backward Pass (If Error Injected)

Errors and δS:
Injected error: ek = tk − yk;
δS of output units: δk = f ′k(netk)ek;

Loop over memory blocks, indexed j
{δS of output gates:
δoutj = f ′outj

(
netoutj

)(
∑

Sj
v=1 scv

j
∑k wkcv

j
δk

)
;

Internal state error:
Loop over the Sj cells in blocks j, indexed v

{escv
j
= youtj

(
∑k wkcv

j
δk

)
;}}

End loop over memory blocks

The weight updates process of the training method is shown in Table A4.

Table A4. Weight updates process.

Process 4: Weight Updates

Output units: ∆wkm = αδkym;
Loop over memory blocks, indexed j

{Output gates:
∆wout,m = αδout ŷm; ∆wout,cv

j
= αδoutscv

j
;

Input gates:
∆win,m = α∑

Sj
v=1 escv

j
dSjv

in,m;

Loop over peephole connections from all cells, indexed v′

{∆win,cv′
j
= α∑

Sj
v=1 escv

j
dSjv

in,cv′
j

;}

Forget gates:
∆wϕm = α∑

Sj
v=1 escv

j
dSjv
ϕm;

Loop over peephole connections from all cells, indexed v′

{∆w
ϕcv′

j
= α∑

Sj
v=1 escv

j
dSjv
ϕcv′

j
;}

Cells:
Loop over the Sj cells in block j, indexed v

{∆wcv
j
m = αescv

j
dSjv

cm;}}

End loop over memory blocks

Energies 2017, 10, 406 21 of 22

References

1. Besnard, F.; Bertling, L. An approach for condition-based maintenance optimization applied to wind turbine
blades. IEEE Trans. Sustain. Energy 2010, 1, 77–83. [CrossRef]

2. Ahmad, R.; Kamaruddin, S. An overview of time-based and condition-based maintenance in industrial
application. Comput. Ind. Eng. 2012, 63, 135–149. [CrossRef]

3. Carita, A.J.Q.; Leita, L.C.; Junior, A.P.P.M.; Godoy, R.B.; Sauer, L. Bayesian networks applied to failure
diagnosis in power transformer. IEEE Lat. Am. Trans. 2013, 11, 1075–1082.

4. Su, H.; Li, Q. A hybrid deterministic model based on rough set and fuzzy set and Bayesian optimal classifier.
In Proceedings of the First International Conference on Innovative Computing, Information and Control
(ICICIC), Beijing, China, 30 August–1 September 2006; Volume 2, pp. 175–178.

5. Zheng, G.; Yongli, Z. Research of transformer fault diagnosis based on Bayesian network classifiers.
In Proceedings of the International Conference Computer Design and Applications (ICCDA), Qinhuangdao,
China, 25–27 June 2010; Volume 3, pp. 382–385.

6. Tang, W.H.; Spurgeon, K.; Wu, Q.H.; Richardson, Z.J. An evidential reasoning approach to transformer
condition assessments. IEEE Trans. Power Deliv. 2004, 19, 1696–1703. [CrossRef]

7. Li, J.; Chen, X.; Wu, C. Power transformer state assessment based on grey target theory. In Proceedings
of the International Conference Measuring Technology and Mechatronics Automation, Zhangjiajie, China,
11–12 April 2009; Volume 2, pp. 664–667.

8. Ma, H.; Ekanayake, C.; Saha, T.K. Power transformer fault diagnosis under measurement originated
uncertainties. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1982–1990. [CrossRef]

9. Shintemirov, A.; Tang, W.; Wu, Q.H. Power transformer fault classification based on dissolved gas analysis
by implementing bootstrap and genetic programming. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2009,
39, 69–79. [CrossRef]

10. Koley, C.; Purkait, P.; Chakravorti, S. Wavelet-aided SVM tool for impulse fault identification in transformers.
IEEE Trans. Power Deliv. 2006, 21, 1283–1290. [CrossRef]

11. Miranda, V.; Castro, A.R.G.; Lima, S. Diagnosing faults in power transformers with autoassociative neural
networks and mean shift. IEEE Trans. Power Deliv. 2012, 27, 1350–1357. [CrossRef]

12. Wu, H.R.; Li, X.H.; Wu, D.N. RMP neural network based dissolved gas analyzer for fault diagnostic of
oil-filled electrical equipment. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 495–498. [CrossRef]

13. Wang, M.H. A novel extension method for transformer fault diagnosis. IEEE Trans. Power Deliv. 2003, 18,
164–169. [CrossRef]

14. Reshmy, A.K.; Paulraj, D. An efficient unstructured big data analysis method for enhancing performance
using machine learning algorithm. In Proceedings of the International Conference on Circuit, Power and
Computing Technologies (ICCPCT), Nagercoil, India, 19–20 March 2015; pp. 1–7.

15. Yuanhua, T.; Chaolin, Z.; Yici, M. Semantic presentation and fusion framework of unstructured data in smart
cites. In Proceedings of the 10th IEEE Conference on Industrial Electronics and Applications (ICIEA 2015),
Auckland, New Zealand, 5–17 June 2015; Volume 10, pp. 897–901.

16. Goth, G. Digging deeper into text mining: Academics and agencies look toward unstructured data.
IEEE Internet Comput. 2012, 16, 7–9. [CrossRef]

17. Alifa, N.P.; Saiful, A.; Wikan, D.S. Public facilities recommendation system based on structured and
unstructured data extraction from multi-channel data sources. In Proceedings of the International Conference
on Data and Software Engineering (ICoDSE), Yogyakarta, Indonesia, 25–26 November 2015; pp. 185–190.

18. Huang, G.B.; Mattar, M.; Berg, T.; Learned-Miller, E. Labeled faces in the wild: A database for studying face
recognition in unconstrained environments. In Proceedings of the Workshop on Faces in ‘Real-Life’ Images:
Detection, Alignment, and Recognition, Marseille, France, 12–18 October 2008.

19. Chen, D.; Cao, X.; Wen, F.; Sun, J. Blessing of dimensionality: High-dimensional feature and its efficient
compression for face verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Portland, OR, USA, 23–28 June 2013; pp. 3025–3032.

20. Sun, Y.; Wang, X.; Tang, X. Deeply learned face representations are sparse, selective, and robust.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston,
MA, USA, 7–12 June 2015; pp. 2892–2900.

http://dx.doi.org/10.1109/TSTE.2010.2049452
http://dx.doi.org/10.1016/j.cie.2012.02.002
http://dx.doi.org/10.1109/TPWRD.2003.822542
http://dx.doi.org/10.1109/TDEI.2012.6396956
http://dx.doi.org/10.1109/TSMCC.2008.2007253
http://dx.doi.org/10.1109/TPWRD.2005.860255
http://dx.doi.org/10.1109/TPWRD.2012.2188143
http://dx.doi.org/10.1109/TDEI.2011.5739454
http://dx.doi.org/10.1109/TPWRD.2002.803838
http://dx.doi.org/10.1109/MIC.2012.6

Energies 2017, 10, 406 22 of 22

21. Mikolov, T.; Karafiát, M.; Burget, L.; Cernocký, J.; Khudanpur, S. Recurrent neural network based language
Model. In Proceedings of the Annual Conference of the International Speech Communication Association,
Chiba, Japan, 26–30 September 2010; pp. 1045–1048.

22. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space.
2013. Available online: arxiv.org/abs/1301.3781 (accessed on 7 Sepember 2013).

23. Hochreiter, S. Untersuchungen zu Dynamischen Neuronalen Netzen. Master’s Thesis, Technische Universität
München, Munich, Germany, 1991.

24. Hochreiter, S.; Bengio, Y.; Frasconi, P.; Schmidhuber, J. Gradient Flow in recurrent nets: The difficulty of
learning long-term dependencies. In A Field Guide to Dynamical Recurrent Neural Networks; Kremer, S.C.,
Kolen, J.F., Eds.; IEEE Press: Piscataway, NJ, USA, 2001.

25. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult.
IEEE Trans. Neural Netw. 1994, 5, 157–166. [CrossRef] [PubMed]

26. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
[PubMed]

27. Graves, A.; Mohamed, A.; Hinton, G. Speech recognition with deep recurrent neural networks.
In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Vancouver, BC, Canada, 26–31 May 2013.

28. Sak, H.; Senior, A.; Beaufays, F. Long short-term memory recurrent neural network architectures for large
scale acoustic modeling. In Proceedings of the Annual Conference of International Speech Communication
Association (INTERSPEECH), Singapore, 14–18 September 2014.

29. Tai, K.S.; Socher, R.; Manning, C.D. Improved Semantic Representations from Tree-Structured Long
Short-Term Memory Networks. 2015. Available online: arxiv.org/abs/1503.00075 (accessed on 30 May 2015).

30. Li, J.; Luong, M.T.; Jurafsky, D. A Hierarchical Neural Autoencoder for Paragraphs and Documents. 2015.
Available online: arxiv.org/abs/1506.01057 (accessed on 6 June 2015).

31. Chanen, A. Deep learning for extracting word-levesl meaning from safety report narratives. In Proceedings
of the Integrated Communications Navigation and Surveillance (ICNS), Herndon, VA, USA, 19–21 April
2016; pp. 5D2-1–5D2-15.

32. Palangi, H.; Deng, L.; Shen, Y. Deep sentence embedding using long short-term memory networks: Analysis
and application to information retrieval. IEEE/ACM Trans. Audio Speech Lang. Process. 2016, 24, 694–707.
[CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

arxiv.org/abs/1301.3781
http://dx.doi.org/10.1109/72.279181
http://www.ncbi.nlm.nih.gov/pubmed/18267787
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
arxiv.org/abs/1503.00075
arxiv.org/abs/1506.01057
http://dx.doi.org/10.1109/TASLP.2016.2520371
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Text Data Mining–Oriented Recurrent Neural Network
	Text Model Representation
	Recurrent Neural Networks

	Long Short-Term Memory Model
	Core Neuron
	Forget Gate Layer
	Input Gate Layer
	Update the State of Neurons
	Output Gate Layer

	Malfunction Inspection Report Analysis Method Based on RNN-LSTM
	Experimental Verification Based on Malfunction Inspection Report
	Database
	Result and Analysis
	Fault Recognition Accuracy and Number of LSTM Units
	Fault Recognition Accuracy and Activation Unit Type
	Accuracy of Fault Recognition and Batch Size

	Conclusions
	The Detailed Description of Recurrent Neural Network
	Forward Propagation
	Loss Function
	Back Propagation

	The Process of the Training Method for RNN-LSTM

