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Abstract:



This paper proposes a multi-scale parameter identification algorithm for the lithium-ion battery (LIB) electric model by using a combination of particle swarm optimization (PSO) and Levenberg-Marquardt (LM) algorithms. Two-dimensional Poisson equations with unknown parameters are used to describe the potential and current density distribution (PDD) of the positive and negative electrodes in the LIB electric model. The model parameters are difficult to determine in the simulation due to the nonlinear complexity of the model. In the proposed identification algorithm, PSO is used for the coarse-scale parameter identification and the LM algorithm is applied for the fine-scale parameter identification. The experiment results show that the multi-scale identification not only improves the convergence rate and effectively escapes from the stagnation of PSO, but also overcomes the local minimum entrapment drawback of the LM algorithm. The terminal voltage curves from the PDD model with the identified parameter values are in good agreement with those from the experiments at different discharge/charge rates.
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1. Introduction


Lithium-ion batteries (LIBs) have been widely utilized as power sources of electrical vehicles (EVs) and hybrid electrical vehicles (HEVs) in recent years, due to their advantages of higher energy-to-weight ratios, longer cycle life and lower environmental pollution [1,2]. This demand has fueled the need for the improved safety and performance of LIBs. Elaborate models have been proposed for the prediction of battery performance [3], such as the empirical model [3], single particle model (SPM) [4], extended SPM [5], pseudo two-dimensional (P2D) model [6], two-dimensional potential and current density distribution (PDD) model [7], and temperature distribution model [8]. Among these [6,7,8] are nonlinear distributed parameter systems (DPSs) [9,10,11] and can describe the electrical and thermal performance more accurately. On the other hand, an accurate model of LIBs requires knowledge of a great number of physical properties; these are difficult to obtain directly. In this situation, unknown parameter values can be identified indirectly from measurements.



Several different techniques including the gradient method [4], the gradient-free method [12,13,14] and Kalman filter method [15,16] have been proposed for the parameter estimation or identification of LIBs. Among these methods, the gradient method and gradient-free method have been applied to identify the parameters of electrochemical models. The Levenberg-Marquardt (LM) algorithm is a gradient-based nonlinear regression method and can converge quickly to the optimum. Santhanagopalan et al. [4] employed the LM algorithm to identify the parameters of the SPM. However, this algorithm suffers from the problem of local minimum entrapment caused by inappropriate initial parameters [17]. Unlike the LM, some gradient-free methods have also been proposed in order to determine the global minimum for the objective function, e.g., genetic algorithm (GA) and particle swarm optimization (PSO). GA [12] was utilized to solve the parameter identification of the P2D model. The PSO algorithm was also applied in order to identify the parameters of the electrochemical model [13]. However, the stagnation problem of PSO and GA makes them extremely slow around the global optimum. Ref. [18] found that LM is better at finding the optimum with appropriate initial values than PSO. To overcome the drawbacks of LM and PSO, a hybrid PSO-LM algorithm was proposed in [19] so as to train the weights and threshold of a neural network for the nonlinear modeling of the fuel cell. Recently, an accelerated PSO algorithm based on LM was proposed in [20]. However, up to now, few PSO-LM based parameter identification algorithm has been proposed for the LIB models.



This study proposes a multi-scale parameter identification algorithm combining PSO and LM in order to globally optimize the parameter values for the two-dimensional uneven PDD battery electric model [7]. In the proposed identification algorithm, a hybrid multi-swarm PSO algorithm [21] is first applied for the coarse-scale searching in the global space to find near-optimal parameter values. Then LM is embedded for the fine-scale parameter identification in the vicinity of the optimum within the local space. Simulation results and the corresponding analysis are provided to demonstrate the effectiveness of the proposed multi-scale algorithm. The rest of this paper is structured as follows. Section 2 presents a two-dimensional PDD battery electric model description and the multi-scale parameter identification problem formulation. Section 3 proposes a weighted PSO-LM algorithm to address the multi-scale identification complexity for the nonlinear spatiotemporal electric model. The simulation results with optimized parameters are compared with the measurements in Section 4 which is followed by a detailed parameter analysis. Finally, Section 5 offers some concluding remarks.




2. Battery Electric Model and Problem Formulation


This study considers a simple cell consisting of two parallel plate electrodes and assumes that the distance between the electrodes is extremely small. Figure 1 shows a schematic diagram of the current flow in the cell during discharge and charge. Since the distance between the electrodes is very small, the current flow between the electrodes is perpendicular to the electrodes. However, see Figure 1, the thickness along axis z is magnified to provide a clear reference. From the continuity of the current on the electrodes during discharge, the potential density distributions in the positive and negative electrodes are described by two Poisson equations in the two-dimensional spatial domain [7], respectively:


[image: there is no content]



(1)






[image: there is no content]



(2)




where [image: there is no content] and [image: there is no content] are the potentials ([image: there is no content]) of positive and negative electrodes, respectively, [image: there is no content] and [image: there is no content] are the resistances ([image: there is no content]) of the positive and negative electrodes, respectively, and [image: there is no content] is the current density, which is current per unit area ([image: there is no content]). [image: there is no content] and [image: there is no content] are the domains of positive and negative electrodes, respectively. For the relevant boundary conditions of [image: there is no content] and [image: there is no content], please refer to [7]. The difference between the governing equations for charge and those for discharge is that the signs in front of [image: there is no content] in (1) and (2) are opposite according to the previous studies [22].


Figure 1. Schematic diagram of the current flow in the parallel plate electrodes. — for discharge; and --- for charge.
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The current density [image: there is no content] is a function of the potential difference between positive and negative electrodes and is expressed as [23,24]:


[image: there is no content]



(3)




where [image: there is no content] is the potential difference, [image: there is no content] and [image: there is no content] are the fitting parameters, as suggested by Gu [25], these two parameters [image: there is no content] and [image: there is no content] depend on the depth of discharge ([image: there is no content]) and are expressed by the following expressions:


[image: there is no content]
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(5)




where [image: there is no content] are fitting parameters. When the battery is in a discharging process, the distribution of [image: there is no content] on the electrodes is calculated from the integration of [image: there is no content] as [7,26]:


[image: there is no content]



(6)




where [image: there is no content] is the discharge time (s), [image: there is no content] is discharge starting time (s), and [image: there is no content] is the theoretical capacity per unit area ([image: there is no content]) of the electrodes. When the battery is in a charging process, the distribution of [image: there is no content] is calculated as follows [22]:


[image: there is no content]



(7)




where [image: there is no content] is the initial value of [image: there is no content], [image: there is no content] is the charge time (s), [image: there is no content] is charge starting time (s). Set [image: there is no content] for the sake of brevity. Due to the hysteresis behavior existed battery [27], the voltage curves during discharge and discharge process are fitted separately. Thus, two groups of parameters [image: there is no content] and [image: there is no content] will be obtained.



The described battery electric model is a time/space coupled high-dimensional nonlinear system [9]. The proper value of parameter vector [image: there is no content] in the seven-dimensional hyperspace is usually difficult to obtain in the simulation [28]. The “art” of trial and error [29] was adopted to determine the value of [image: there is no content]. However, it requires exhaustive enumeration to search the optimal value of [image: there is no content]. Therefore, it is valuable and interesting to investigate an efficient parameter identification algorithm to obtain the optimal value of [image: there is no content].



Although the battery electric model is extremely complicated with high-dimensional nonlinearity, it can still be approximately linearized in a neighborhood of any given operating point based on the theory of linear system. Thus, the identification can be considered as a multi-scale problem, for which a multi-scale approach could be developed as follows.



Multi-Scale Parameter Identification


The multi-scale properties can be described geometrically with a 3-dimensional example as in Figure 2. Due to the highly nonlinear properties, traditional optimization cannot be applied for the direct finding of the global optimum point C from a random start point A. However, the non-math- based coarse method can be easily used for coarse searching on a global scale. Once the proper point B near the optimum is found, then the model can be linearized at the local scale around the point B. Through this quantitative searching, the optimum point C can be found.


Figure 2. Geometric explanation for the multi-scale complexity.



[image: Energies 10 00432 g002]








3. Weighted PSO-LM Algorithm for Multi-Scale Parameter Identification


To address the problem of the multi-scale (global and local) complexity existing in the parameter identification, this section will provide a weighted PSO-LM combined algorithm for the multi-scale (coarse and fine) identification of parameter vector [image: there is no content]. PSO is firstly utilized to implement the coarse-scale parameter identification to find the near-optimal point in the global space. Then the LM algorithm is embedded in PSO to conduct the fine-scale parameter identification in the vicinity of the optimum within the local space. The block diagram of the PSO-LM based identification approach is illustrated in Figure 3.


Figure 3. Block diagram of PSO-LM based identification approach.
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3.1. Search Strategy


The search strategy determines whether PSO or LM is suitable for the next step identification. An objective/fitness function [image: there is no content] is embedded in the search strategy as a criterion for the decision making. The strategy consists of two steps:

	(1)

	
Coarse searching: The identification procedure is assured to start from PSO by initializing a group of random parameter vectors in the global parameter space. After several generations of PSO optimization, a near-global optimum is acquired;




	(2)

	
Fine searching: The identification procedure is then switched to LM by starting from the near-global optimum with the gradient search in a local space. The identified parameter vector is compared with the one obtained in PSO to select a better candidate to enter the next iteration.









The objective/fitness function [image: there is no content] is constructed for the optimal identification of the parameter vector [image: there is no content] in the battery electric model (1)–(7), which is a quadratic function of the difference between the experimental terminal voltage [image: there is no content] and the predicted voltage [image: there is no content] with additional parameters [image: there is no content], [image: there is no content]:


[image: there is no content]



(8)




where [image: there is no content] is the number of fitting curves, [image: there is no content] and [image: there is no content] is the estimation of [image: there is no content], both are vectors consisting of [image: there is no content] and [image: there is no content], [image: there is no content], respectively, [image: there is no content] is the parametric matrix assigned to obtain a better fitness.



In what follows, we will define the specified form of the parameter matrix [image: there is no content], whose element [image: there is no content] is applied to the [image: there is no content]-th experimental terminal voltage curve:


[image: there is no content]



(9)




where [image: there is no content] takes into account the experimental deviations in the k-th voltage curve and is defined as:


[image: there is no content]



(10)




with [image: there is no content], in which [image: there is no content] is the predicted voltage of the j-th point in the k-th curve and obtained by calculating the difference between [image: there is no content] and [image: there is no content], [image: there is no content] is the experimental voltage at the j-th point in the k-th curve, [image: there is no content] is the number of experimental data points in the k-th voltage curve. The parameter [image: there is no content] is proportional to the difference between the previous voltage predictions and the experimental data in the k-th voltage curve and is defined as:


[image: there is no content]



(11)




where [image: there is no content] is a given constant, [image: there is no content], [image: there is no content] is the maximum value of [image: there is no content] for each [image: there is no content]. Obviously, the parameter [image: there is no content] varies between 1 and [image: there is no content], that is, [image: there is no content] for the best fitting points and [image: there is no content] for the worst fitting ones.




3.2. Implementation of PSO-LM Algorithm


The PSO algorithm adopted here is a variation of conventional PSO, named hybrid multi-swarm PSO (HMPSO). The HMPSO method divides the swarm into several sub-swarms, and adopts a parallel PSO search operator for the sub-swarms [30]. For a particle swarm with a population consisting of M [image: there is no content]-dimensional particles, the velocity [image: there is no content] and position [image: there is no content], [image: there is no content], [image: there is no content] of the j-th dimension of the i-th particle are updated as [30]:


[image: there is no content]



(12)




where [image: there is no content] and [image: there is no content] are the best previous position of [image: there is no content] and the best position achieved with its neighbors at the m-th generation, respectively; [image: there is no content] and [image: there is no content] are two separately generated random numbers with uniform distribution in the range of [image: there is no content]. The privilege of HMPSO lies in that it can explore more promising regions of the search space by applying differential evolution (DE) to update the personal best of each particle. In conclusion, it is a more competitive and effective PSO method for solving optimizing problems. For more details on the HMPSO algorithm, please refer to ref. [30].



The LM algorithm has a strong ability to find a local and more optimistic result. The parameter correction vector [image: there is no content] is obtained based on the objective Function (8) and the Marquardt method as follows:


[image: there is no content]



(13)




where [image: there is no content] is a matrix of partial derivatives of the terminal voltage with respect to the fitting parameter vector [image: there is no content] evaluated at all the experimental voltage data. LM adaptively alters the algorithmic parameter value [image: there is no content] updates between the gradient descent method and the Gauss-Newton method. The parameter [image: there is no content] determines how the LM algorithm works and is initialized to be large. If the iteration results in a better approximation, then the parameter [image: there is no content] is decreased to [image: there is no content] and LM is more like a Gauss-Newton update one. If the iteration provides a worse approximation, then the parameter [image: there is no content] is increased to [image: there is no content] and LM approaches that of the gradient descent update. The details of LM can refer to [17].



The proposed PSO-LM algorithm is a hybrid multi-scale approach to determine the value of [image: there is no content] in the battery model (1)–(7) based on the fitness Function (8). It not only improves the convergence rate and effectively escapes from the stagnation of PSO, but also overcomes the drawback of the local minimum entrapment of LM. The pseudo code of the suggested weighted PSO-LM algorithm is shown in Table 1. The coarse-searching procedure of PSO can be found from Step 1 to Step 6, and the fine-searching procedure of LM is embedded from Step 7 to Step 16.



Table 1. Implementation of PSO-LM algorithm.







	
Step 1

	
Initialize the PSO population size, dimensions, and termination conditions, i.e., randomly generate an initial swarm P0 consisting of M seven-dimensional particles, [image: there is no content], [image: there is no content], optimization error ([image: there is no content]);

Initialize the LM parameters, i.e., [image: there is no content] and the maximum number of iteration [image: there is no content];




	
Step 2

	
Calculate the potential [image: there is no content], parameter matrix [image: there is no content], and the fitness value [image: there is no content] given in (7) for each particle, [image: there is no content];




	
Step 3

	
Record particle’s personal bests, i.e., [image: there is no content];




	
Step 4

	
while ([image: there is no content]) do




	
Step 5

	
Update the personal best [image: there is no content] at m-th generation using the differential evolution (DE), and evaluate the fitness value [image: there is no content] for the personal best;




	
Step 6

	
Split the swarm Pm into several sub-swarms, and each sub-swarm evolves in parallel according to the governing equations of the particles’ velocity and position:

[image: there is no content]

[image: there is no content]

where [image: there is no content] and [image: there is no content] are two scalars generated randomly in the range of (0, 1), and [image: there is no content] is the best position achieved with its neighbors;




	
Step 7

	
Calculate the potential [image: there is no content], parameter matrix [image: there is no content], and the fitness value [image: there is no content] for each particle [image: there is no content], [image: there is no content];

Let [image: there is no content] and [image: there is no content];

Set [image: there is no content] be the initial values of LM algorithm;




	
Step 8

	
for [image: there is no content]do




	
Step 9

	
while ([image: there is no content] and [image: there is no content]) do




	
Step 10

	
Calculate Jacobin matrix [image: there is no content], parameter matrix [image: there is no content], Hessian matrix [image: there is no content];

Calculate the potential [image: there is no content] and [image: there is no content] at current particle [image: there is no content];




	
Step 11

	
Update the Hessian matrix [image: there is no content], the parameter correction vector [image: there is no content], the particle position [image: there is no content], and the potential [image: there is no content], the fitness value [image: there is no content] at the current particle [image: there is no content];




	
Step 12

	
if [image: there is no content]do




	

	
[image: there is no content], [image: there is no content], [image: there is no content] and go back to Step 10;




	

	
else




	

	
[image: there is no content], go back to Step 11;




	

	
end if




	
Step 13

	
[image: there is no content];




	
Step 14

	
end while




	
Step 15

	
[image: there is no content];

[image: there is no content];




	
Step 16

	
end for




	
Step 17

	
[image: there is no content];




	
Step 18

	
end while




	
Step 19

	
Output the identified parameter vector [image: there is no content].












4. Experimental Validation


4.1. Experimental Setup


To illustrate the validity of the proposed PSO-LM algorithm, discharge experiments are carried out for a 60 Ah LIB (LiFePO4) at a constant temperature of 25 °C on the experimental platform shown in Figure 4a. This platform consists of a thermal chamber, lithium-ion battery, battery testing system (BTS-300 A/60 V, Shenzhen Neware Technology, Shenzhen, China), battery management system (BMS) and computer. The schematic diagram of the signal and data flow for the experimental platform is also shown in Figure 4a. Figure 4b shows the dimensions of electrodes and positions of the tabs of a 60 Ah LIB. The discharge and charge tests of the battery are completed on this platform. The battery is first fully charged and then discharged at various discharging rates namely 1C (60 A), 2C (120 A) and 3C (180 A) until the cut-off voltage. The experimental terminal voltage data is collected per second during its discharge. Subsequently, the battery is fully discharged and then charged at various charging rates namely 1C, 2C and 3C until the cut-off voltage. The experimental terminal voltage data is also collected during the charging process. Due to the hysteresis behavior existed in battery, the voltage curves during discharge do not agree with that during charge process and thus are fitted separately [27]. There will be two sets of parameters [image: there is no content] and [image: there is no content] for these two processes, respectively.


Figure 4. (a) Experimental platform and its schematic diagram of the signal and data flow; and (b) dimensions of electrodes and positions of the tabs of a 60 Ah LIB.



[image: Energies 10 00432 g004]







4.2. Numerical Calculation and Parameter Setup


The numerical solutions of the battery electric model (1)–(7) subjected to the associated boundary conditions are obtained by COMSOL (COMSOL Inc., Stockholm, Sweden), which is a commercial software package for accurate numerical simulation of partial differential equations (PDEs) using the finite element method. The simulation results and identified parameters are exchanged through the interface of COMSOL with MATLAB (The MathWorks Inc., Natick, MA, USA). In the proposed PSO-LM algorithm, set [image: there is no content], [image: there is no content], [image: there is no content], and for the parameter matrix [image: there is no content], set [image: there is no content], [image: there is no content] and [image: there is no content].




4.3. Results and Discussion


The value of the parameter vector x in the battery electric model (1)–(7) is identified using the proposed algorithm through fitting the three experimental terminal voltage curves simultaneously. Table 2 gives the identified value of the parameter vector x. As shown in Figure 5a, the predictions with identified parameter vector x and measurements of the terminal voltage curves are well matched with each other, and this demonstrates the effectiveness of the proposed method. Figure 5b depicts the corresponding trajectory of the weight matrix [image: there is no content].


Figure 5. Comparison between experimental and predicted discharge voltage curves at discharge rates of 1C, 2C, and 3C using three different identified algorithms: (a) weighted PSO-LM; (b) trajectory of the weight matrix [image: there is no content]; (c) PSO-LM with [image: there is no content]; (d) PSO; (e) LM and (f) method of trial and error.



[image: Energies 10 00432 g005]






Table 2. The identified value of the parameter vector x during discharge.







	
Parameter

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Identified value

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]










The potential distributions on the positive and negative electrodes during discharge are obtained as a function of time for various discharge rates of 1C, 2C, and 3C. For example, Figure 6 indicates the potential distributions on the positive and negative electrodes with discharge rates of 1C, 2C, and 3C at discharge time [image: there is no content], respectively. Because all the current flows into the tab from the entire electrode plate, the potential gradient on the positive electrode shown in Figure 6 is seen to be most severe in the region near to the tab. While the potential gradient on the negative electrode is also the highest in the region near tab. This is because all the current has to flow from the tab through the entire electrode plate.


Figure 6. Potential distributions of positive electrode and negative electrode for the discharge rate of (a) 1C; (b) 2C; (c) 3C at the discharging time [image: there is no content].
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To demonstrate the advantage of the proposed weighted PSO-LM algorithm, a comparison study is also conducted among PSO, PSO-LM with [image: there is no content], weighted PSO-LM, LM and the method of trial and error. Figure 5 also compares the experimental and predicted terminal voltage curves at discharge rates of 1C, 2C, and 3C through the simultaneous fit by PSO-LM with [image: there is no content] (Figure 5c), PSO (Figure 5d), LM (Figure 5e) and method of trial and error adopted in [29] (Figure 5f). It is clear from Figure 5 that the proposed weighted PSO-LM algorithm provides a more accurate discharging curve fitness compared to the other algorithms. Moreover, although the fitting result of PSO-LM with [image: there is no content] is better than that of PSO, it is worse than that of weighted PSO-LM. This is because the same weights are assigned to different curves but without considering the difference of the data number of each voltage curve (e.g., there are 2860 data points for the 1C-discharging voltage curve, 1360 data points for 2C and 850 for 3C). To evaluate the parameter importance, an a-priori sensitivity analysis is carried out for the identified parameters [27]. Each parameter is tuned to 0.5 times and 1.5 times the identified value. The results, shown in Figure 7, indicate that for the same range of parameter values, [image: there is no content] and [image: there is no content] are less sensitive than other parameters and hence can be held constant, while the other five parameters [image: there is no content] are very sensitive and deserve more attention during the identification.


Figure 7. Sensitivity of the PDD model to parameter (a) [image: there is no content]; (b) [image: there is no content]; (c) [image: there is no content]; (d) [image: there is no content]; (e) [image: there is no content]; (f) [image: there is no content] and (g) [image: there is no content].



[image: Energies 10 00432 g007a][image: Energies 10 00432 g007b]






A further quantized research needs to be carried to determine the importance order of parameters [image: there is no content]. On the other hand, Figure 7 shows that [image: there is no content] and [image: there is no content] have the similar effect toward model output, while [image: there is no content], [image: there is no content] and [image: there is no content] have the similar effect.



4.3.1. 95% Confidence Interval


From a statistical point of view, it is very useful to obtain the confidence interval instead of the point estimation for the fitting parameter vector x [31]. In this paper, the 95% confidence interval of the parameter vector x is calculated as follows:


[image: there is no content]



(14)




where [image: there is no content] is the point estimation of the parameter [image: there is no content], [image: there is no content], [image: there is no content] is a value of [image: there is no content]-distribution with ([image: there is no content]) degrees of freedom, [image: there is no content] is the unbiased estimate of unknown variance [image: there is no content] and is calculated by [image: there is no content], [image: there is no content] is the number of experimental data points and derived by [image: there is no content], and [image: there is no content] is the i-th main diagonal element of [image: there is no content].



To demonstrate the goodness of the simultaneous fit, the model (1)–(7) is also to fit each experimental curve independently for comparison. The 95% confidence intervals of all seven parameters obtained from both the simultaneous fit and three independent fits are presented in Table 3. Although Table 3 shows that each independent fit leads to a smaller [image: there is no content] compared to the simultaneous fit, the value of [image: there is no content] for the simultaneous fit is also acceptable.



Table 3. Comparison of the 95% confidence intervals of x estimated from the simultaneous fit and the independent fit.







	
Parameter

	
Simultaneous Fit

	
Independent Fit (1C)

	
Independent Fit (2C)

	
Independent Fit (3C)
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[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]
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[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]
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[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
0.0079

	
0.0019

	
0.0037

	
0.0041











4.3.2. 95% Joint Confidence Region


We know from [17] that the individual confidence interval cannot reflect the correlations between the parameters in the nonlinear system. Hence it is necessary to construct the joint confidence region. The 95% joint confidence regions of the parameter vector [image: there is no content] are calculated by Equation (15) [17]:


[image: there is no content]



(15)




where [image: there is no content] is any point in the confidence region, [image: there is no content] is the point estimation value, [image: there is no content] is the quantile function of the F-distribution with [image: there is no content] and [image: there is no content] degree of freedom, [image: there is no content] is the statistical significance level. Set [image: there is no content], we get from the F-distribution table that [image: there is no content]. Without loss of generality, set [image: there is no content] to be the estimate of [image: there is no content] from weighted PSO-LM, i.e., [image: there is no content], we have:


[image: there is no content]



(16)







The confidence regions are obtained from the following equation:


[image: there is no content]



(17)







The confidence region of [image: there is no content] is obtained from Equation (16) by fixing the parameters [image: there is no content] to their estimation value. The 95% joint confidence regions of all seven parameters obtained from the simultaneous fit are given in Table 4. The comparison of 95% joint confidence regions and 95% conference intervals of three simulated voltage curves is plotted in Figure 8. It can be observed from Table 4 and Figure 8 that the values of the parameter vector [image: there is no content] defined by the confidence region lead to less uncertainty in model predictions than those defined by the confidence interval.


Figure 8. Comparison of the predicted voltage curves at different discharge rates (a) 1C; (b) 2C; (c) 3C, using different limits of the parameter [image: there is no content] from the 95% confidence interval and 95% joint confidence region. Point estimates obtained from the simultaneous fit were used for the rest parameters. LCIL and UCIL represent the lower and upper confidence interval limits, respectively; LJCR and UJCR represent the lower and upper joint confidence region limits, respectively.
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Table 4. The 95% joint confidence regions (CR) obtained from the simultaneous fit.
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As shown in Table 3 and Table 4, the confidence interval and confidence region of parameter [image: there is no content] are much larger than any of other six parameters. This phenomenon is caused by the parameter correlations as explained by Evans and White [32]. Thus, a thorough correlation analysis of these seven parameters is conducted in what follows.




4.3.3. Correlation Analysis


The correlation coefficient matrix [image: there is no content] of the parameters [image: there is no content], [image: there is no content] is a symmetric matrix. Its elements [image: there is no content] have all their values in the range [image: there is no content], are calculated as follows:


[image: there is no content]



(18)







Let matrix [image: there is no content], then [image: there is no content], [image: there is no content] are the elements of [image: there is no content] after the simultaneous fit, and [image: there is no content] is the i-th main diagonal element of [image: there is no content]. The matrix [image: there is no content] is calculated as:


[image: there is no content]



(19)







Hence, the matrix [image: there is no content] is obtained according to Equation (18):


[image: there is no content]



(20)







The element [image: there is no content] stands for the correlation between the [image: there is no content]-th parameter and the [image: there is no content]-th parameter, where [image: there is no content] stands for [image: there is no content], [image: there is no content]. As pointed out in [17], the absolute value of the elements of [image: there is no content] is closer to 1, the correlation between two parameters is higher. It is observed from the matrix [image: there is no content] given in Equation (20) that the values of all the main diagonal elements of [image: there is no content] are equal to 1. This indicates that each parameter is highly correlated with itself. We also observe from Equation (20) that the highest correlation between two different parameters occurs to the [image: there is no content] pair. A positive correlation coefficient between two parameters indicates that the errors causing the estimate of one parameter to be high also cause the other to be high, and vice versa. It is not difficult to conclude from [image: there is no content] that an underestimation of [image: there is no content] will cause an overestimation of [image: there is no content]. Moreover, the eigenvectors and eigenvalues of [image: there is no content] can be applied to construct a hyperellipsoidal confidence region of the parameter space in the vicinity of the solution, where the model can be approximated linearized [17]. On the other hand, the high correlation between parameters also implies that it is difficult to obtain separate estimates of these parameters with the available data. The regression must be repeated and restarted from different initial parameter values many times to bypass the local minimum. While the multi-scale (global and local) approach provides a possible solution to find the global optima in this study.





4.4. Fitting to Charge Curves


The weighted PSO-LM algorithm is also applied to identify the parameters of [image: there is no content] during the charge process. The identified parameter values are in Table 5.



Table 5. The identified value of the parameter vector [image: there is no content] during charge.







	
Parameter

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Identified value

	
3.370
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2.142
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Figure 9 compares the experimental and predicted terminal voltages curves at charge rates of 1C, 2C, and 3C by the proposed PSO-LM algorithm and the method of trial and error adopted in [22]. It is concluded that the proposed PSO-LM algorithm provides a more accurate prediction than the method of trial and error. This result further demonstrates the effectiveness of the proposed multi-scale method. The analysis of the charge parameter values can refer to those during the discharge process, and thus is omitted.


Figure 9. Comparison between experimental and predicted charge voltage curves at charge rates of 1C, 2C, and 3C by (a) weighted PSO-LM; and (b) method of trial and error.
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5. Conclusions


A multi-scale parameter identification approach has been developed to identify the proper parameter value of the PDD model for the LIB during charge and discharge. This multi-scale approach is a combination of the PSO algorithm and the LM algorithm. PSO has the advantage of the coarse searching in large scale and LM has the advantage of the fine searching in small scale. Integration of them can effectively solve the difficult identification of the model with multi-scale complexity. To obtain a better fitness, a weighted objective/fitness function is implemented in this algorithm to reduce the difference among the multiple curves. The experimental results demonstrate the effectiveness of the proposed multi-scale identification approach.
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