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Abstract: This paper presents a time-efficient modeling and simulation strategy for aggregated
microinverters in large-scale photovoltaic systems. As photovoltaic microinverter systems are
typically comprised of multiple power electronic converters, a suitable modeling and simulation
strategy that can be used for rapid prototyping is required. Dynamic models incorporating switching
action may induce significant computational burdens and long simulation durations. This paper
introduces a single-matrix-form approach using the average model of a basic microinverter with two
power stages consisting of a dc-dc and dc-ac converter. The proposed methodology using a common
or intermediate source between two average models of cascaded converters to find the overall average
model is introduced and is applicable to many other converter topologies and combinations. It
provides better flexibility and simplicity when investigating various power topologies in system-level
studies of microinverter and other power electronic systems. A 200 W prototype microinverter is
tested to verify the proposed average and dynamic models. Furthermore, MATLAB/Simulink (2010a,
Mathworks, Natick, MA, USA) is used to show the improved simulation speed and maintained
accuracy of the multiple microinverter configurations when the derived average model is compared
to a dynamic switching simulation model.

Keywords: computer simulation; modeling; microinverter; photovoltaic systems; state-space model

1. Introduction

Photovoltaic (PV) power is becoming more prevalent as its cost has become more competitive with
traditional power sources and it is especially attractive for microgrids. As PV systems become more
popular, higher efficiency and reliability are of increasing importance. Researchers have developed
many effective designs and methodologies that address several essential aspects to improve the
performance of PV systems. Modified or optimized power electronic energy conversion topologies
have gained significant interest since power stage configuration has significant impact on the system:
For example, recent work has shown that microinverters can yield significant reliability enhancement
in PV systems [1]. Another example is shown in [2] where different targets, such as efficiency, reliability
and cost, were considered to optimize the design of synchronous rectification (SR) boost topology.
A third example is a new cascaded active-front-end converter is proposed in [3] to increase system
reliability and decrease cost. A single-stage PV system [4] and a modified dual-stage inverter [5] along
with maximum power point tracking (MPPT), grid synchronization, and harmonic reduction, have
been implemented. Among all these designs, selecting proper converter topologies and components
and evaluating their performance, system modelling is critical to address higher efficiency and
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reliability needs [6,7]. Advanced control has also been of interest enhance maximum power point
tracking (MPPT) in PV systems [8–10]. For example, recent work shown in [11] focused on distributed
maximum power point tracking (DMPPT) converter design methodology to deal with the problem of
variation in temperature, irradiance and shadowing. Other efficiency and power quality enhancement
methods include those that utilize an energy storage device [12] or shunt active power filter [13]
on the bases of conventional inverter operation. PV systems can be classified per their connection
method between the PV modules and the power conditioning system (PCS). In a conventional string
configuration, shown in Figure 1a, which can also be connected with several parallel strings, several
series PV modules deliver electrical power to the grid and local ac loads through a central PCS.
An example is Nano Grid integration [14], which utilizes a central PCS to control multiple of small
distributed generation clusters. However, the central PCS configuration may cause mismatch losses of
arrays due to differences in manufacturing, temperature, shading, and degradation conditions among
the PV modules, resulting in a less efficient PV system. Also, failure of the PCS affects the reliability
of the whole system. On the other hand, the microinverter configuration shown in Figure 1b, also
referred to as the module-integrated converter (MIC), uses individual small PCSs mounted on each PV
module, allowing a simple “plug and play” installation and more localized control such as independent
maximum power point tracking (MPPT) at the individual PV module scale [15–18]. Compared to the
centralized PCS configuration, this system is expected to be more reliable with higher energy yield,
which justifies its minor cost increase. Comparison based on experimental testing of PCSs is provided
in [19], but due to the variations of operating conditions, experimental testing is not convenient or cost
effective for one-to-one comparisons between various PCSs and under different conditions.
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topology, select appropriate circuit component types and values, evaluate circuit performance, and
complete a system design [20,21]. There are several methods to build power electronics models and they
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usually involve switching power devices and passive power elements such as inductors, capacitors,
and resistors. Dynamic models have been used to analyze the performance of an inverter [5], but
dynamic models including switching actions may not be suitable for multiple-microinverter aggregated
system simulations despite their simple implementation and accurate transient responses. The increase
in the number of microinverters in a system simulation yields significant computational burdens and
long simulation times [22]. Another approach is to use the average pulse width modulation (PWM)
switch model replacing the switches in the dynamic models with time-averaged models represented
by voltage and current sources [23]. With the average modeling method, some simulation accuracy is
lost but the resulting simulation run time and setup time can be significantly reduced. The state-space
average model is employed to ascertain a set of equations describing the system behavior over one
switching period, which aids designers in understanding the physical relationship between control
parameters and converter states [20]. Using an average model, the transfer function of the system
can also be obtained, and larger simulation step sizes can be utilized with minimal loss of accuracy
which leads to a faster simulation time. Consequently the state-space average model will be the most
competitive modeling method in simulation studies for aggregated multiple microinverters.

A number of papers have examined the state-space averaging model for various power
converter topologies in different operating modes [24–33]. The proper analytical averaging model for
discontinuous conduction mode (DCM) operation in the dc-dc converter has been studied in [24], which
contains implicitly elements to generate a base model applicable to both fixed and variable frequency
operations. Many efforts have also been made to develop adequate seamless mode transitions
from DCM to continuous conduction mode (CCM) and vice versa in simulation studies of dc-dc
converters [25,26]. Furthermore, the issue of parasitic components on these modeling methods is
investigated in [27]. Recently the conventional converter configurations such as the boost, buck
and fly-back converter tend to be combined and integrated with other power electronics circuits for
high efficiency converters and thus their proper averaging model have been required. The boost
converter with a voltage multiplier cell has been analyzed in [28] to derive its average model which is
complex and requires the use of advanced techniques due to the resonant circuit. Not only small-signal
model approaches, but also large-signal model approaches have been conducted to investigate large
signal behaviors and capabilities in multiple dc-dc [29] or dc-ac [30] converters where a generalized
state-space averaging method employing the Fourier series with time-dependent coefficients. However,
these models cannot predict the complete dynamic behavior of these systems. While most papers focus
on dc-dc converter modeling, a small number of papers have been presented on average modeling
of dc-ac converters to approximate their behavior in grid-connected power electronics such as static
synchronous compensators (STATCOM), active power filters [31] and PV applications [32]. It should
be noted that references [24–33] have all addressed single-stage power converters and inverters, but
average modeling of multiple-stage converters such as microinverters is still open to research along
with the adequate simulation strategy that is necessary to improve simulation speed and accuracy of
multiple cascaded converters, such as multiple PV microinverters in a microgrid.

The primary objectives of this paper are to introduce the simulation strategy for aggregated
multiple microinverters by employing state-space average modeling of multi-stage power converters
represented by a single-matrix-form (SMF). SMF can be derived by using the intermediate source
model to link to converters with established average models, and thus this approach can facilitate
integration of existing average models for cascaded, parallel, and many topologies. Since the proposed
simulation strategy is based on the state-space average modeling technique which allows investigating
small-signal behavior of the systems, it can capture important dynamics of PV microinverters in
smaller power systems such as microgrids even under aggregated multiple converters, but switching
transients that slow down simulations are over-ridden. The main advantages of this proposed approach
are: (1) achieving a faster simulation time in research on aggregated multiple microinverter systems
compared to dynamic switching models of converters; (2) providing better flexibility with easily
interchangeable converter models; (3) understanding the relationship of state variables between
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multi-stage converters; and (4) simple extension to other power electronics conversion systems with
multiple-stage configurations. It is important to note that the main purpose of this paper is to introduce
this intermediate source methodology in multiple-converter systems which can be extended to various
topologies and applications, especially in the area of modeling and control of microgrids to capture
finer dynamics with faster simulations that mask switching transients.

This paper starts with descriptions of the proposed simulation strategy and state-space average
modeling of microinverters in Section 2. Model validation is carried out by comparing waveforms
from simulation results in MATLAB/Simulink with experimental results from a 200 W prototype
microinverter board in Section 3. These results are compared in open-loop mode to test the “plant”
dynamics using the proposed model, dynamic simulation model, and experiments. The general control
strategy for microinverters in PV applications is explained in Section 4, and then the simulation times
between the proposed modeling approach and the dynamic model are compared in Section 5. Finally,
Section 6 concludes the paper.

2. Proposed Simulation Strategy and State-Space Average Model with a Single Matrix-Form

It is common for PV microinverters to have multiple-stage configurations consisting of dc-dc and
dc-ac stages [15,16,34]. The dc-dc converter provides MPPT at the PV panel terminals while the dc-ac
converter delivers PV power to the grid or local ac loads in the second stage as shown in Figure 2. The
proposed approach to simulate the multiple microinverter system is shown in Figure 3. Several models
are required for a PV system simulation—PV module model, power converter model, grid model
and local load model. PV cell models are very common in the literature, especially those utilizing the
current source and inverse diode configuration [35]. Using this model, a 200 W PV panel model is
developed under different irradiance conditions. As for the load model, a simple resistor model is used
as the passive Local Load Model in Figure 3 since it yields simpler SMF. If reactive power needs to be
consumed or generated by local loads, the resistive load model can be replaced with other inductive
and capacitive loads or an RLC combination. The grid model encompasses a stiff single-phase voltage
source with fixed voltage and frequency characteristics in series with the grid impedance consisting of
a resistor and inductor. By using this model, it is possible to simulate all grid disturbances such as sag,
swell, and interruptions, and adjust the voltage source to include voltage harmonics. Details of the
converter dc-dc, dc-ac, and combined converter models are presented in this section.

While this paper presents examples of specific dc-dc and dc-ac stages, adjusting the matrices in
the average model of each stage to reflect other converter topologies is possible. The methodology
proposed in this paper for integrating two average models of dc-dc and dc-ac stages as shown in
Figure 4 can thus be followed. A SMF integrated with the dc-dc converter and dc-ac converter models
is used for better flexibility when other topologies are used as it directly links the state variables
between both energy conversion stages.
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2.1. DC-DC Converter Model

State-space average modeling is employed to obtain a set of differential equations applicable to a
selected converter topology [20]. The resulting model is expected to combine the dc-dc converter in
CCM and dc-ac converter. Those equations are capable of describing the system behavior over one
switching period. It is also desirable to include all parasitic effects in the state-space average model to
predict the dynamic behavior and frequency response of the microinverter accurately [27,36]. The state
space equation of the converter in CCM can be expressed as:

.
x(t) = (q(t)A1 + (1− q(t))A2)x(t) + (q(t)B1 + (1− q(t))B2)u(t) (1)

where q(t) is the switching function corresponding to the power device’s on/off states, Ak and Bk
are the system matrices where k = 1 or 2 depending on the switch status, and u(t) is the input vector.
The low-frequency components of state variables such as the inductor currents, capacitor voltages and
the output duty can be modeled by averaging over the switching period Ts and can be defined as:

x(t) =
1
Ts

w
t+Ts
t x(τ)dτ (2)

where the bar symbol denotes the so-called fast average or true average of a state variable x(t). Using (2),
the state average equation can be expressed as:

.
x(t) = (d(t)A1 + (1− d(t))A2)x(t) + (d(t)B1 + (1− d(t))B2)u(t) (3)

where d(t) is the duty cycle function.
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As an example, Figure 5 depicts the grid-connected microinverter, consisting of a non-ideal boost
converter and H-bridge inverter. To obtain the state-space average model with a SMF, these converters
can be considered separately as shown in Figures 6 and 7. The circuit equations of these converters for
turn-on and turn-off periods can be derived by applying Kirchoff’s voltage and current laws, and then
the system matrices according to the switching status can be obtained. From the dc-dc boost converter
shown in Figure 6, the state-space average model can be defined as:

.
xd(t) = Adxd(t) + Bdud(t)

= (Ddc(t)Ad1 + (1− Ddc(t))Ad2)xd(t)
+(Ddc(t)Bd1 + (1− Ddc(t))Bd2)ud(t)

(4)

where xd = [ipv vCdc]T, ud = [vpv vm vd idc]T and ipv is the dc inductor current, vCdc is the link capacitor
voltage, vpv is the output voltage of the PV module, vm is the drain-to-source voltage of the boost
switch, vd is the forward voltage of the diode, idc is the current in the dc-bus and Ddc is the duty ratio
of the boost converter. Matrices Ad1, Ad2, Bd1 and Bd2 when the switch is on and off are presented in
Appendix A. Using these matrices and (4), matrices Ad and Bd presented with averaged values during
one-sample time are:

Ad =

 −
RLdc + DdcRMdc + (RCdc + Rd)(1− Ddc)

Ldc
−1− Ddc

Ldc
1− Ddc

Cdc
0

 (5)

Bd =


1

Ldc
−Ddc

Ldc
−1− Ddc

Ldc

(1− Ddc)RCdc
Ldc

0 0 0 − 1
Cdc

 (6)

where Ldc is the boost inductor value, Cdc is the dc link capacitor value, RLdc and RCdc are the parasitic
resistors of the passive and active components, RMdc and Rd are the switch on-resistance, respectively.

Energies 2017, 10, 465 6 of 19 

 

As an example, Figure 5 depicts the grid-connected microinverter, consisting of a non-ideal 
boost converter and H-bridge inverter. To obtain the state-space average model with a SMF, these 
converters can be considered separately as shown in Figures 6 and 7. The circuit equations of these 
converters for turn-on and turn-off periods can be derived by applying Kirchoff’s voltage and current 
laws, and then the system matrices according to the switching status can be obtained. From the dc-
dc boost converter shown in Figure 6, the state-space average model can be defined as: 

( )
( )

1 2

1 2

( ) ( ) ( )
        ( ) (1 ( )) ( )

           ( ) (1 ( )) ( )

d d d d d

dc d dc d d

dc d dc d d

t t t

D t D t t

D t D t t

= +
= + −

+ + −

x A x B u
A A x

B B u


 (4) 

where xd = [ipv vCdc]T, ud = [vpv vm vd idc]T and ipv is the dc inductor current, vCdc is the link capacitor voltage, 
vpv is the output voltage of the PV module, vm is the drain-to-source voltage of the boost switch, vd is 
the forward voltage of the diode, idc is the current in the dc-bus and Ddc is the duty ratio of the boost 
converter. Matrices Ad1, Ad2, Bd1 and Bd2 when the switch is on and off are presented in Appendix A. 
Using these matrices and (4), matrices Ad and Bd presented with averaged values during one-sample 
time are: 

( ) (1 ) 1

1 0

Ldc dc Mdc Cdc d dc dc

dc dc
d

dc

dc

R D R R R D D

L L

D

C

+ + + − −− − 
 =
 −
 
 

A
 

(5) 

1 1 (1 )

10 0 0

dc dc dc Cdc

dc dc dc dc
d

dc

D D D R

L L L L

C

− − − − 
 =
 − 
 

B
 

(6) 

where Ldc is the boost inductor value, Cdc is the dc link capacitor value, RLdc and RCdc are the parasitic 
resistors of the passive and active components, RMdc and Rd are the switch on-resistance, respectively. 

 
Figure 5. Circuit model for deriving the average model. 

 
Figure 6. Circuit model for the dc-dc converter. 

Figure 5. Circuit model for deriving the average model.

Energies 2017, 10, 465 6 of 19 

 

As an example, Figure 5 depicts the grid-connected microinverter, consisting of a non-ideal 
boost converter and H-bridge inverter. To obtain the state-space average model with a SMF, these 
converters can be considered separately as shown in Figures 6 and 7. The circuit equations of these 
converters for turn-on and turn-off periods can be derived by applying Kirchoff’s voltage and current 
laws, and then the system matrices according to the switching status can be obtained. From the dc-
dc boost converter shown in Figure 6, the state-space average model can be defined as: 

( )
( )

1 2

1 2

( ) ( ) ( )
        ( ) (1 ( )) ( )

           ( ) (1 ( )) ( )

d d d d d

dc d dc d d

dc d dc d d

t t t

D t D t t

D t D t t

= +
= + −

+ + −

x A x B u
A A x

B B u


 (4) 

where xd = [ipv vCdc]T, ud = [vpv vm vd idc]T and ipv is the dc inductor current, vCdc is the link capacitor voltage, 
vpv is the output voltage of the PV module, vm is the drain-to-source voltage of the boost switch, vd is 
the forward voltage of the diode, idc is the current in the dc-bus and Ddc is the duty ratio of the boost 
converter. Matrices Ad1, Ad2, Bd1 and Bd2 when the switch is on and off are presented in Appendix A. 
Using these matrices and (4), matrices Ad and Bd presented with averaged values during one-sample 
time are: 

( ) (1 ) 1

1 0

Ldc dc Mdc Cdc d dc dc

dc dc
d

dc

dc

R D R R R D D

L L

D

C

+ + + − −− − 
 =
 −
 
 

A
 

(5) 

1 1 (1 )

10 0 0

dc dc dc Cdc

dc dc dc dc
d

dc

D D D R

L L L L

C

− − − − 
 =
 − 
 

B
 

(6) 

where Ldc is the boost inductor value, Cdc is the dc link capacitor value, RLdc and RCdc are the parasitic 
resistors of the passive and active components, RMdc and Rd are the switch on-resistance, respectively. 

 
Figure 5. Circuit model for deriving the average model. 

 
Figure 6. Circuit model for the dc-dc converter. Figure 6. Circuit model for the dc-dc converter.



Energies 2017, 10, 465 7 of 19

Energies 2017, 10, 465 7 of 19 

 

 
Figure 7. Circuit model for the dc-ac converter. 

2.2. DC-AC Converter Model 

In a procedure similar to that discussed in the previous section, the average model of the H-
bridge converter shown in Figure 7 is defined as: 

( )
( )

1 2

1 2

( ) ( ) ( )
( ) (1 ( )) ( )

    ( ) (1 ( )) ( )

a a a a a

ac a ac a a

ac a ac a a

t t t

D t D t t

D t D t t

= +
= + −

+ + −

x A x B u
A A x

B B u


 (7) 

where xa = [iab vCac ig]T, ua = [vCdc vh vg]T, iab is the ac inductor current, vCac is the capacitor voltage in the 
LC filter, ig is the grid current, vh is the drain-to-source voltage of the H-bridge switch, vg is the grid 
voltage and Dac is the duty ratio of the H-bridge converter. 

It is worthwhile to mention that the relationship between the average duty and modulation 
index (M) of the H-bridge converter can be expressed as Dac(t) = 0.5 + M∙sin(ωt) where ω is the grid 
frequency since the average duty is between 0 and 1. Matrices Aa1, Aa2, Ba1 and Ba2 are shown in the 
Appendix A. Using these matrices and (7), matrices Aa and Ba for averaged values during one-sample 
time are given by: 

2 Hac Lac

Cac Cdc Cac

ac ac ac

a
ac ac L ac

Cac g

Cac
Cac g

g g g

L

R R

R R R

L L L

C C R C

R R
R

R R
L L L

R

 +  −  + Ψ + ΨΨ  − 
 
 Ψ Ψ Ψ= − − 
 
 +  Ψ Ψ Ψ  −  +  

  

A

 

(8) 

where L

L Cac

R

R R
Ψ =

+
, and: 

(2 1) 2 0

0 0 0
10 0

ac

ac ac

a

g

D

L L

L

− − 
 
 =
 
 −
  

B
 

(9) 

where, Lac is the ac inductor value, Cac is the capacitor value in the LC filter, RLac and RCac, are the 
parasitic resistors of the passive components, RL is the local load resistance, and Lg and Rg reflect the 
grid impedance, respectively. 

2.3. Combined Average Model 

As the next step, using the relationship between the dc-bus current and output current, the two 
state-space average models obtained in (4) and (7) can be combined into SMF since the common 

Figure 7. Circuit model for the dc-ac converter.

2.2. DC-AC Converter Model

In a procedure similar to that discussed in the previous section, the average model of the H-bridge
converter shown in Figure 7 is defined as:

.
xa(t) = Aaxa(t) + Baua(t)
= (Dac(t)Aa1 + (1− Dac(t))Aa2)xa(t)

+(Dac(t)Ba1 + (1− Dac(t))Ba2)ua(t)
(7)

where xa = [iab vCac ig]T, ua = [vCdc vh vg]T, iab is the ac inductor current, vCac is the capacitor voltage in
the LC filter, ig is the grid current, vh is the drain-to-source voltage of the H-bridge switch, vg is the
grid voltage and Dac is the duty ratio of the H-bridge converter.

It is worthwhile to mention that the relationship between the average duty and modulation
index (M) of the H-bridge converter can be expressed as Dac(t) = 0.5 + M·sin(ωt) where ω is the grid
frequency since the average duty is between 0 and 1. Matrices Aa1, Aa2, Ba1 and Ba2 are shown in the
Appendix A. Using these matrices and (7), matrices Aa and Ba for averaged values during one-sample
time are given by:

Aa =


−

 2RHac + RLac
+RCacΨ + RCdc


Lac

− Ψ
Lac

RCacΨ
Lac

Ψ
Cac

− Ψ
CacRL

− Ψ
Cac

RCacΨ
Lg

Ψ
Lg

− Ψ
Lg

(
RCac + Rg

+
RCacRg

RL

)


(8)

where Ψ = RL
RL+RCac

, and:

Ba =


(2Dac−1)

Lac
− 2

Lac
0

0 0 0
0 0 − 1

Lg

 (9)

where, Lac is the ac inductor value, Cac is the capacitor value in the LC filter, RLac and RCac, are the
parasitic resistors of the passive components, RL is the local load resistance, and Lg and Rg reflect the
grid impedance, respectively.

2.3. Combined Average Model

As the next step, using the relationship between the dc-bus current and output current, the two
state-space average models obtained in (4) and (7) can be combined into SMF since the common source
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in the previously derived two state-space average model is the dc-bus current. Thus, the dc-bus current
can be represented by ac current and ac duty in the H-bridge converter as:

idc = (2Dac − 1)iab (10)

It is notable in (10) that the common source model causes the dc-bus current to include ac ripples
that are twice the ac output frequency, which is also reflected to dc-bus voltage. Moreover, the dc
voltage vdc and the output ac voltage vo can be expressed as:

vdc = RCdcipv + vCdc − RCdciab (11)

vo =

(
RLRCac

RL + RCac

)
iab +

(
RL

RL + RCac

)
vCac −

(
RLRCac

RL + RCac

)
ig (12)

The SMF state-space representation of the dc-dc and dc-ac converters in the circuits of Figure 5 is:

dx(t)
dt

= Ax(t) + Bu(t) (13)

y(t) = Cx(t) (14)

The state variables x, u and y in Figure 5, for grid connected mode are defined as:

x =
[

ipv vCdc iab vCac ig

]T
(15)

u =
[

vpv vm vd vh vg

]T
(16)

y =
[

ipv vdc iab vo ig

]T
(17)

Finally, using (5)–(12), matrices for the state, input, and output variables including the boost
converter and H-bridge converter can be derived as:

A =


Ad

(1− Ddc)(2Dac − 1)RCdc/Ldc 0 0
−(2Dac − 1)/Cdc 0 0

0 (2Dac − 1)/Lac

0 0
0 0

Aa

 (18)

B =


1/Ldc −Ddc/Ldc −(1− Ddc)/Ldc 0 0

0 0 0 0 0
0 0 0 −2/Lac 0
0 0 0 0 0
0 0 0 0 −1/Lg

 (19)

C =


1 0 0 0 0

RCdc 1 −RCdc 0 0
0 0 1 0 0
0 0 RCacΨ Ψ −RCacΨ
0 0 0 0 1

 (20)

Moreover, the state-space average model for stand-alone mode can be obtained in (18)–(20) by
setting the grid impedance (Lg and Rg) as infinity and the grid voltage (vg) as zero.
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3. Model Validation

The state-space average model of the microinverter in SMF obtained in the previous section can be
validated by simulating the model and comparing waveforms with a dynamic switching based model,
as well as experimental testing. A 200 W proto-type microinverter board is used for experimental
tests. Since long input wires are used for the experimental test in the dc-dc converter side, extra input
resistance Rin is added to RLdc in the simulation. For experimental validation, an open-loop control
scenario with resistive load is considered.

This validation procedure is intended to validate the plant dynamics in the average model,
dynamic switching model, and experiments without control effects where the plant is the microinverter
power stage. The main system parameters for simulation and experimental testing are summarized
in Table 1. The input voltage is 30 V to mimic that of a solar PV panel. Figure 8 shows the dynamic
behavior of the dc inductor current, dc voltage, and ac output current waveforms under open-loop
duty disturbances of the dc-dc converter while the modulation index of the H-bridge converter remains
constant at 0.935 in both MATLAB simulation models. At 0.35 ms, a 1% step change from 0.800 to 0.792
in duties is applied. Simulation results show excellent correspondence between the proposed average
model based on (18)–(20) and the dynamic switching model where the current and voltage values from
established average model are in the middle of the dynamic model switching ripple. An experiment
was carried out to ensure that the simulated models (average and dynamic) match a real setup under
the same test conditions where IRFP4332PbF and MUR840G are used for power devices. As shown in
Figure 9 and Table 2, experimental results are in agreement with simulation results in Figure 8, with
the exception of the settling time which is sensitive to various experimental set-up characteristics such
as the printed circuit board and line parasitic elements.

Table 1. Simulation and experimental parameters for model validation.

Parameters Value Parameters Value

vpv 25~40 V Ldc 2.63 mH
vg 110 Vrms RLdc 0.15 Ω
Vd 0.975 V Lac 1.3 mH
Vm 0.2 V RLac 0.075 Ω
Vh 0.2 V Cdc 680 µF
Rin 0.2 Ω RCdc 0.03 Ω

RMdc 0.029 Ω Cac 1 µF
Rd 0.02 Ω RCac 0.01 Ω

RHac 0.029 Ω Lg 3 mH
RL 62.5 Ω Rg 0.01 Ω

Table 2. Experimental results for model validation.

Parameters Simulation Results Experimental Results Errors (%)

vdc (Ddc = 80.0%) 141 V 138 V 2.1%
vdc (Ddc = 79.2%) 134 V 132 V 1.5%
ipv (Ddc = 80.0%) 4.2 A 4.1 A 2.4%
ipv (Ddc = 79.2%) 3.8 A 3.6 A 5.3%
iab (Ddc = 80.0%) 1.39 Arms 1.32 Arms 5.0%
iab (Ddc = 79.2%) 1.31 Arms 1.26 Arms 3.8%

Settling time (vdc) 0.07 s 0.09 s −28.6%
Undershoot (vdc) 132 V 127 V 3.8%
Settling time (ipv) 0.07 s 0.09 s −28.6%
Undershoot (ipv) 1.9 A 1.8 A 5.3%
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Figure 9. Experimental results for a single microinverter under open-loop control with resistive load. 
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to study the effect of integrating multiple PV microinverters in a grid-connected large-scale system. For 
this purpose, two control block diagrams for the dc-dc and dc-ac converters are developed as shown in 
Figure 10. Cascaded voltage regulators with current regulators are used to maintain the PV bus voltage 
and dc link voltage, while maintaining operation at the maximum power point in the I-V curve of the PV 
modules by using MPPT algorithms [37,38] and delivering the generated PV power to the grid or the local 
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4. Control Strategy for PV Microinverter

After validating the proposed model with dynamic simulations and experimental tests, it is
desired to study the effect of integrating multiple PV microinverters in a grid-connected large-scale
system. For this purpose, two control block diagrams for the dc-dc and dc-ac converters are developed
as shown in Figure 10. Cascaded voltage regulators with current regulators are used to maintain
the PV bus voltage and dc link voltage, while maintaining operation at the maximum power point
in the I-V curve of the PV modules by using MPPT algorithms [37,38] and delivering the generated
PV power to the grid or the local ac load with a sinusoidal current waveform in phase with the grid
voltage [36,39,40] (assume that the direction of the output current is going into the grid).
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Figure 11 shows simulation results with closed-loop control. The PV voltage is changed from 30 
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reference of 200 V. Waveforms from the established average model match the averaged values of the 
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Figure 11 shows simulation results with closed-loop control. The PV voltage is changed from 30 V
to 40 V with a current reference of 5 A while the dc-ac converter controls the dc-bus voltage with a
reference of 200 V. Waveforms from the established average model match the averaged values of the
switching model as expected.
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5. Aggregated Microinverter in PV Applications

In order to validate the fast simulation time of the proposed modeling approach in a multiple
microinverter configuration, a simulation is carried out in MATLAB/Simulink with 20 parallel
microinverters at 200 W per PV panel for a total power output of 4 kW. Figures 12 and 13 show a
high-level block diagram of the simulated system and the PV module model emulating PV-TD195HA6
from Mitsubishi electric corporation (Tokyo, Japan) [41], respectively. The grid voltage is at 110 Vrms,
60 Hz, and the local loads are zero (RL → ∞). This means that all generated power from the PV
modules is sent to the grid.
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(a) V-I curve; (b) V-P curve.

Partial shading is applied to some panels in order to demonstrate the simulation flexibility.
Figure 14a,b show the current waveforms of the second and third microinverters among the 20 inverters
where these panels have irradiance values of 900 W/m2 and 800 W/m2, respectively, and the irradiance
of the 18 other microinverters is 1000 W/m2. Another waveform shown in Figure 14a,b is that of #1
which is at 1000 W/m2. Figure 14c shows the total grid current from the 20 microinverters. Resulting
waveforms from using the dynamic switching model under the same conditions are shown in Figure 15.
As expected, taking the average of waveforms generated using the dynamic model eliminates switching
effects and the results match those in Figure 15 from the proposed average model.
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Generally, the simulation runtime is highly dependent on the computer’s performance and
specifications, where the simulation tool is run, and solver options. In this paper, a computer (Thinkpad
T420S, Lenovo) with an Intel core i5 processor, 16 GB memory, and MATLAB 2010(a) with fixed-time
step and Ode4 (Runge-Kutta) are utilized as a computational medium for simulations. Simulation
runtime is compared for both average and dynamic models as shown in Figure 16.
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The proposed method allows the use of a smaller step size compared to the dynamic model, thus
reducing the total simulation runtime. Note that time steps ≥ 5.0 µs resulted in erratic results in the
dynamic model while the average model still performed well and all signals in the simulation model
were as expected.

6. Conclusions

As photovoltaic microinverter systems are typically comprised of multiple power electronic
converters, a suitable modeling and simulation strategy for rapid prototyping is required. The paper
has presented a time-efficient modeling and simulation strategy in multiple converter systems which
can be extended to various topologies and applications, especially in the area of modeling and control
of microgrids to capture finer dynamics with faster simulations. The simulation model represented by
a single-matrix-form using a common or intermediate source between two average models of cascaded
converters to find the overall average model was derived by employing a basic microinverter composed
of a boost stage and an H-bridge. Results show that the proposed state-space average model matches
experiments and dynamic simulations. The proposed model also provides significant reduction in
simulation runtime and simulation set-up time with aggregated microinverters compared to the
dynamic model. Larger step sizes were shown to be possible when using the average model to achieve
both accurate and fast simulation convergence. Finally, the advantages of the proposed modeling
and approach can be summarized as follows: (1) achieving a faster simulation time in research on
aggregated multiple microinverter systems compared to dynamic switching models of converters;
(2) providing better flexibility with easily interchangeable converter models; (3) understanding the
relationship of state variables between multi-stage converters; and (4) simple extension to other power
electronics conversion systems with multiple-stage configurations. It is expected that the proposed
model will have valuable use in very large-scale PV farm simulations and can be extended for other
cascaded power electronic topologies.
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Abbreviations

PV photovoltaic
PCS power conditioning system
MIC module-integrated converter
MPPT maximum power point tracking
PWM pulse width modulation
CCM continuous conduction mode
DCM discontinuous conduction mode
SMF single-matrix-form

Appendix A

In the dc-dc boost converter shown in Figure 6, when the switch turns on, the dc inductor current and
capacitor voltage as state variables can be obtained as:

dipv

dt
= − 1

Ldc
(RLdc + RMdc) +

1
Ldc

vpv −
1

Ldc
vm (A1)

dvCdc
dt

= − 1
Cdc

idc (A2)
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When the switch turns off, the inductor current and capacitor voltage as natural state variables can also be
obtained as:

dipv

dt
= − 1

Ldc
(RLdc + Rd + RCdc)ipv −

1
Ldc

vCdc −
1

Ldc
vd +

1
Ldc

vpv +
RCdc
Ldc

idc (A3)

dvCdc
dt

=
1

Cdc
ipv −

1
Cdc

idc (A4)

Thus, the matrix Ad1, Ad2, Bd1 and Bd2 for the dc-dc converter is given by:

Ad1 =

[
− (RLdc+RMdc)

Ldc
0

0 0

]
(A5)

Bd1 =

[
1

Ldc
− 1

Ldc
0 0

0 0 0 − 1
Cdc

]
(A6)

Ad2 =

[
− (RLdc+RCdc+Rd)

Ldc
− 1

Ldc
1

Cdc
0

]
(A7)

Bd2 =

[
1

Ldc
0 − 1

Ldc

RCdc
Ldc

0 0 0 − 1
Cdc

]
(A8)

From (4) and (A5)–(A8), the state-space averaging model for the dc-dc boost converter over a switching
period can be written as:

[ .
ipv.

vCdc

]
=

[
− RLdc+Ddc RMdc+(RCdc+Rd)(1−Ddc)

Ldc
− 1−Ddc

Ldc
1−Ddc

Cdc
0

][
ipv

vCdc

]
+

[
1

Ldc
−Ddc

Ldc
− 1−Ddc

Ldc

(1−Ddc)RCdc
Ldc

0 0 0 − 1
Cdc

] vpv
vm
vd
idc

 (A9)

Similarly, as for the H-bridge converter shown in Figure 7, when the switches S1, S4 of the H-bridge converter
turn on, the ac inductor current and capacitor voltage in the LC filter as state variables can be obtained as:

diab
dt =

−2RHac−RLac−
RCac RL

Rcac+RL
−RCdc

Lac
iab − 1

Lac

(
RL

RL+RCac

)
vCac +

1
Lac

(
RL RCac

RL+RCac

)
ig − 2

Lac
vh +

1
Lac

vCdc (A10)

dvCac
dt

=
1

Cac

(
RL

RL + RCac

)
iab −

1
(RL + RCac)Cac

vCac −
RL

(RL + RCac)Cac
ig (A11)

dig

dt
=

1
Lg

(
RLRCac

RL + RCac

)
iab +

RL
(RL + RCac)Lg

vCac −
RLRCac + RLRg + RCacRg

(RL + RCac)Lg
ig −

1
Lg

vg (A12)

When the switches S2, S3 of the H-bridge converter turn on, the ac inductor current and capacitor voltage in
the LC filter as natural state variables can be obtained as:

diab
dt =

−2RHac−RLac−
RCac RL

Rcac+RL
−RCdc

Lac
iab − 1

Lac

(
RL

RL+RCac

)
vCac +

1
Lac

(
RL RCac

RL+RCac

)
ig − 2

Lac
vh − 1

Lac
vCdc (A13)

dvCac
dt

=
1

Cac

(
RL

RL + RCac

)
iab −

1
(RL + RCac)Cac

vCac −
RL

(RL + RCac)Cac
ig (A14)

dig

dt
=

1
Lg

(
RLRCac

RL + RCac

)
iab +

RL
(RL + RCac)Lg

vCac −
RLRCac + RLRg + RCacRg

(RL + RCac)Lg
ig −

1
Lg

vg (A15)

Thus, the matrix Aa1, Aa2, Ba1 and Ba2 for the dc-ac converter is given by:

Aa1 =


−
(

2RHac + RLac
+RCacΨ + RCdc

)
Lac

− Ψ
Lac

RCacΨ
Lac

Ψ
Cac

− Ψ
Cac RL

− Ψ
Cac

RCacΨ
Lg

Ψ
Lg

− Ψ
Lg

(
RCac + Rg

+
RCac Rg

RL

)
 (A16)
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Ba1 =

 1
Lac

− 2
Lac

0
0 0 0
0 0 − 1

Lg

 (A17)

Aa2 =



−
(

2RHac + RLac
+RCacΨ + RCdc

)
Lac

− Ψ
Lac

RCacΨ
Lac

Ψ
Cac

− Ψ
Cac RL

− Ψ
Cac

RCacΨ
Lg

Ψ
Lg

− Ψ
Lg

(
RCac + Rg

+
RCac Rg

RL

)


(A18)

Ba2 =

 − 1
Lac

− 2
Lac

0
0 0 0
0 0 − 1

Lg

 (A19)

From (7) and (A16)–(A19), the state-space averaging model for the dc-ac converter can be written as:


.
iab.

vCac.
ig

 =


−2RHac−RLac−

RCac RL
Rcac+RL

−RCdc

Lac
− 1

Lac

(
RL

RL+RCac

)
1

Lac

(
RL RCac

RL+RCac

)
1

Cac

(
RL

RL+RCac

)
− 1

Cac

(
1

RL+RCac

)
− 1

Cac

(
RL

RL+RCac

)
1
Lg

(
RL RCac

RL+RCac

)
1
Lg

(
RL

RL+RCac

)
− 1

Lg

(
RL RCac+RL Rg+RCac Rg

RL+RCac

)

 iab

vCac
ig



+


(2Dac−1)

Lac
− 2

Lac
0

0 0 0
0 0 − 1

Lg


 vCdc

vh
vg


(A20)
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