
energies

Article

Molecular Structure and Electronic Properties of
Triolein Molecule under an External Electric Field
Related to Streamer Initiation and Propagation

Yachao Wang, Feipeng Wang *, Jian Li *, Zhengyong Huang, Suning Liang and Jinghan Zhou

The State Key Laboratory of Power Transmission Equipment and System Security and New Technology,
College of Electrical Engineering, Chongqing University, Chongqing 400044, China;
wangyachao@cqu.edu.cn (Y.W.); yaahoook@163.com (Z.H.); suningliang@cqu.edu.cn (S.L.);
zhoujinghan0511@hotmail.com (J.Z.)
* Correspondence: fpwang@cqu.edu.cn (F.W.); lijian@cqu.edu.cn (J.L.);

Tel.: +86-023-65102434 (F.W.); +86-023-65102437 (J.L.)

Academic Editor: Paul L. Chen
Received: 9 March 2017; Accepted: 6 April 2017; Published: 10 April 2017

Abstract: Natural ester has been widely studied as an alternative dielectric liquid to mineral oil
in recent years. Unsaturated triacylglycerol molecules are the main components of natural ester;
therefore, in this paper, we investigate the molecular structure and electronic properties of the triolein
molecule, an oleic-type triacylglycerol molecule, as a representative component of natural ester
oils. The effects of external electric fields at the electric field intensity related to streamer initiation
and propagation on the bond lengths, dipole moment, total energy, infrared spectra, and orbital
energy of the triolein molecule are investigated using density functional theory (DFT). In addition,
the excitation energies, transition wavelengths, and oscillator strengths of the first eight excited
states of the triolein molecule under external electric fields are calculated by time-dependent DFT.
The results show that the bond lengths, dipole moments, total energy, and infrared spectra change
obviously under external electric fields. With increasing external electric field intensity, the energy
of the highest occupied molecular orbital increases, and the gap between that and the energy of the
lowest unoccupied molecular orbital decreases, which make the molecule susceptible to excitation.
The calculations contribute to an understanding of the causes behind the degradation of the insulation
properties of natural ester oils.

Keywords: nature ester; streamer; triolein molecule; electric field; density functional theory;
excited states

1. Introduction

In recent years, natural ester has been studied widely as an alternative dielectric liquid to mineral
oil in transformers and disconnectors [1–9]. Natural esters are biodegradable and environmentally
friendly. Natural esters are 97% decomposed after 21 days by the CEC-L-33 test [1,2] and, therefore,
present little threat to soil and watercourses when released into the environment. The environmental
benefits of natural esters make the use of this material increasingly attractive. In addition, the fire point
of natural esters is above 300 ◦C, which is significantly greater than that of mineral oils (~160 ◦C) [3].
Therefore, natural ester also offers better fire resistance than mineral oil.

It is well known that dielectric liquids are subject to dielectric breakdown accompanied by the
development of streamers. A streamer is a gas/plasma filled channel that initiates and propagates
in a region with high electric fields and is, therefore, usually created at metallic protrusions and
at sharp edges. A streamer is driven in the process of propagation by a continuous liberation and
capture of electrons, accompanying by complex sound and light effects. The molecules comprising the
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dielectric act as sources of electrons and the electronic properties of the molecules play an important
role in streamer initiation and propagation. Many studies have investigated streamer propagation and
breakdown in natural esters under high-voltage conditions [10–17]. Propagation tests have shown that
streamers propagate faster and further in natural ester than in mineral oil under an equivalent applied
electric field. This low resistance to fast streamers has been shown in breakdown tests with various
gap distances that natural esters have a lower breakdown voltage than mineral oil.

Streamers are divided into four modes according to their propagation rate, and modes 1–4 are
roughly divided in the respective order of 100 m/s, 1 km/s, 10 km/s, and 100 km/s. Streamers
propagate in the first mode at very low applied voltages, and propagate in the second mode at around
the breakdown voltage, where the electric field intensity necessary to maintain streamer propagation is
about 108 V/m [18–20]. If the electric field stress is too weak, streamers may cease propagating before
reaching the opposite electrode. When the applied voltage increases beyond the breakdown voltage,
the propagation rate of streamers changes abruptly from the second to the third mode and, eventually,
to the fourth mode at the so-called acceleration voltage. Under the acceleration voltage, a relatively
high concentration of molecules are ionized, and the fast-moving electrons leave the much slower
positive ions while running to the positive electrode. The enhanced electric field owing to the increased
concentration of space charges can further increase the propagation rate of streamers. The electric field
stress in the third and fourth modes must be at least 109 V/m [21]. In addition, the molecular structure
and electronic properties of molecules are altered under a high electric field stress, and these changes
may affect the initiation and propagation of streamers.

In this paper, we investigate the molecular structure and electronic properties of a natural ester
molecule under external electric fields ranging from−25.7× 108 V/m to 25.7× 108 V/m using density
functional theory (DFT) and time dependent density functional theory (TD-DFT). The calculations
contribute to an understanding of the causes behind the degradation of the insulation properties of
natural ester.

2. Theoretical Method

Triacylglycerol molecules account for greater than 95% of the content of natural esters. Figure 1
presents the structure of the triacylglycerol molecule in which R, R′, and R” represent different fatty
acids. Since natural esters include hundreds of saturated and unsaturated triacylglycerol molecule
types, a complete evolutionary simulation of their electronic properties is not feasible. However, we
note that natural ester oils contain a greater proportion of unsaturated triacylglycerol molecules than
saturated triacylglycerol molecules [22]. Therefore, the triolein molecule, which is an oleic-type polar
triacylglycerol molecule with a mono C=C bond, is chosen to serve as a representative molecule to
investigate the electronic properties of triacylglycerol molecules under external electric fields.
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Figure 1. Triacylglycerol molecule.

Figure 2 illustrates the structure of the triolein molecule. The geometry of the triolein
molecule was first optimized under no external electric field using DFT with Becke’s three-parameter
hybrid functional combined with the electron-correlation functional of Lee, Yang, and Parr (B3LYP)
prescription [23,24] employing the 6-31G* basis set. A permanent dipole moment of 6.59 Debye
was calculated, and the orientation is shown by the blue arrow in Figure 2. External electric fields
were applied along the Z axis, respectively, and included electric field intensities of −0.0050 a.u.,
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−0.0025 a.u., −0.0010 a.u., −0.0005 a.u., 0.0005 a.u., 0.0010 a.u., 0.0025 a.u., and 0.0050 a.u.,
where 1 a.u. = 5.14 × 1011 V/m (namely, −25.7 × 108 V/m, −12.9 × 108 V/m, −5.14 × 108 V/m,
−2.57 × 108 V/m, 2.57× 108 V/m, 5.14× 108 V/m, 12.9× 108 V/m, and 25.7× 108 V/m, respectively).
The geometry of the triolein molecule was optimized under different external electric fields using the
same method discussed above. Nine types of ground state geometries were obtained in total.
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Figure 2. Geometry of the triolein molecule with a Cartesian axis. The blue arrow is the orientation of
the permanent dipole moment. C atoms, O atoms, and segmental H atoms are labeled. Gray: C, red: O,
green: H.

The Hamiltonian of the molecule system under an external electric field is rewritten as [25]:

H = H0 + Hint (1)

where H0 is the molecule Hamiltonian and Hint is the interaction Hamiltonian between the electric
field and the molecule, which is approximated as:

Hint = −µ · F (2)

where F is the radiation field and µ is the dipole moment. Time-dependent DFT (TD-DFT) with the
B3LYP/6-31G* scheme was employed to investigate the first eight excited states based on the above
obtained geometries. The excitation energy is given as:

Eex(F) = Eex(0)− ∆µ · F− 1
2

∆αF2 (3)

where Eex(0) is the excitation energy without electric field, ∆µ is the variation in the dipole moment, and
∆α is the variation in the polarizability [26,27]. The calculations were conducted using the Gaussian 09
program package [28].
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3. Results and Discussion

3.1. Vibrational Frequencies of the Functional Groups of the Triolein Molecule under No External Electric Field

The main functional groups of the triolein molecule are C=O and C=C cis double bonds.
The vibrational frequencies of these functional groups were investigated. A scale factor of 0.960
was employed with the B3LYP/6-31G* scheme to address the fundamental error raised in an
earlier work [29]. The results are listed in Table 1 together with previously published experimental
data [30,31]. The vibrational frequencies obtained for C=O stretching were 1775.7 cm−1, 1778.2 cm−1,
and 1784.9 cm−1 from C12=O13, C14=O15, and C16=O17, respectively. The vibrational frequencies
obtained for C=C cis stretching were 1673.4 cm−1, 1673.5 cm−1, and 1673.6 cm−1 from C81=C83,
C100=C102, and C119=C121, respectively. The values obtained from DFT are close to those of the
experimental results.

Table 1. The vibration frequencies of functional groups.

Method/Scale Factor
Vibration Frequency (cm−1)

C=O Stretching C=C cis Stretching

B3LYP/6-31G*/0.960 1 1775.7, 1778.2, 1784.9 1673.4, 1673.5, 1673.6
Experimental 1746 2, 1745 3 1653 2,1654 3

1 Scale factor data are taken from [29]. 2,3 Experimental data are taken from [30,31], respectively.

3.2. Bond Lengths, Total Energy, and Dipole Moment of the Triolein Molecule under Different External
Electric Fields

As discussed, changes in structural parameters often contribute to the emergence of new electrical
properties. Due to space limitations, only a partial listing of bond lengths for the triolein molecule
are presented in Table 2. The results show that the lengths of carbon-oxygen bonds change obviously
with increasing electric field intensity. With the application of an external electric field intensity of
25.7 × 108 V/m, we note that the bond length of R(C16-O11) is lengthened 0.0079 Å from 1.3767 Å
to 1.3846 Å, and the bond length of R(C14-O10) is shortened 0.0112 Å from 1.3715 Å to 1.3603 Å.
Variations in the carbon-carbon bond lengths are relatively slight, particularly the C=C double bonds,
although changes in the bonds are quasi-paralleled to the direction of the electric field. We note that
the bond length of R(C100=C102) is lengthened by only 0.0002 Å from 1.3391 Å to 1.3393 Å when the
external electric field intensity is increased from 0 V/m to 25.7 × 108 V/m.

Table 2. Select bond lengths R of the triolein molecule under different external electric field intensities E.

E
(108 V/m)

R(C1-C2)
(Å)

R(C12-O9)
(Å)

R(C14-O10)
(Å)

R(C14=O15)
(Å)

R(C16-O11)
(Å)

R(C16=O17)
(Å)

R(C100=C102)
(Å)

−25.7 1.5299 1.3877 1.3806 1.2012 1.3715 1.2081 1.3393
−12.85 1.5297 1.3843 1.3759 1.203 1.3715 1.2064 1.3391
−5.14 1.5295 1.382 1.3733 1.2042 1.3754 1.2056 1.3391
−2.57 1.5295 1.3812 1.3724 1.2046 1.3761 1.2053 1.3391

0 1.5295 1.3804 1.3715 1.205 1.3767 1.2051 1.3391
2.57 1.5295 1.3796 1.3706 1.2054 1.3773 1.2049 1.3391
5.14 1.5295 1.3787 1.3698 1.2058 1.3779 1.2047 1.3391
12.85 1.5295 1.376 1.3672 1.2071 1.3798 1.2042 1.3392
25.7 1.529 1.3709 1.3603 1.2101 1.3846 1.2028 1.3393

The dipole moment of the triolein molecule was calculated under different external electric field
intensities, and the results are shown in Figure 3. The calculated dipole moment is the resultant
of the permanent dipole moment and the dipole moment induced by the external electric field.
The orientation of the induced dipole moment is opposite to that of the external electric field. Hence,
the dipole moment of the triolein molecule first decreased and then increased with the application of
an increasing negative external electric field intensity, and increased continuously with the application



Energies 2017, 10, 510 5 of 15

of an increasing positive external electric field up to 15.88 Debye when an external electric field of
25.7 × 108 V/m was applied.Energies 2017, 10, 510 5 of 14 
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The total energy of the triolein molecule was calculated and the results are shown in Figure 4.
The total energy of the triolein molecule was found to first increase and then decrease as the external
electric field intensity changed from−25.7× 108 V/m to 25.7× 108 V/m. The results are in accordance
with those expected from Equations (1) and (2).
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3.3. Infrared Spectra of the Triolein Molecule under Different External Electric Fields

The IR spectra were calculated, and the results are shown in Figure 5. The spectra contain too much
information to be completely analyzed. Some of the important vibrational frequencies of triolein are
marked according to their corresponding wavenumbers in the spectra. Figure 5a shows the IR spectra
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under no external electric field. The frequencies represented by wavenumbers 560.2 cm−1, 560.4 cm−1,
and 560.6 cm−1 derive mainly from cis C=C rocking vibrations, including bonds C81=C83, C100=C102,
and C119=C121. The frequency associated with 1123.4 cm−1 derives mainly from the C14-O10
stretching vibration. The frequencies associated with 1775.7 cm−1, 1778.2 cm−1, and 1784.9 cm−1

derive mainly from C=O stretching vibrations, including bonds C16=O17, C14=O15, and C12=O13.
The vibrational frequencies associated with wavenumbers from 2887.1 cm−1 to 3018.5 cm−1 derive
mainly from various types of C-H stretching vibrations.
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We note that a frequency shift, or the so called vibrational Stark effect, can be observed under
the effect of an external electric field. The frequency of the C14-O10 stretching vibration is mainly
associated with the 1123.4 cm−1 peak in Figure 5a under no external electric field; however, this
stretching vibration shifts to 1116.5 cm−1 under an external electric field intensity of −25.7 × 108 V/m
in Figure 5d, and to 1131.5 cm−1 under 25.7 × 108 V/m in Figure 5e. The frequency of stretching
vibrations, including bonds C16=O17, C14=O15, and C12=O13, is associated with wavenumbers
1775.7–1784.9 cm−1; however, this shifts to the range 1764.4–1759.9 cm−1 under an external electric
field intensity of −25.7 × 108 V/m, and to the range 1760.3–1790.5 cm−1 under 25.7 × 108 V/m. This
is due to the fact that the frequency of the C=O stretching vibration undergoes a redshift or blueshift
under an external electric field. The frequency band of C-H stretching vibrations is also extended,
as shown in Figure 5. However, the frequencies of cis C=C rocking vibrations remain stable under
external electric fields. Frequency shifts can be ascribed to changes in the bond lengths. For example,
the frequency of the C14-O10 stretching vibration undergoes a blueshift of 8.1 cm−1 relative to the
vibration frequency at no applied electric field because the bond length of R(C14-O10) shortens by
0.0112 Å when an external electric field of 25.7 × 108 V/m is applied.

3.4. Orbital Energies of the Triolein Molecule under Different External Electric Fields

An external electric field produces a drastic redistribution of orbitals, which depends on the
response of the electron density. The highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO) play an important role in the discharge property of a molecule.
The HOMO and LUMO energies of the triolein molecule under different external electric fields
are presented in Figure 6. We note that, with a variation in the external electric field intensity
from −25.7 × 108 V/m to 25.7 × 108 V/m, the LUMO, LUMO+1, and LUMO+2 energies decrease
continuously, while the HOMO, HOMO−1, and HOMO−2 energies decrease, and then increase.
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Figure 6. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular
orbital (LUMO) energies of the triolein molecule under different external electric field intensities.

The energy gap EHLG between the HOMO and LUMO decreases with increasing external electric
field intensity along both of the ±Z directions, as shown in Figure 7. The value of EHLG often has a
positive correlation with the chemical activity of free radicals. Hence, the triolein molecule is prone to
being more lively with an increasing external electric field intensity.
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The evolution of the HOMO and LUMO of triolein under external electric fields is presented in
Figure 8. When no external electric field is applied, the HOMO concentrates upon cis C100=C102.
When an external electric field is applied, the electron cloud moves in an opposite direction to that
of the electric field. In contrast, when no external electric field is applied, the LUMO concentrates
upon cis C14=O15, and the electron cloud moves in the direction of the electric field when an external
electric field is applied.

The composition of the HOMO and LUMO of the triolein molecule under different external
electric fields was analyzed using a Mulliken partition by the Multiwfn program package [32]. The
results are listed in Table 3. We note that, when no external electric field is applied, C100 and C102
make the primary contribution (39.67% and 39.66%, respectively) to the HOMO. In addition, C14
makes the primary contribution (52.51%) to the LUMO, while the neighbors of C14, i.e., O15 and O10,
also make specific contributions (26.88% and 6.60%, respectively).

When an external electric field is applied, the HOMO moved smoothly to C81 and C83 (both
contributions were about 40%), and was pushed to C85 (3.14%), C88 (4.33%), and C91 (1.72%) when an
external electric field of 25.7 × 108 V/m was applied. As shown in Figure 6, the energy of the HOMO
correspondingly increased. However, the LUMO remained at C14 and O15, and was centralized at
C14 with increasing external electric field intensity. As shown in Figure 6, the energy of the LUMO
correspondingly decreased slightly. With a negative external electric field intensity, the HOMO mainly
concentrated at C100 and C102 (both contributions were about 40%), and was pushed to C107 (4.86%),
C104 (3.49%), and C110 (2.62%) when an external electric field of−25.7× 108 V/m was applied. Again,
the energy of the HOMO increased. The LUMO moved to C16 and O17, and the energy of LUMO
increased slightly with increasing external electric field intensity. This result is shown to be reasonable
by the isosurfaces given in Figure 8.
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Table 3. Main compositions of the HOMO and LUMO of the triolein molecule (>1%) under different
external electric field intensities.

E (108 V/m) Main Composition of the HOMO and LUMO (%)

−25.7
HOMO C100:37.00, C102:30.88, C107:4.86, C104:3.49, C110:2.62, C113:2.61, C116:2.55
LUMO C16:52.92, O17:26.39, O11:6.80, H21:5.86, H20:3.00, C18:2.23

−12.85
HOMO C100:40.72, C102:37.70, C107:3.84, C63:3.06, C106:2.63, C104:2.74, H67:2.35
LUMO C16:51.03, O17:25.85, H21:5.29, H20:3.49, C18:2.17, C14:1.10

−5.14
HOMO C100:40.20, C102:39.20, C107:3.59, C63:3.23, H106:2.53, H67:2.49, C104:2.43
LUMO C14:51.68, O15:26.64, O10:6.35, H30:4.83, H29:3.32, C27:2.20

−2.57
HOMO C100:39.95, C102:39.35, C107:3.51, C63:3.32, C106:2.51, H67:2.50, C104:2.35
LUMO C14:52.29, O15:26.85, O10:6.49, H30:4.86, H29:3.36, C27:2.22

0
HOMO C100:39.67, C102:39.65, C107:3.44, C63:3.40, H67:2.52, C106:2.50, C104:2.27
LUMO C14:52.51, O15:26.87, O10:6.58, H30:4.86, H29:3.38, C27:2.22

2.57
HOMO C81:39.78, C83:39.77, C88:3.39, C51:3.36, H56:2.52, H86:2.52, C85:2.25
LUMO C14:52.65, O15:26.85, O10:6.66, H30:4.85, H29:3.39, C27:2.22

5.14
HOMO C83:39.94, C81:39.80, C88:3.37, C51:3.36, H56:2.51, H86:2.49, C54:2.23
LUMO C14:52.75, O15:26.80, O10:6.74, H30:4.85, H29:3.40, C27:2.21

12.85
HOMO C83:40.38, C81:39.89, C51:3.36, C88:3.32, H56:2.45, H86:2.44, C54:2.19
LUMO C14:53.01, O15:26.64, O10:6.96, H30:4.71, H29:3.50, C27:2.19

25.7
HOMO C81:40.97, C83:35.21, C88:4.33, C85:3.14, H86:2.59, H56:2.26, C91:1.72
LUMO C14:53.32, O15:26.26, O10:7.53, H30:4.76, H29:3.51, C27:2.21
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The HOMO and LUMO are considered to be related to the ionization potential (IP) and the electron
affinity (EA), which are two main molecular descriptors that have been linked to the initiation and
propagation of streamers in liquid dielectrics. The IP is a key parameter that determines the character of
a streamer because streamer creation involves the loss of electrons from neutral oil molecules through
ionization (e.g., field ionization, impact ionization, or photo-ionization). The IPs of triacylglycerol
molecules strongly affect how fast and how far streamer propagation can progress. The EA has also
been reported to be an important parameter for streamers originating from a negative electrode [33–38].
Koopman’s theorem states that the IP of a molecule is approximately equal to the product of −1 and
the energy of the HOMO, while the EA is approximately equal to the product of −1 and the energy of
the LUMO, which provides the estimated IP and EA values of triolein shown in Figure 9.Energies 2017, 10, 510 10 of 14 
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Figure 9. Estimated IP and EA values of the triolein molecule under different external electric
field intensities.

From Figure 9, we see that the IP decreases with increasing external electric field intensity along
both the ±Z directions. A decreasing IP facilitates the liberation of electrons from the triolein molecule
and the propagation of a plasma channel in a high electric field. An approximate model for charge
carrier production based on the Zener theory of tunneling in solids is usually applied to dielectric
liquids to explain streamer propagation [39–41]. It is speculated that the rate of field ionization is
proportional to the liquid’s density and inversely proportional to the IP of the molecule. The field
ionization charge density rate is given as:

G(|E|) =
e2na

∣∣E∣∣
h

exp[−π2m∗a(IP)2

eh2
∣∣∣E∣∣∣ ] (4)

where e = 1.6 × 10−19 C is the electron charge, h = 6.626 × 10−34 m2·kg·s−1 is Planck’s constant,
n ≈ 1025 m−3 is the number density of ionizable molecules, a ≈ 3.0 × 10−10 m is the molecular
separation, and m* ≈ 9.11 × 10−32 kg is the effective electron mass in the liquid. The value of G was
estimated according to the above formula, and the results are shown in Figure 10. The value of G is
1017–1020 C·m−3·s−1 under an external electric field intensity of 2.57 × 108–25.7 × 108 V/m.
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Figure 10. Field ionization charge density rate calculated from Equation (4) under different external
electric field intensities.

Additionally, from Figure 9 we see that the EA increases from −0.32 eV to 0.76 eV when the
external electric field varies from −25.7 × 108 V/m to 25.7 × 108 V/m. When EA < 0, the molecule
tends toward charge neutrality. When EA > 0, the molecule tends to capture electrons. It can be
speculated that some triacylglycerol molecules in the oil tend to remain neutral while others capture
electrons to form negative ions. The formed negative ions neutralize the positive ions. Therefore,
an increasing EA will restrain the production of charges under a high external electric field.

3.5. Excited States of the Triolein Molecule under Different External Electric Fields

The process of streamer initiation and propagation inevitably includes a luminous effect owing to
the excited states of the molecules. As discussed in Section 2, TD-DFT calculations were conducted to
estimate the influence of an external electric field on electronic excited states. The excitation energies
Eex, transition wavelengths λ, and oscillator strengths f of the first eight excited states are listed in
Table 4. The values of Eex of the first eight excited states tend to decrease with a decreasing external
electric field along both the ±Z directions, and λ correspondingly increased because of the decreasing
value of EHLG. The values of f reflect the electron transition ability, which may be altered under an
external electric field. For instance, with no external electric field, f = 0 for the seventh excited state,
indicating that the electron transition is forbidden, whereas f is not zero when −25.7 × 108 V/m
is applied.

Table 4. The excitation energies Eex, transition wavelengths λ, and oscillator strengths f of the first
eight excited states under different external electric field intensities.

E (108 V/m) n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

−25.7
Eex (eV) 5.68 5.71 5.72 5.92 5.96 6.05 6.11 6.12
λ (nm) 218.33 217.28 216.94 209.43 208.05 205.10 202.88 202.68

f 0.0005 0.0002 0.0006 0 0 0 0.0001 0

−12.85
Eex (eV) 5.70 5.71 5.73 5.96 6.02 6.08 6.19 6.23
λ (nm) 217.45 217.21 216.23 208.17 206.05 203.85 200.27 199.14

f 0.0005 0.0006 0.0003 0 0 0 0 0
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Table 4. Cont.

E (108 V/m) n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

−5.14
Eex (eV) 5.70 5.71 5.74 5.98 6.05 6.10 6.23 6.29
λ (nm) 217.44 217.2 216.14 207.44 204.8 203.11 199.16 197.48

f 0.0005 0.0006 0.0003 0 0 0 0 0

−2.57
Eex (eV) 5.70 5.71 5.74 5.98 6.06 6.11 6.23 6.29
λ (nm) 217.54 217.17 216.16 207.23 204.46 202.89 198.9 197.12

f 0.0005 0.0006 0.0004 0 0 0 0 0

0
Eex (eV) 5.70 5.71 5.73 5.99 6.08 6.12 6.24 6.30
λ (nm) 217.64 217.17 216.2 207.02 204.08 202.68 198.65 196.83

f 0.0005 0.0006 0.0004 0 0 0 0 0

2.57
Eex (eV) 5.69 5.71 5.73 6.00 6.09 6.12 6.25 6.30
λ (nm) 217.75 217.2 216.25 206.79 203.69 202.45 198.41 196.68

f 0.0005 0.0006 0.0004 0 0 0 0 0

5.14
Eex (eV) 5.69 5.71 5.73 6.00 6.10 6.13 6.26 6.30
λ (nm) 217.86 217.26 216.32 206.56 203.29 202.21 198.19 196.78

f 0.0005 0.0007 0.0004 0 0 0 0 0

12.85
Eex (eV) 5.68 5.70 5.73 6.03 6.14 6.16 6.26 6.27
λ (nm) 218.16 217.56 216.54 205.78 202.01 201.39 198.06 197.71

f 0.0005 0.0007 0.0004 0 0 0 0 0

25.7
Eex (eV) 5.67 5.70 5.72 5.92 6.09 6.14 6.23 6.32
λ (nm) 218.85 217.52 216.74 209.38 203.67 201.86 199.16 196.06

f 0.0005 0.0006 0.0003 0 0 0 0 0

4. Conclusions

We investigated the influence of external electric fields at the magnitude for streamer initiation
and propagation ranging from −25.7 × 108 V/m to 25.7 × 108 V/m along the Z axis on bond lengths,
dipole moment, total energy, infrared spectra, and orbital energy of the triolein molecule by DFT with
a B3LYP/6-31G* scheme. The excitation energies, transition wavelengths, and oscillator strengths of
the first eight excited states under external electric fields were calculated using TD-DFT. The results
provide the following conclusions.

(1) The carbon-oxygen bond lengths change obviously with an increasing electric field intensity;
however, the carbon-carbon bond lengths change slightly, although changes in the bond lengths
are correlated with the direction of the electric field.

(2) The resultant of the permanent dipole moment and the dipole moment induced by the external
electric field decreased and then increased when an external electric field was applied along
the −Z direction, and increased continuously up to 15.88 Debye under an external electric field
intensity of 25.7 × 108 V/m. Accordingly, the total energy increased and then decreased when
the external electric field intensity varied from −25.7 × 108 V/m to 25.7 × 108 V/m.

(3) Frequency shifts in IR spectra caused by external electric fields were observed. Frequency shifts
were ascribed to changes in the bond lengths. The frequency bands of C-O stretching vibrations,
C=O stretching vibrations, and C-H stretching vibrations were extended, while the frequencies of
cis C=C rocking vibrations were stable under the external electric fields.

(4) The electronic structure changed obviously under external electric fields. The energy of the
HOMO increased with increasing external electric field intensity along both ±Z directions, which
represented a corresponding decrease in the IP of the triolein molecule along the ±Z directions.
The energy of the LUMO decreased continuously with the external electric field intensity varying
from −25.7 × 108 V/m to 25.7 × 108 V/m, which represented a corresponding increase in the EA
of the triolein molecule.
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(5) The excitation energies tended to decrease with a decreasing external electric field along both the
±Z directions because of the decreasing value of EHLG.
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