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Abstract: Developing a suitable framework for real-time optimal power flow (RT-OPF) is of utmost
importance for ensuring both optimality and feasibility in the operation of energy distribution
networks (DNs) under intermittent wind energy penetration. The most challenging issue thereby is
that a large-scale complex optimization problem has to be solved in real-time. Online simultaneous
optimization of the wind power curtailments of wind stations and the discrete reference values of
the slack bus voltage which leads to a mixed-integer nonlinear programming (MINLP) problem,
in addition to considering variable reverse power flow, make the optimization problem even much
more complicated. To address these difficulties, a two-phase solution approach to RT-OPF is proposed
in this paper. In the prediction phase, a number of MINLP OPF problems corresponding to the most
probable scenarios of the wind energy penetration in the prediction horizon, by taking its forecasted
value and stochastic distribution into account, are solved in parallel. The solution provides a lookup
table for optional control strategies for the current prediction horizon which is further divided into
a certain number of short time intervals. In the realization phase, one of the control strategies is
selected from the lookup table based on the actual wind power and realized to the grid in the current
time interval, which will proceed from one interval to the next, till the end of the current prediction
horizon. Then, the prediction phase for the next prediction horizon will be activated. A 41-bus
medium-voltage DN is taken as a case study to demonstrate the proposed RT-OPF approach.

Keywords: real-time optimal power flow (RT-OPF); mixed-integer nonlinear programming (MINLP)
OPF; prediction and realization approach; wind power curtailment; variable reverse power flow

1. Introduction

The dramatic increase of renewable energy penetration represents a significant challenge in the
operation of energy distribution networks (DNs). In particular, wind power generation is intermittent,
i.e., the DN operator has to correspondingly update the operation strategy. Therefore, it is highly
desired to carry out this task by an online optimization framework. However, the optimization
problem to be solved is usually high-dimensional and complicated when a large network with a
detailed nonlinear model as well as mixed-integer variables is considered. Thus the computation
time can be much higher than required for reacting to the fast changes of the wind power generation.
Even by using advanced optimization algorithms combined with modern computation facilities,
the computation time can still be too high to achieve this target. Furthermore, the feasibility of the
solution should be ensured within a specified sampling time. Therefore, a computation framework
addressing these difficulties needs to be developed for the implementation of real-time optimal power
flow (RT-OPF) under wind energy penetration.
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OPF has been widely used for operation planning of power networks with only conventional
generators [1–3]. OPF with renewable energy generation (REG) was taken into account in [4] and an
active-reactive OPF in active DNs introduced in [5]. However, these OPF problems are solved offline
for planning or scheduling network operations, and therefore, intermittent wind power generation,
which is randomly deviated from the pre-assumed offline situation, cannot be handled.

The concept of RT-OPF was first presented in [6], based on a linear model and a quadratic
optimization method. Without considering REG, a real-time implementation of optimal reactive power
flow was reported in [7] where the sampling time was between 15 min up to four hours. Using neural
networks trained on several scenarios of the uncertain demand and REG, the authors in [8] presented
a RT-OPF for a 23-bus radial DN with two wind generators, achieving a sampling time less than three
minutes. A real-time energy management system was proposed for mitigating pulse loads in hybrid
microgrids by considering REG [9] and uncertainties in plug-in electric vehicle charging parks [10].
Reported in [11] a RT-OPF was implemented for a laboratory microgrid in which a switching scheme
for solving the OPF problem was proposed. If the AC optimization problem does not converge, a DC
optimization, based on a linearized model, is switched to facilitate the convergence.

A RT-OPF method integrating storage devices and wind generation was presented by using
a linear model predictive control (MPC) [12] and tested on a 14-bus transmission network with a
sampling time of 5 min. A MPC-based control approach was reported in [13] to dynamically balance,
in real-time, demand and supply in a DN with integrated photovoltaic generators and energy storage
systems. The objective in [13] was to alleviate the effects of fluctuations in demands and REG. The MPC
formulations in [13] were modified in [14] to enable day-ahead power reference tracking functionality.
In addition, reference [14] provides the theoretical guarantees on the stability of the control strategy in
a simplified setting. The simulation scenarios consider the systems under real working conditions by
taking into account the forecasting errors of photovoltaic plants.

Curtailment of REG becomes necessary because of transmission congestion, lack of transmission
access, excess renewable generation during low load period, and voltage or interconnection issues [15].
A real-time curtailment reduction scheme was implemented on real substation hardware to manage
an active DN [16] by a method of constraint satisfaction and OPF. A disadvantage of a closed-loop
scheme is that the system will react only when a constraint violation takes place [16]. The authors
in [17] proposed a risk-based RT-OPF scheme by considering a future time horizon in which the REG
is described as stochastic variables. The control decision was aimed at minimizing the curtailment
while ensuring network constraints within a pre-specified risk level.

Recently, a gradient algorithm for RT-OPF was proposed in [18] which is in principle based on
the idea of the quasi-sequential approach proposed in [19] and improved in [20]. The problem is
decomposed into a simulation stage where the model equations are solved to provide values of the
state variables and an optimization stage where the controls are solved by a NLP solver. Barrier
terms are introduced in the objective function to penalize the inequality violations. However, it is
well known that a barrier method needs a feasible guess point which may be not easy to obtain.
The main advantage of the approach is that the intermediate iterates of the algorithm satisfy the power
flow equations and consequently can be utilized in real-time to track evolving network conditions.
Although this ensures a low computation time, it should be noted that an intermediate solution is
not optimal.

Based on a linear model, a data-driven hourly real-time power dispatch was proposed by using a
probabilistic optimization approach under uncertain renewable penetration [21]. The dispatchable
range is at first determined, based on which the operating base points for the conventional generators
are computed for the next hour. Then the operation strategy will be corrected when the observations
of the real renewable energy are available.

The literature on real-time power flow shows a variety of approaches to control slack bus
voltage. An automatic adjustment of transformer and variable phase-shifting transformers using
Newton-Raphson power flow in transmission networks was reported in [22]. Incorporating the value
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of slack bus voltage into the calculations, reference [23] presented a hybrid real-complex current
injection based load flow formulation. It is noted that the discreteness of the slack bus voltage was
not considered in [22,23]. The obtained values of slack bus voltage are then rounded to their nearest
discrete values. In contrast, a sensitivity-based current injection power flow was proposed in [24] for
the simulation of local voltage controllers in a discrete manner. By calculating load flow, the studies
in [22–24] give the state of the network based on their input scenarios. However, the determination
of optimal reference values of the slack bus voltage in DNs plays an important role in planning the
operation of power systems. Therefore, in this paper, it is tried to determine the optimal discrete
reference values of the slack bus voltage, in addition to other decision variables.

To reduce the computation effort, a RT-OPF approach considering variable REG and demand
between two consecutive scheduling intervals (e.g., 10 min) was used in [25]. The intervals are divided
into several subintervals (e.g., 1 min) for which the load and REG forecasts are available. OPF is carried
out only once at the start of each scheduling interval aiming at optimizing the participation factors of
conventional thermal generators while holding the technical constraints for all the subintervals. This
was done by incorporating the generation costs of all the subintervals. The resulting controls can be
considered as ‘best-fit’ participation factors [26,27] which are then used for modifying the controls
for each subinterval according to the forecasted data for solar, wind generations and loads. Since the
curtailment of REG and/or reverse power flow to an upstream network were not considered in [25],
the approach is applicable for the cases that the total REG is less than the total demand plus losses in
the grid, or the cases with energy storage systems like in [28,29].

In summary, many previous studies have been made on RT-OPF in DNs. However, these available
methods do not simultaneously consider online optimization of the wind power curtailments of
wind stations (WSs), the discrete reference values of the slack bus voltage (leading to a mixed-integer
nonlinear programming (MINLP) problem) and the variable reverse power flow to an upstream
network. To bridge this gap, this work extends our previous studies [30,31] and develops a new
techno-economic RT-OPF framework to ensure, in real-time, the feasibility of control strategies to be
realized to the grid. The contributions of this paper can be summarized as follows:

• A novel RT-OPF framework is developed to address the conflict between the fast changing wind
power and the slow optimization computation and consequently to realize an online optimization
of energy systems in a very short sampling time;

• Discrete reference values of the slack bus voltage, wind power curtailment of WSs, and reverse
power flow are considered simultaneously, leading to a MINLP problem;

• A scenario generation method is integrated in the RT-OPF framework to represent uncertain wind
power for the prediction horizon, which leads to a set of uncoupled MINLP problems solved by
parallel computing.

The scope of our prediction-realization approach is demonstrated using a 41-bus medium-voltage
DN with two WSs located at different buses and positions and thus with different wind speed.
The remainder of the paper is organized as follows: Section 2 describes and formulates the OPF
problem. The scenario generation method is described in Section 3. The solution framework is
presented in Section 4. Results and discussions of a real case study are given in Section 5. The paper is
concluded in Section 6.

2. Problem Formulation

The ultimate goal of the RT-OPF framework proposed in this study is to compute optimal
operation strategies for DNs which will autonomously be updated according to spontaneous changes
of energy penetrated from WSs. Thus, the updating time interval (sampling time) Ts should be kept as
short as possible. However, due to its high complexity, the computation time TOPF needed to solve
the optimization problem can be much higher than the sampling time. To address this conflict, we
employ the forecasted data of wind energy which are available in advance of a future time horizon Tp.
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In this paper, this forecasted time horizon is called a prediction horizon. Since the prediction horizon
Tp is usually higher than the sampling time Ts, we can divide the prediction horizon into M sampling
times, i.e.,:

Tp = M Ts (1)

In this study, we assume that the total computation time TOPF is smaller than the prediction
horizon Tp. Under this assumption, a prediction-realization approach for RT-OPF will be developed
in this paper. In the prediction phase, the optimization problem is solved in advance for a number
of probable wind energy scenarios, based on the forecasted data in the prediction horizon and its
probability density function (PDF), leading to a lookup table for optional optimal operation strategies.
In the realization phase, the actual wind energy data are successively available from one sampling
time to the next. In each sampling time, the actual data will be compared with the predefined wind
energy scenarios and an optimal operation strategy corresponding to the nearest higher scenario will
be selected from the lookup table and realized in the network. In this way, an online update of the
operation strategy according to the spontaneously changing wind energy generation is carried out.

In this section, the optimization problem to be solved for each prediction horizon, during the
prediction phase, is defined. To explain the complex problem in a clearer way, we define at first a
general optimization problem for OPF. A detailed and concrete problem definition of the RT-OPF is
given in Section 4. For a prediction horizon, i.e., t ∈ [kTp, (k + 1)Tp], the OPF problem of a DN with
wind energy penetration is defined as:

max
u,l

f (x, u, l,ξ)

s.t. g(x, u, l,ξ) = 0
xmin ≤ x ≤ xmax

umin ≤ u ≤ umax

l ∈ {0, 1, 2, · · · , L}

(2)

where x is the vector of state variables, u and l are the vectors of continuous and integer decision
variables, respectively. Relating to the OPF under consideration, the state vector x comprises voltages
of the PQ buses, active and reactive power at slack bus, and power flows in the feeders, the continuous
control vector u consists of curtailment factors of each WS, and the discrete control vector l denotes
the reference values of slack bus voltage. The vector ξ represents random variables of wind energy
of each WS which will be generated in the prediction horizon. In this paper, these random variables
are regarded as being stochastically distributed with a known PDF ρ(ξ). Therefore, the optimization
problem expressed in Equation (2) is a MINLP problem under uncertainty.

In fact, power demand also needs to be considered as an uncertain parameter, but in comparison
to the wind power, its demand value is more predictable in the application of online optimization.
Many approaches have been developed for very short-term load forecasting aiming at prediction
ranges of a few minutes to an hour [32–35]. In [32], it is shown that the mean absolute percentage
error (MAPE) can be less than 0.2% for a 120-s prediction horizon. Furthermore, MAPE values of
3.23% and 2.44% were obtained in [35] for the prediction of 30-min ahead individual household load
and aggregation load, respectively. Considering the accuracy of the forecasts in the abovementioned
studies, the variation of demand in short time slots (e.g., 120 s) is not considered in this paper. Thus the
forecasted demand for each prediction horizon is used in our RT-OPF framework, but it may change
from horizon to horizon.

3. Scenario Generation

It is necessary to describe the uncertain vector ξ in Equation (2) in advance of each prediction
horizon. To do this, a set of wind power scenarios for the prediction horizon representing the stochastic
behaviors of the wind power need to be generated, for which we need the PDF. The wind power
scenarios are generated within the range [0, 1] pu where 1 pu corresponds to the rated power value
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Pw.R(nw). Ns scenarios are generated for each WS. We define Ns − 1 intervals for the wind power
Pw(nw, ns), ns = 1, · · · , Ns, such that:

Pr{Pw(nw, ns)− Pw(nw, (ns − 1))} = 1
Ns − 1

, for ns ≥ 2 (3)

where Pr is the probability operator. In this way, an equal probability between two adjacent scenarios
is ensured. It is noted that (3) can be applied to any type of continuous bounded distribution as far
as the area under its PDF curve equals one. Beta distribution is suggested to be highly suitable to
represent the forecast errors of wind power ([36–38]). Although Beta distribution cannot model the fat
tail of the forecast errors perfectly [38], due to its variable kurtosis [38], it is still more suitable than the
Gaussian distribution and gives reasonably accurate results [38,39]. Beta PDF has been used in many
recent studies [40–43] and therefore is chosen in this paper to represent wind power forecast errors.
The PDF of the Beta distribution is defined as [36]:

ρ(y,α(nw),β(nw)) = yα(nw)−1(1− y)β(nw)−1, 0 ≤ y ≤ 1 (4)

where α(nw), β(nw) are the first and second shape parameters of the Beta distribution. The corresponding
probability distribution function is expressed as:

FPDF(Pw(nw, ns),α(nw),β(nw)) =

Pw(nw ,ns)∫
0

ρ(y,α(nw),β(nw))dy (5)

As a result, the probability in the interval between 0 and scenario ns is ns−1
Ns−1 and then the scenarios

can be generated by:

Pw(nw, ns) = FPDF
−1
(

ns − 1
Ns − 1

)
, for ns = 1, · · · , Ns; Ns ≥ 2 (6)

The parameters α(nw), β(nw) can be determined by [38]:

α(nw) =

(
1− Pw.M(nw)

(σw(nw))
2 − 1

Pw.M(nw)

)
(Pw.M(nw))

2 (7)

β(nw) = α(nw)

(
1

Pw.M(nw)
− 1
)

(8)

where Pw.M(nw) and σw(nw) are the values of the mean and standard deviation of the wind power
generation, respectively. For the RT-OPF, we take the forecasted values available before each prediction
horizon, as Pw.M(nw). It is noted that the value of σw(nw) cannot be forecasted, but it can be evaluated
from historical data.

Figure 1 illustrates the generated scenarios for three forecasted wind power values when Ns = 7
and σw = 0.1. It can be seen that this scenario generation method leads to more scenarios near the
mean value. The scenarios generated are the boundaries of intervals. In this way, the scenarios cover
the whole range [0, 1] (i.e., from zero to the rated power). Consequently, our RT-OPF can deal with any
actual wind power generation (also see Section 4.2). It is noted that the scenarios here are not those
from the Latin hypercube sampling method where the scenarios are randomly generated inside each
interval [44]. In addition, it is noted that this scenario generation method is a significant improvement
to that used in [30,31] where the scenarios were generated based on a constant width of intervals which
cannot cover the whole range when a limited number of scenarios is chosen. For a power system with
Nw WSs, the total number of scenario combinations Nc is:
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Nc = (Ns)
Nw (9)
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Figure 1. Illustration of wind power scenarios (i.e., S1, . . . , S7), for a WS with σw = 0.1, Pw.M = 0.15
(left), Pw.M = 0.5 (middle), and Pw.M = 0.85 (right).

Thus, we need to define the power scenarios for individual WSs Pw(nw, ns), ns = 1, · · · , Ns, and
the combinations of the scenarios for all WSs, Pw(nc), nc = 1, · · · , Nc (i.e., each combination is a
vector), respectively. According to (9), when the number of WSs increases, the number of scenario
combinations increases exponentially. In this case, parallel computing seems not reasonable to address
the computational problem which is expectedly solved by the next generation of hardware and
software, considering the rapid advancement of the computer technology. All scenarios finally
generated for the power system is given in Table 1. The rules based on which the scenario combinations
are sorted from the first row to row Nc is further cleared by graphical examples in Figure 2. It is
noted that the scenarios are listed from the highest to the least wind power values, due to the reason
described in Section 4.2. To the best of the authors’ knowledge, the integration of such a scenario
generation method into a RT-OPF framework has not yet been considered.

Table 1. The list of wind power scenario combinations for all WSs.

nc

Scenario Combination

Pw(nw,ns) Pw(nw,ns) . . . Pw(nw,ns) Pw(nw,ns)
nw = 1 nw = 2 nw = Nw − 1 nw = Nw

1 Pw(1,Ns) Pw(2,Ns) . . . Pw((Nw – 1),Ns) Pw(Nw,Ns)
2 Pw(1,Ns) Pw(2,Ns) ... Pw((Nw – 1),Ns) Pw(Nw,(Ns − 1))
.
.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

Nc − 1 Pw(1,1) Pw(2,1) . . . Pw((Nw – 1),1) Pw(Nw,2)
Nc Pw(1,1) Pw(2,1) . . . Pw((Nw – 1),1) Pw(Nw,1)
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4. Solution Framework

4.1. Prediction Phase

The task of the prediction phase is to solve the OPF problems corresponding to the Nc scenario
combinations of wind power (see Table 1) for each prediction horizon. The active and reactive
power demand at bus i, denoted as (Pd(i), Qd(i)) as well as the active and reactive energy prices
(PriceP, PriceQ) are assumed to be constant in the short prediction horizon. But they may change from
horizon to horizon. In addition, the power system model/structure is considered to be as in [5,45] and
fixed in the prediction phase. The OPF problem defined in Equation (2) is formulated here in more
detail for each scenario combination nc, (nc = 1, · · · , Nc):

max
βw(i,nc),VS(nc)

f (nc) = f1(nc)− f2(nc)− f3(nc)− f4(nc) (10)

where:

f1(nc) = PriceP

Nbus

∑
i=1

Pw(i, nc)βw(i, nc) (11)

f2(nc) = PriceP Ploss(nc) (12)

f3(nc) = PriceP PS(nc) (13)

f4(nc) = PriceQ QS(nc) (14)

The objective function in Equation (10) aims to maximize the total revenue from the wind power
f1(nc), and meanwhile to minimize the total cost of the active energy losses in the grid f2(nc), the
cost of the active energy at slack bus f3(nc), and the cost of the reactive energy at slack bus f4(nc).
Here, Ploss(nc) is the grid total active power losses [5] for scenario combination nc. Pw(i, nc) is the
active power of WS located at bus i for scenario combination nc. PS(nc) and QS(nc) are the active and
reactive power injected at slack bus, respectively (i.e., the imported active and reactive energy from
an upstream high-voltage (HV) network). The vector of discrete decision variables l, in Equation (2),
consists of slack bus voltage VS(nc), representing the controller reference of tap positions of the on-load
tap changer. The vector of continuous decision variables u includes the curtailment factors of wind
power for each WS, βw(i, nc). Here, (0 ≤ βw(i, nc) ≤ 1), where βw = 1 when no curtailment and
βw < 1 otherwise [5].

The objective function of Equation (10) is subject to the active and reactive power flow equations
at the buses:

fP(nc) + Pd(i)− Pw(i, nc) βw(i, nc)− PS(nc) = 0, i ∈ sb (15)

fQ(nc) + Qd(i)−QS(nc) = 0, i ∈ sb (16)

where fP(nc) and fQ(nc) are the network active and reactive power functions [5] for scenario
combination nc, respectively. PS(nc) and QS(nc) are the active and reactive power terms included only
for slack bus, respectively. In addition, the following inequality constraints should be held:

Bounds of active and reactive power at slack bus:

(PS(nc))
2 + (QS(nc))

2 ≤ (SS.max)
2 (17)

− γPs,revSS.max ≤ PS(nc) ≤ SS.max, 0 ≤ γPs,rev ≤ 1 (18)

− γQs,revSS.max ≤ QS(nc) ≤ SS.max, 0 ≤ γQs,rev ≤ 1 (19)

Voltage bounds of buses:

Vmin(i) ≤ V(i, nc) ≤ Vmax(i), i ∈ sb; i 6= 1 (20)
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VS.min ≤ VS(nc) ≤ VS.max (21)

VS(nc) = 1 + ∆VS(nc), ∆VS(nc) = {−0.1,−0.09, · · · , 0.09, 0.1} (22)

Feeder sections limits:
S(i, j, nc) ≤ Sl.max(i, j) , i, j ∈ sb; i 6= j (23)

and the limits of the curtailment factors:

0 ≤ β(i, nc) ≤ 1 (24)

In Equations (18) and (19), the parameters γPs,rev and γQs,rev define the percentage of the allowable
reverse active and reactive power to an upstream HV network. For instance, if γPs,rev = 1, active power
exported to the HV network is fully allowed and if γPs,rev = 0, no active power export is allowed.
In addition, based on Equations (21) and (22), for scenario combination nc, an optimal value of slack
bus voltage VS(nc) is obtained by selecting the best ∆VS(nc) which is a discrete variable. Therefore, the
formulation of Equations (10)–(24) leads to a high-dimensional, MINLP problem for each scenario
combination nc. The solution of this problem is obtained by using a MINLP solver. Parallel computing
can be easily carried out because each scenario is independent of the other scenarios, i.e., multiple
processors can be used each of which are responsible for a number of the MINLP OPF problems.
The solutions of the MINLP OPF problems lead to a lookup table providing options of operation
strategies, one of which will be selected for the grid operation in the realization phase.

4.2. Realization Phase

The lookup table provides Nc solutions corresponding to the scenario combinations generated
based on forecasted wind power Pw.M(nw). The actually generated wind power values of the WSs are
available at each sampling interval m. For each sampling interval, one of the solutions in the lookup
table will be selected and the corresponding control values realized to the network. The selection is
made by comparing the actual wind power Pw.A(nw, m) with the wind power scenarios of each WS
Pw(nw, ns), based on the following Algorithm 1:

Algorithm 1 Comparing and selection of wind power

for each WS nw = 1, · · · , Nw and ns ≥ 2
If Pw(nw, (ns − 1)) < Pw.A(nw, m) ≤ Pw(nw, ns)

then consider Pw.A(nw, m) as Pw(nw, ns)

end
Achieve Pw(nc)

Based on nc, set βw(m) = βw(nc) and VS(m) = VS(nc)

This means, for each WS nw, if Pw.A(nw, m) is not equal to Pw(nw, (ns − 1)), then consider it to be
the nearest higher scenario. This is because a higher wind power associates with a lower curtailment
factor, leading to a feasible operation strategy. Since the scenarios generated in the prediction phase
cover the whole range [0, 1], for any actual value of wind power, there is a higher or equal scenario
corresponding to an optimal operation strategy. It should be noted that the decision made in this way
also has a certain degree of built-in conservativeness, so that feasibility of the selected solution to be
realized to the grid can be ensured. This conservativeness will be decreased if more scenarios for each
WS are used. But then the number of MINLP problems to be solved will be increased correspondingly.

4.3. Implementation of the Real-Time Optimal Power Flow Framework

The RT-OPF framework of the proposed prediction-realization approach is implemented as shown
in Figure 3 where the execution steps are shown by the numbers. It consists of following eight steps:
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(1) For the current prediction horizon, provide the forecasted active Pd(i) and reactive Qd(i) demand
power and wind power Pw.M(nw).

(2) Generate Nc wind power scenario combinations based on the Beta distribution as described in
Section 3.

(3) Send the generated scenarios as inputs to formulate Nc MINLP OPF problems.
(4) Solve the Nc MINLP OPF problems with parallel computing.
(5) Send the solution results as a lookup table to the selection algorithm.
(6) Provide the actual wind power of WSs, Pw.A(nw, m), available at the current sampling time m

(for m = 1, · · · , M), to the selection algorithm.
(7) Select one of the solutions from the lookup table based on Pw.A(nw, m) and the selection algorithm

(see Section 4.2).
(8) Send the values of the controls VS(m) and βw(m) to the grid.

Steps 1–5, as shown with solid lines in Figure 3, correspond to the prediction phase, while steps
6–8, presented with dashed lines, denote the realization phase. Step 8 means that, with an optimal
value of the slack bus voltage, an optimal amount of wind power is penetrated to the grid in the
current sampling time m. When m = M, the computation proceeds to the next prediction horizon.
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Figure 3. Framework of the proposed real-time optimal power flow (RT-OPF) for a prediction horizon.
Here, HV, MV and LV denote high-voltage, medium-voltage and low-voltage, respectively.

To online realize the computation framework described above, it is necessary to ensure all 8 steps
to be completed inside the time slot of Tp. The implementation is illustrated in Figure 4, showing two
consecutive prediction horizons. In Figure 4, the red lines indicate the execution of the eight tasks
along the time. It means when the optimal strategies for the current prediction horizon are realized to
the network, the solutions for the upcoming prediction horizon are prepared.

In Figure 4, Tr denotes the length of the time reserved for data management (for our case study
Tr = 2 s). For steps 1, 3, 5, 6, and 8, Tr means the communication (i.e., sending/receiving data) time.
In steps 2, 4, and 7, Tr means the time for processing data after receiving the corresponding inputs.
TOPF is the time to solve the Nc OPF problems, which takes the largest part of the time horizon.

Tp is the prediction horizon for which the forecasted data is available and its length should be the
summation of the lengths of all the tasks (including OPF computations as shown in Figure 4) in the
prediction phase:

Tp = 4Tr + TOPF (25)

Here, the greatest time slot is allocated to the computation of the OPF problems corresponding to
the generated scenarios (i.e., TOPF). It means that, at the end of the prediction phase, the OPF results
must be ready for the selection algorithm in the realization phase.
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The sampling time Ts in which the actual values of wind power are available, could be very short
(even less than a second). However, since the realization is also performed at every Ts, the length of Ts

should be realistic in order not to damage devices by too frequent control actions in very short time
intervals. On the other hand, based on Equation (1), Ts theoretically can be equal to Tp (i.e., M = 1).
However, long sampling intervals could not response the intermittency of the wind power.

The wind power spectrum has been investigated for a long time. Using short term and long term
records, the Van der Hoven spectrum [46] shows the diurnal and turbulence effects of wind power.
It confirms that there are considerable wind power discrepancies in short term (e.g., 1 min) periods.
The spectrum has been also studied to evaluate and improve wind power prediction [47,48]. However,
in this study, we assume that the values of wind power prediction are provided by a forecast center.
The time period over which the forecasted value is updated, is defined as the prediction horizon. In our
case study, the forecasted wind power value is assumed to be available every two minutes. Thus we
define the length of the prediction horizon as two minutes. The forecasted wind power profiles for one
day are taken from [31] for the case study. Indeed, this is the reason that the blocks ‘Wind power data’
and ‘Demand power data’ are not included in the ‘8 steps’ of the framework in Figure 3. This means
that the way how the wind and power demand power data is obtained is not considered in this study.

As mentioned in Section 3, parallel computing is used for solving the individual MINLP problems
by multiple processors, each of which solves an equal number of the optimization problems. Therefore,
the time needed for the solutions to be available is the maximum time taken by the processors.
But we need to allocate TOPF large enough to ensure that none of the processors exceeds this limit.
The proposed RT-OPF framework is further described by a flowchart in Figure 5. The flowchart shows
the prediction and realization phases.
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5. Case Study

5.1. Network and Input Data

The network for the case study is taken from [49,50]. It is a 41-bus, 27.6 kV typical rural DN, as
shown in Figure 6. The peak power demand is 16.25 MVA [5] and the substation rating is 20 MVA.
Two WSs each with Pw.R = 10 MW and unity power factors are located at buses 2 and 16, as shown in
Figure 6. The WSs are subject to different wind profiles which make the problem more complicated.
The bus number 1 is considered as the slack bus with zero voltage angle [49,50]. The active and reactive
energy prices are adapted and fixed with 1.67 $/MW. Tp and 0.4 $/Mvar. Tp [31,49], respectively.
We assume that the forecasted and measured values of wind power generation are available in every
120 and 20 s, respectively. Therefore, the length of the prediction horizon Tp and the length of the
sampling time Ts are taken as 120 and 20 s, respectively. For generating wind scenarios, we take Ns = 7
which means we consider seven scenarios for each of the two WSs, leading to Nc = 49 MINLP OPF
problems. To implement parallel computing, we use seven processors to solve the 49 problems (i.e.,
seven scenario combinations are allocated to each processor). The computations are carried out on a
server with 2 Intel Xeon X5690, CPU 3.47 GHz (six cores, 12 threads) and 64 GB random access memory
(RAM). The problem is formulated and coded in the general algebraic modeling system (GAMS) [51]
framework and the resulting problem solved by the MINLP solver BONMIN [52], using the usual
flat start [5]. Based on the BONMIN manual [52], the algorithms are exact when both the objective
function and the constraints are convex, otherwise they are heuristics. It is also noted that there are
some possible model status messages in GAMS. In solving our MINLP problems, we always got the
message No. 8 (integer solution), meaning that a feasible solution has been found to problems with
discrete variables, see details in [51]. However, the solution achieved in this way should be considered
as a local solution, since the power flow equations are nonconvex.
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Figure 6. Distribution network (DN) for the case study.

The active Pd and reactive Qd power demand are assumed to follow the hourly IEEE-RTS fall
season’s days [49]. However, inside each hour, the demand profiles are generated for every bus at
every 120 s by adding normally distributed random values (with µd(i) = 0 and σd(i) = 0.01) to the
hourly values [31]. The resulting demand trajectories for one day are shown in Figure 7a.

In the reality, the forecasted and actual wind power profiles can be acquired from environmental
data centers and online measurements, respectively. The forecasted wind power profiles for one day are
taken from [31] and shown as the red-dashed curves in Figure 7b,c. The actual wind power Pw.A(nw, m)

for the two WSs are generated at each 20 s using the Beta distribution with the shape parameters α(nw)

and β(nw) corresponding to the forecasted wind power, where σw(nw) = 0.1 pu = 1 MW based on
Equations (7) and (8). The resulting curves for the two WSs are shown in Figure 7b,c.
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5.2. Test Cases

In the case study, possible reverse power flow is considered for the proposed RT-OPF framework.
We define the forward and reverse active as well as reactive energy at the slack bus as follows:

• Forward energy flow: The forward active and reactive energy from the HV network to the MV
network is to be minimized based on an energy price model.
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• Reverse energy flow: The reverse power flow could have impacts on voltage profiles [53] of the
upper-level network and may result in specific operational limits being exceeded at the congested
primary substations [54]. However, reverse flows have been considered in many studies [45,55–58]
and in reality, they are likely to happen. Therefore, in this paper we consider the cases with and
without reverse power flows.

Furthermore, in the optimization problem formulation, the slack bus voltage can be either a
parameter with a fixed value or a discrete free variable. Based on these considerations, we carry out
RT-OPF for four different cases defined as follows:

Case (1): Both reverse active and reactive power to the upstream HV network is not allowed (i.e.,
γPs,rev = γQs,rev = 0), and with a fixed value of the slack bus voltage (VS(m) = VS(nc) = 1 pu).

Case (2): Both reverse active and reactive power to upstream HV network is not allowed (i.e.,
γPs,rev = γQs,rev = 0), and with the slack bus voltage as a discrete free variable.

Case (3): Both reverse active and reactive power to upstream HV network is allowed (i.e., γPs,rev =

γQs,rev = 1), and with a fixed value of the slack bus voltage (i.e., VS(m) = VS(nc) = 1 pu).
Case (4): Both reverse active and reactive power to upstream HV network is allowed (i.e.,

γPs,rev = γQs,rev = 1), and with the slack bus voltage as a discrete free variable.

5.3. Results and Discussions

We run the RT-OPF for one day for the aforementioned four cases using the same network in
Figure 6 and the input data in Figure 7. To illustrate the prediction phase and the realization phase, we
firstly take the first prediction horizon (i.e., t ∈ [0, 120 s]) as an example. The forecasted values of wind
power for the two WSs in the first prediction horizon are Pw.M(1) = 3.8 MW and Pw.M(2) = 7.05 MW.
The wind power scenario combinations and the corresponding results for the four cases in the first
prediction horizon are shown in Tables 2–5.

The lookup tables consist of two sections: “scenario combinations” and “optimal results”.
The scenario combinations are obtained as described in Section 3 and optimal results are achieved by
solving the corresponding OPF problems (i.e., Equations (10)–(24)). Based on Equation (9), there are
49 scenarios in each lookup table from which one action will be selected in each sampling interval Ts.
It is noted that the lookup tables are updated in each prediction horizon Tp based on the new values of
forecasted wind and demand power.

In the first sampling time interval (i.e., t ∈ [0, 20 s]), the real wind power are Pw.A(1, 1) = 3.74 MW
and Pw.A(2, 1) = 4.17 MW, respectively. Therefore, the selection algorithm (shown as Step 7 in Figure 3)
selects the scenario combination 27 which corresponds to the level higher than the real value of wind
power for both WSs. Then the control strategy corresponding to this scenario combination will be
realized to the grid.

It can be seen in Tables 2 and 3 that, for this prediction horizon, the active power at the slack bus
is zero when the wind power of WSs is high. This is because of the low total active power demand
(6.65 MW) and high active wind power generation. In addition, the high wind power generation
leads to high curtailment (i.e., low values of the curtailment factors) to ensure feasibility. In contrast,
if reverse power flow is allowed, as in Cases (3) and (4), the surplus active wind power will not be
curtailed, i.e., βw(nc) = 1, and it is exported to the upstream HV network, showing negative active
power at the slack bus. The reactive power at the slack bus is always positive for all scenarios of the
four cases in this time horizon, i.e., it will be imported from the upstream network. This is because
of using unity power factors of the WSs and the reactive power compensation of feeder capacitive
susceptance [49] (the total reactive power demand is 2.46 Mvar in this time horizon). From another
perspective, for this prediction horizon, in Cases (2) and (4) where the optimization problems are
formulated as MINLP, the values of slack bus voltage tend to be more than 1 pu. This is due the fact
that a higher slack bus voltage results in less power losses and consequently higher values of the
objective function.
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Table 2. Lookup table for the first prediction horizon (with Pw.M(1) = 3.8 MW, Pw.M(2) = 7.05 MW) for
Case 1.

Scenario Combination Optimal Results

nc
Pw(nw,ns)

(MW) nw = 1
Pw(nw,ns)

(MW) nw = 2 βw(1) - βw(2) - Vs (pu) PS (MW) QS (Mvar)

1 Pw(1,7) = 10 Pw(2,7) = 10 0.379 0.288 1 0 2.375
2 Pw(1,7) = 10 Pw(2,6) = 8.04 0.379 0.358 1 0 2.375
3 Pw(1,7) = 10 Pw(2,5) = 7.55 0.379 0.382 1 0 2.375
4 Pw(1,7) = 10 Pw(2,4) = 7.13 0.379 0.404 1 0 2.375
5 Pw(1,7) = 10 Pw(2,3) = 6.67 0.379 0.432 1 0 2.375
6 Pw(1,7) = 10 Pw(2,2) = 6.07 0.379 0.475 1 0 2.375
7 Pw(1,7) = 10 Pw(2,1) = 0 0.669 1 1 0 2.406
8 Pw(1,6) = 4.79 Pw(2,7) = 10 0.792 0.288 1 0 2.375
9 Pw(1,6) = 4.79 Pw(2,6) = 8.04 0.792 0.358 1 0 2.375

10 Pw(1,6) = 4.79 Pw(2,5) = 7.55 0.792 0.382 1 0 2.375
11 Pw(1,6) = 4.79 Pw(2,4) = 7.13 0.792 0.404 1 0 2.375
12 Pw(1,6) = 4.79 Pw(2,3) = 6.67 0.792 0.432 1 0 2.375
13 Pw(1,6) = 4.79 Pw(2,2) = 6.07 0.792 0.475 1 0 2.375
14 Pw(1,6) = 4.79 Pw(2,1) = 0 1 1 1 1.9 2.419
15 Pw(1,5) = 4.22 Pw(2,7) = 10 0.899 0.288 1 0 2.375
16 Pw(1,5) = 4.22 Pw(2,6) = 8.04 0.899 0.358 1 0 2.375
17 Pw(1,5) = 4.22 Pw(2,5) = 7.55 0.899 0.382 1 0 2.375
18 Pw(1,5) = 4.22 Pw(2,4) = 7.13 0.899 0.404 1 0 2.375
19 Pw(1,5) = 4.22 Pw(2,3) = 6.67 0.899 0.432 1 0 2.375
20 Pw(1,7) = 4.22 Pw(2,2) = 6.07 0.899 0.475 1 0 2.375
21 Pw(1,5) = 4.22 Pw(2,1) = 0 1 1 1 2.476 2.427
22 Pw(1,4) = 3.77 Pw(2,7) = 10 1 0.29 1 0 2.375
23 Pw(1,4) = 3.77 Pw(2,6) = 8.04 1 0.361 1 0 2.375
24 Pw(1,4) = 3.77 Pw(2,5) = 7.55 1 0.385 1 0 2.375
25 Pw(1,4) = 3.77 Pw(2,4) = 7.13 1 0.407 1 0 2.375
26 Pw(1,4) = 3.77 Pw(2,3) = 6.67 1 0.435 1 0 2.375
27 Pw(1,4) = 3.77 Pw(2,2) = 6.07 1 0.478 1 0 2.375
28 Pw(1,4) = 3.77 Pw(2,1) = 0 1 1 1 2.927 2.435
29 Pw(1,3) = 3.33 Pw(2,7) = 10 1 0.334 1 0 2.376
30 Pw(1,3) = 3.33 Pw(2,6) = 8.04 1 0.416 1 0 2.376
31 Pw(1,3) = 3.33 Pw(2,5) = 7.55 1 0.443 1 0 2.376
32 Pw(1,3) = 3.33 Pw(2,4) = 7.13 1 0.469 1 0 2.376
33 Pw(1,3) = 3.33 Pw(2,3) = 6.67 1 0.501 1 0 2.376
34 Pw(1,3) = 3.33 Pw(2,2) = 6.07 1 0.551 1 0 2.376
35 Pw(1,3) = 3.33 Pw(2,1) = 0 1 1 1 3.370 2.444
36 Pw(1,2) = 2.81 Pw(2,7) = 10 1 0.387 1 0 2.379
37 Pw(1,2) = 2.81 Pw(2,6) = 8.04 1 0.481 1 0 2.379
38 Pw(1,2) = 2.81 Pw(2,5) = 7.55 1 0.512 1 0 2.379
39 Pw(1,2) = 2.81 Pw(2,4) = 7.13 1 0.542 1 0 2.379
40 Pw(1,2) = 2.81 Pw(2,3) = 6.67 1 0.58 1 0 2.379
41 Pw(1,2) = 2.81 Pw(2,2) = 6.07 1 0.637 1 0 2.379
42 Pw(1,2) = 2.81 Pw(2,1) = 0 1 1 1 3.895 2.457
43 Pw(1,1) = 0 Pw(2,7) = 10 1 0.67 1 0 2.429
44 Pw(1,1) = 0 Pw(2,6) = 8.04 1 0.833 1 0 2.429
45 Pw(1,1) = 0 Pw(2,5) = 7.55 1 0.887 1 0 2.429
46 Pw(1,1) = 0 Pw(2,4) = 7.13 1 0.939 1 0 2.429
47 Pw(1,1) = 0 Pw(2,3) = 6.67 1 1 1 0.025 2.428
48 Pw(1,1) = 0 Pw(2,2) = 6.07 1 1 1 0.619 2.414
49 Pw(1,1) = 0 Pw(2,1) = 0 1 1 1 6.744 2.554
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Table 3. Lookup table for the first prediction horizon (with Pw.M(1) = 3.8 MW, Pw.M(2) = 7.05 MW) for
Case 2.

Scenario Combination Optimal Results

nc
Pw(nw,ns)

(MW) nw = 1
Pw(nw,ns)

(MW) nw = 2 βw(1) - βw(2) - Vs (pu) PS (MW) QS (Mvar)

1 Pw(1,7) = 10 Pw(2,7) = 10 0.379 0.288 1.06 0 2.352
2 Pw(1,7) = 10 Pw(2,6) = 8.04 0.379 0.359 1.06 0 2.352
3 Pw(1,7) = 10 Pw(2,5) = 7.55 0.379 0.382 1.06 0 2.352
4 Pw(1,7) = 10 Pw(2,4) = 7.13 0.379 0.405 1.06 0 2.352
5 Pw(1,7) = 10 Pw(2,3) = 6.67 0.379 0.432 1.06 0 2.352
6 Pw(1,7) = 10 Pw(2,2) = 6.07 0.379 0.475 1.06 0 2.352
7 Pw(1,7) = 10 Pw(2,1) = 0 0.668 1 1.06 0 2.38
8 Pw(1,6) = 4.79 Pw(2,7) = 10 0.791 0.288 1.06 0 2.352
9 Pw(1,6) = 4.79 Pw(2,6) = 8.04 0.791 0.359 1.06 0 2.352

10 Pw(1,6) = 4.79 Pw(2,5) = 7.55 0.791 0.382 1.06 0 2.352
11 Pw(1,6) = 4.79 Pw(2,4) = 7.13 0.791 0.405 1.06 0 2.352
12 Pw(1,6) = 4.79 Pw(2,3) = 6.67 0.791 0.433 1.06 0 2.352
13 Pw(1,6) = 4.79 Pw(2,2) = 6.07 0.791 0.475 1.06 0 2.352
14 Pw(1,6) = 4.79 Pw(2,1) = 0 1.000 1 1.06 1.896 2.391
15 Pw(1,5) = 4.22 Pw(2,7) = 10 0.898 0.288 1.06 0 2.352
16 Pw(1,5) = 4.22 Pw(2,6) = 8.04 0.898 0.359 1.06 0 2.352
17 Pw(1,5) = 4.22 Pw(2,5) = 7.55 0.898 0.382 1.06 0 2.352
18 Pw(1,5) = 4.22 Pw(2,4) = 7.13 0.898 0.405 1.06 0 2.352
19 Pw(1,5) = 4.22 Pw(2,3) = 6.67 0.898 0.433 1.06 0 2.352
20 Pw(1,7) = 4.22 Pw(2,2) = 6.07 0.898 0.475 1.06 0 2.352
21 Pw(1,5) = 4.22 Pw(2,1) = 0 1 1 1.06 2.471 2.398
22 Pw(1,4) = 3.77 Pw(2,7) = 10 1 0.29 1.06 0 2.352
23 Pw(1,4) = 3.77 Pw(2,6) = 8.04 1 0.361 1.06 0 2.352
24 Pw(1,4) = 3.77 Pw(2,5) = 7.55 1 0.384 1.06 0 2.352
25 Pw(1,4) = 3.77 Pw(2,4) = 7.13 1 0.407 1.06 0 2.352
26 Pw(1,4) = 3.77 Pw(2,3) = 6.67 1 0.435 1.06 0 2.352
27 Pw(1,4) = 3.77 Pw(2,2) = 6.07 1 0.478 1.06 0 2.352
28 Pw(1,4) = 3.77 Pw(2,1) = 0 1 1 1.07 2.921 2.401
29 Pw(1,3) = 3.33 Pw(2,7) = 10 1 0.334 1.06 0 2.353
30 Pw(1,3) = 3.33 Pw(2,6) = 8.04 1 0.416 1.06 0 2.353
31 Pw(1,3) = 3.33 Pw(2,5) = 7.55 1 0.443 1.06 0 2.353
32 Pw(1,3) = 3.33 Pw(2,4) = 7.13 1 0.469 1.06 0 2.353
33 Pw(1,3) = 3.33 Pw(2,3) = 6.67 1 0.501 1.06 0 2.353
34 Pw(1,3) = 3.33 Pw(2,2) = 6.07 1 0.551 1.06 0 2.353
35 Pw(1,3) = 3.33 Pw(2,1) = 0 1 1 1.07 3.364 2.409
36 Pw(1,2) = 2.81 Pw(2,7) = 10 1 0.386 1.06 0 2.355
37 Pw(1,2) = 2.81 Pw(2,6) = 8.04 1 0.480 1.06 0 2.355
38 Pw(1,2) = 2.81 Pw(2,5) = 7.55 1 0.512 1.06 0 2.355
39 Pw(1,2) = 2.81 Pw(2,4) = 7.13 1 0.542 1.06 0 2.355
40 Pw(1,2) = 2.81 Pw(2,3) = 6.67 1 0.579 1.06 0 2.355
41 Pw(1,2) = 2.81 Pw(2,2) = 6.07 1 0.636 1.06 0 2.355
42 Pw(1,2) = 2.81 Pw(2,1) = 0 1 1 1.07 3.888 2.419
43 Pw(1,1) = 0 Pw(2,7) = 10 1 0.669 1.06 0 2.4
44 Pw(1,1) = 0 Pw(2,6) = 8.04 1 0.832 1.06 0 2.4
45 Pw(1,1) = 0 Pw(2,5) = 7.55 1 0.886 1.06 0 2.4
46 Pw(1,1) = 0 Pw(2,4) = 7.13 1 0.938 1.06 0 2.4
47 Pw(1,1) = 0 Pw(2,3) = 6.67 1 1 1.06 0.02 2.399
48 Pw(1,1) = 0 Pw(2,2) = 6.07 1 1 1.06 0.615 2.387
49 Pw(1,1) = 0 Pw(2,1) = 0 1 1 1.07 6.731 2.504
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Table 4. Lookup table for the first prediction horizon (with Pw.M(1) = 3.8 MW, Pw.M(2) = 7.05 MW) for
Case 3.

Scenario Combination Optimal Results

nc
Pw(nw,ns)

(MW) nw = 1
Pw(nw,ns)

(MW) nw = 2 βw(1) - βw(2) - Vs (pu) PS (MW) QS (Mvar)

1 Pw(1,7) = 10 Pw(2,7) = 10 1 1 1 −13.034 3.091
2 Pw(1,7) = 10 Pw(2,6) = 8.04 1 1 1 −11.167 2.863
3 Pw(1,7) = 10 Pw(2,5) = 7.55 1 1 1 −10.697 2.813
4 Pw(1,7) = 10 Pw(2,4) = 7.13 1 1 1 −10.293 2.773
5 Pw(1,7) = 10 Pw(2,3) = 6.67 1 1 1 −9.85 2.731
6 Pw(1,7) = 10 Pw(2,2) = 6.07 1 1 1 −9.27 2.681
7 Pw(1,7) = 10 Pw(2,1) = 0 1 1 1 −3.301 2.439
8 Pw(1,6) = 4.79 Pw(2,7) = 10 1 1 1 −7.96 2.755
9 Pw(1,6) = 4.79 Pw(2,6) = 8.04 1 1 1 −6.069 2.586
10 Pw(1,6) = 4.79 Pw(2,5) = 7.55 1 1 1 −5.593 2.551
11 Pw(1,6) = 4.79 Pw(2,4) = 7.13 1 1 1 −5.184 2.524
12 Pw(1,6) = 4.79 Pw(2,3) = 6.67 1 1 1 −4.736 2.497
13 Pw(1,6) = 4.79 Pw(2,2) = 6.07 1 1 1 −4.148 2.465
14 Pw(1,6) = 4.79 Pw(2,1) = 0 1 1 1 1.9 2.419
15 Pw(1,5) = 4.22 Pw(2,7) = 10 1 1 1 −7.399 2.728
16 Pw(1,5) = 4.22 Pw(2,6) = 8.04 1 1 1 −5.505 2.566
17 Pw(1,5) = 4.22 Pw(2,5) = 7.55 1 1 1 −5.029 2.533
18 Pw(1,5) = 4.22 Pw(2,4) = 7.13 1 1 1 −4.619 2.507
19 Pw(1,5) = 4.22 Pw(2,3) = 6.67 1 1 1 −4.17 2.481
20 Pw(1,7) = 4.22 Pw(2,2) = 6.07 1 1 1 −3.582 2.452
21 Pw(1,5) = 4.22 Pw(2,1) = 0 1 1 1 2.476 2.427
22 Pw(1,4) = 3.77 Pw(2,7) = 10 1 1 1 −6.959 2.708
23 Pw(1,4) = 3.77 Pw(2,6) = 8.04 1 1 1 −5.063 2.551
24 Pw(1,4) = 3.77 Pw(2,5) = 7.55 1 1 1 −4.586 2.519
25 Pw(1,4) = 3.77 Pw(2,4) = 7.13 1 1 1 −4.176 2.495
26 Pw(1,4) = 3.77 Pw(2,3) = 6.67 1 1 1 −3.726 2.47
27 Pw(1,4) = 3.77 Pw(2,2) = 6.07 1 1 1 −3.138 2.442
28 Pw(1,4) = 3.77 Pw(2,1) = 0 1 1 1 2.927 2.435
29 Pw(1,3) = 3.33 Pw(2,7) = 10 1 1 1 −6.527 2.69
30 Pw(1,3) = 3.33 Pw(2,6) = 8.04 1 1 1 −4.629 2.538
31 Pw(1,3) = 3.33 Pw(2,5) = 7.55 1 1 1 −4.151 2.508
32 Pw(1,3) = 3.33 Pw(2,4) = 7.13 1 1 1 −3.741 2.484
33 Pw(1,3) = 3.33 Pw(2,3) = 6.67 1 1 1 −3.29 2.461
34 Pw(1,3) = 3.33 Pw(2,2) = 6.07 1 1 1 −2.701 2.434
35 Pw(1,3) = 3.33 Pw(2,1) = 0 1 1 1 3.37 2.444
36 Pw(1,2) = 2.81 Pw(2,7) = 10 1 1 1 −6.015 2.670
37 Pw(1,2) = 2.81 Pw(2,6) = 8.04 1 1 1 −4.115 2.524
38 Pw(1,2) = 2.81 Pw(2,5) = 7.55 1 1 1 −3.636 2.495
39 Pw(1,2) = 2.81 Pw(2,4) = 7.13 1 1 1 −3.225 2.473
40 Pw(1,2) = 2.81 Pw(2,3) = 6.67 1 1 1 −2.774 2.451
41 Pw(1,2) = 2.81 Pw(2,2) = 6.07 1 1 1 −2.184 2.427
42 Pw(1,2) = 2.81 Pw(2,1) = 0 1 1 1 3.895 2.457
43 Pw(1,1) = 0 Pw(2,7) = 10 1 1 1 −3.239 2.591
44 Pw(1,1) = 0 Pw(2,6) = 8.04 1 1 1 −1.325 2.478
45 Pw(1,1) = 0 Pw(2,5) = 7.55 1 1 1 −0.843 2.457
46 Pw(1,1) = 0 Pw(2,4) = 7.13 1 1 1 −0.429 2.442
47 Pw(1,1) = 0 Pw(2,3) = 6.67 1 1 1 0.025 2.428
48 Pw(1,1) = 0 Pw(2,2) = 6.07 1 1 1 0.619 2.414
49 Pw(1,1) = 0 Pw(2,1) = 0 1 1 1 6.744 2.554
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Table 5. Lookup table for the first prediction horizon (with Pw.M(1) = 3.8 MW, Pw.M(2) = 7.05 MW) for
Case 4.

Scenario Combination Optimal Results

nc
Pw(nw,ns)

(MW) nw = 1
Pw(nw,ns)

(MW) nw = 2 βw(1) - βw(2)- Vs (pu) PS (MW) QS (Mvar)

1 Pw(1,7) = 10 Pw(2,7) = 10 1 1 1.04 −13.057 3.022
2 Pw(1,7) = 10 Pw(2,6) = 8.04 1 1 1.05 −11.187 2.798
3 Pw(1,7) = 10 Pw(2,5) = 7.55 1 1 1.05 −10.715 2.753
4 Pw(1,7) = 10 Pw(2,4) = 7.13 1 1 1.05 −10.31 2.717
5 Pw(1,7) = 10 Pw(2,3) = 6.67 1 1 1.05 −9.866 2.679
6 Pw(1,7) = 10 Pw(2,2) = 6.07 1 1 1.05 −9.284 2.634
7 Pw(1,7) = 10 Pw(2,1) = 0 1 1 1.06 −3.306 2.409
8 Pw(1,6) = 4.79 Pw(2,7) = 10 1 1 1.05 −7.977 2.701
9 Pw(1,6) = 4.79 Pw(2,6) = 8.04 1 1 1.05 −6.079 2.547
10 Pw(1,6) = 4.79 Pw(2,5) = 7.55 1 1 1.05 −5.602 2.516
11 Pw(1,6) = 4.79 Pw(2,4) = 7.13 1 1 1.05 −5.192 2.491
12 Pw(1,6) = 4.79 Pw(2,3) = 6.67 1 1 1.05 −4.742 2.466
13 Pw(1,6) = 4.79 Pw(2,2) = 6.07 1 1 1.06 −4.155 2.432
14 Pw(1,6) = 4.79 Pw(2,1) = 0 1 1 1.06 1.896 2.391
15 Pw(1,5) = 4.22 Pw(2,7) = 10 1 1 1.05 −7.414 2.676
16 Pw(1,5) = 4.22 Pw(2,6) = 8.04 1 1 1.05 −5.515 2.529
17 Pw(1,5) = 4.22 Pw(2,5) = 7.55 1 1 1.05 −5.037 2.499
18 Pw(1,5) = 4.22 Pw(2,4) = 7.13 1 1 1.05 −4.626 2.475
19 Pw(1,5) = 4.22 Pw(2,3) = 6.67 1 1 1.05 −4.176 2.452
20 Pw(1,7) = 4.22 Pw(2,2) = 6.07 1 1 1.06 −3.588 2.42
21 Pw(1,5) = 4.22 Pw(2,1) = 0 1 1 1.06 2.471 2.398
22 Pw(1,4) = 3.77 Pw(2,7) = 10 1 1 1.05 −6.974 2.658
23 Pw(1,4) = 3.77 Pw(2,6) = 8.04 1 1 1.05 −5.072 2.515
24 Pw(1,4) = 3.77 Pw(2,5) = 7.55 1 1 1.05 −4.594 2.487
25 Pw(1,4) = 3.77 Pw(2,4) = 7.13 1 1 1.05 −4.183 2.464
26 Pw(1,4) = 3.77 Pw(2,3) = 6.67 1 1 1.06 −3.733 2.437
27 Pw(1,4) = 3.77 Pw(2,2) = 6.07 1 1 1.06 −3.143 2.412
28 Pw(1,4) = 3.77 Pw(2,1) = 0 1 1 1.07 2.921 2.401
29 Pw(1,3) = 3.33 Pw(2,7) = 10 1 1 1.05 −6.541 2.642
30 Pw(1,3) = 3.33 Pw(2,6) = 8.04 1 1 1.05 −4.637 2.504
31 Pw(1,3) = 3.33 Pw(2,5) = 7.55 1 1 1.05 −4.158 2.476
32 Pw(1,3) = 3.33 Pw(2,4) = 7.13 1 1 1.05 −3.747 2.455
33 Pw(1,3) = 3.33 Pw(2,3) = 6.67 1 1 1.06 −3.297 2.428
34 Pw(1,3) = 3.33 Pw(2,2) = 6.07 1 1 1.06 −2.706 2.405
35 Pw(1,3) = 3.33 Pw(2,1) = 0 1 1 1.07 3.364 2.409
36 Pw(1,2) = 2.81 Pw(2,7) = 10 1 1 1.05 −6.028 2.624
37 Pw(1,2) = 2.81 Pw(2,6) = 8.04 1 1 1.05 −4.122 2.491
38 Pw(1,2) = 2.81 Pw(2,5) = 7.55 1 1 1.05 −3.643 2.465
39 Pw(1,2) = 2.81 Pw(2,4) = 7.13 1 1 1.06 −3.232 2.439
40 Pw(1,2) = 2.81 Pw(2,3) = 6.67 1 1 1.06 −2.78 2.42
41 Pw(1,2) = 2.81 Pw(2,2) = 6.07 1 1 1.06 −2.189 2.398
42 Pw(1,2) = 2.81 Pw(2,1) = 0 1 1 1.07 3.888 2.419
43 Pw(1,1) = 0 Pw(2,7) = 10 1 1 1.05 −3.249 2.551
44 Pw(1,1) = 0 Pw(2,6) = 8.04 1 1 1.06 −1.332 2.443
45 Pw(1,1) = 0 Pw(2,5) = 7.55 1 1 1.06 −0.849 2.425
46 Pw(1,1) = 0 Pw(2,4) = 7.13 1 1 1.06 −0.435 2.411
47 Pw(1,1) = 0 Pw(2,3) = 6.67 1 1 1.06 0.02 2.399
48 Pw(1,1) = 0 Pw(2,2) = 6.07 1 1 1.06 0.615 2.387
49 Pw(1,1) = 0 Pw(2,1) = 0 1 1 1.07 6.731 2.504

Based on the input profiles as shown in Figure 7, the optimal strategies are computed online for
the network for 24 h. The resulting trajectories for the four cases are shown in Figures 8–11. In these
figures, subplots (a)–(c) show the curtailment factors of WSs and the slack bus voltages, respectively.
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From the economic point of view, the optimal strategy has some degree of conservativeness due to
the (limited) number of scenarios. This can be seen from the resulting active power imported from
the upstream network, shown in subplot (d) in Figures 8 and 9, which means in most time the really
imported value is higher than the expectedly imported value.

However, when the total wind power is much higher than the forecasted value but lower than
the total demand plus the losses, the really imported active power will be lower than the expected
value, leading to higher total revenue for such sampling intervals as shown in subplots (f) in Figures 8
and 9. In Cases (3) and (4) where γPs,rev = γQs,rev = 1, i.e., the reverse power flow to upstream HV
network is allowed, there will be no wind power curtailment, i.e., βw(nc) = βw(m) = 1. Thus, high
amount of energy is exported through the slack bus leading to negative values of active power as
shown in subplots (d) in Figures 10 and 11. As clearly shown in subplots (e), there is no significant
difference between the forecasted and actual values of reactive power at the slack bus. This is due to
unity power factors of WSs which means the reactive power imported from the upstream HV network
is not sensitive to wind power fluctuations and it mostly follows the same trend as the total reactive
power demand in the network. However, comparing subplots (e) in Figures 8 and 9 with the ones
in Figures 10 and 11, it is clearly seen that the reactive power at the slack bus is increased when the
reverse power is allowed. The reason is that increasing the power flow in the network increases both
the active and reactive power losses in the grid. Therefore, most of the reactive power losses must be
supplied by the upstream network.

As shown in subplots (c) of Figures 9 and 11, when the slack bus voltage is taken into account as
a discrete free variable, it tends to take the values higher than 1 pu which leads to decrease in power
losses. At the same time, the slack bus voltage must lead to satisfying the constraints of voltage at PQ
buses (i.e., Vmin(i) = 0.94 pu and Vmax(i) = 1.06 pu). When the reverse power flow is not allowed, the
slack bus voltage varies between 1.06 and 1.07 as shown in Figure 9c. Allowing reverse power flow
results in increasing the range to be between 1.03 and 1.07 as shown in Figure 11c. This is because
power flows from buses with a higher voltage to a lower one, which means that in the case of reverse
power flow, the slack bus voltage must be lower than the voltage at bus 2.

As mentioned earlier, the optimization results from the proposed approach ensure feasible
operations. To illustrate this, we compare our results with those by the operation strategies based
on the forecasted wind power. In the latter approach, the forecasted wind power is used for the
optimization and the results are directly applied to the grid. Since no correction of the solutions
is made based on the realized wind power, we call it the forecasted approach. The results of the
feasibility obtained by the new approach and by the forecasted approach are compared in subplots (g)
of Figures 8–11. In Case (1), as shown in Figure 8g, using the results of the forecasted approach leads to
2066 infeasible sampling intervals. This takes place because the actual wind power is higher than the
forecasted value at these sampling intervals, and thus, the forecasted curtailment factors cannot satisfy
the active power balance (Equation (15)). In Figure 9g, there are 2110 infeasible sampling intervals
for Case (2), most of which are violating the active power balance (Equation (15)) and the others are
violating the other inequality constraints, in particular the voltage bounds at bus 2. This happens
when the realized wind power is higher than the forecasted value, and meanwhile, the forecasted
active power at the slack bus is greater than zero. Thus, in the reality, the active power from the slack
bus is decreased and the voltage drop in the cables between the slack bus and bus 2 is reduced. Since
the voltage at the slack bus is fixed, the voltage at bus 2 has to be increased which leads to violating
its upper bound. This situation also occurs in Case (4) in the sampling intervals during which the
forecasted active power at the slack bus is greater than zero.

Moreover, in Case (4), during the time in which the forecasted active power at the slack bus is
negative, if the total actual wind power is higher than the forecasted value, the exported power to the
HV network will be increased (i.e., PS(m) is increased in the reverse direction). Again, the voltage
drop in the feeders between the slack bus and bus 2 is increased which leads to violating the upper
bound of the voltage at this bus. In Case (4), totally 625 infeasible sampling intervals are observed,
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among which none of them is due to the power balance since the surplus power can be exported to the
HV network. In Case (3), as shown in Figure 10g, the control strategies by the forecasted approach are
also feasible, since the slack bus voltage is fixed in the middle position (i.e., 1 pu) and the surplus wind
power can be exported to the HV network.
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Figure 8. Trajectories of one day for Case 1. (a) Forecasted (red-dashed) and actual (blue-solid)
curtailment factors for first WS; (b) Forecasted (red-dashed) and actual (blue-solid) curtailment
factors for second WS; (c) Forecasted (red-dashed) and actual (blue-solid) values of voltage at the
slack bus; (d) Forecasted (red-dashed) and actual (blue-solid) slack bus active power; (e) Forecasted
(red-dashed) and actual (blue-solid) slack bus reactive power; (f) Forecasted (red-dashed) and actual
(blue-solid) total objective function value; (g) Feasibility status of the deterministic (red-dashed) and
prediction-realization (blue-solid) approaches when applying actual wind power. Here, 1 denotes
feasible and 0 denotes infeasible solution; and (h) computational time of the seven processors.
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Figure 9. Trajectories of one day for Case 2. (a) Forecasted (red-dashed) and actual (blue-solid)
curtailment factors for first WS; (b) Forecasted (red-dashed) and actual (blue-solid) curtailment
factors for second WS; (c) Forecasted (red-dashed) and actual (blue-solid) values of voltage at the
slack bus; (d) Forecasted (red-dashed) and actual (blue-solid) slack bus active power; (e) Forecasted
(red-dashed) and actual (blue-solid) slack bus reactive power; (f) Forecasted (red-dashed) and actual
(blue-solid) total objective function value; (g) Feasibility status of the deterministic (red-dashed) and
prediction-realization (blue-solid) approaches when applying actual wind power. Here, 1 denotes
feasible and 0 denotes infeasible solution; and (h) computational time of the seven processors.



Energies 2017, 10, 535 21 of 28
Energies 2017, 10, 535 21 of 28 

 

Figure 10. Trajectories of one day for Case 3. (a) Forecasted (red-dashed) and actual (blue-solid) 
curtailment factors for first WS; (b) Forecasted (red-dashed) and actual (blue-solid) curtailment 
factors for second WS; (c) Forecasted (red-dashed) and actual (blue-solid) values of voltage at the 
slack bus; (d) Forecasted (red-dashed) and actual (blue-solid) slack bus active power; (e) Forecasted 
(red-dashed) and actual (blue-solid) slack bus reactive power; (f) Forecasted (red-dashed) and actual 
(blue-solid) total objective function value; (g) Feasibility status of the deterministic (red-dashed) and 
prediction-realization (blue-solid) approaches when applying actual wind power. Here, 1 denotes 
feasible and 0 denotes infeasible solution; and (h) computational time of the seven processors. 

Figure 10. Trajectories of one day for Case 3. (a) Forecasted (red-dashed) and actual (blue-solid)
curtailment factors for first WS; (b) Forecasted (red-dashed) and actual (blue-solid) curtailment
factors for second WS; (c) Forecasted (red-dashed) and actual (blue-solid) values of voltage at the
slack bus; (d) Forecasted (red-dashed) and actual (blue-solid) slack bus active power; (e) Forecasted
(red-dashed) and actual (blue-solid) slack bus reactive power; (f) Forecasted (red-dashed) and actual
(blue-solid) total objective function value; (g) Feasibility status of the deterministic (red-dashed) and
prediction-realization (blue-solid) approaches when applying actual wind power. Here, 1 denotes
feasible and 0 denotes infeasible solution; and (h) computational time of the seven processors.



Energies 2017, 10, 535 22 of 28
Energies 2017, 10, 535 22 of 28 

 

Figure 11. Trajectories of one day for Case 4. (a) Forecasted (red-dashed) and actual (blue-solid) 
curtailment factors for first WS; (b) Forecasted (red-dashed) and actual (blue-solid) curtailment 
factors for second WS; (c) Forecasted (red-dashed) and actual (blue-solid) values of voltage at the 
slack bus; (d) Forecasted (red-dashed) and actual (blue-solid) slack bus active power; (e) Forecasted 
(red-dashed) and actual (blue-solid) slack bus reactive power; (f) Forecasted (red-dashed) and actual 
(blue-solid) total objective function value; (g) Feasibility status of the deterministic (red-dashed) and 
prediction-realization (blue-solid) approaches when applying actual wind power. Here, 1 denotes 
feasible and 0 denotes infeasible solution; and (h) computational time of the seven processors. 

The feasibility of the control strategies by the proposed prediction-realization approach for all 
the four cases are shown with the blue line in subplots (g) of Figures 8–11. It can be seen that there is 

Figure 11. Trajectories of one day for Case 4. (a) Forecasted (red-dashed) and actual (blue-solid)
curtailment factors for first WS; (b) Forecasted (red-dashed) and actual (blue-solid) curtailment
factors for second WS; (c) Forecasted (red-dashed) and actual (blue-solid) values of voltage at the
slack bus; (d) Forecasted (red-dashed) and actual (blue-solid) slack bus active power; (e) Forecasted
(red-dashed) and actual (blue-solid) slack bus reactive power; (f) Forecasted (red-dashed) and actual
(blue-solid) total objective function value; (g) Feasibility status of the deterministic (red-dashed) and
prediction-realization (blue-solid) approaches when applying actual wind power. Here, 1 denotes
feasible and 0 denotes infeasible solution; and (h) computational time of the seven processors.



Energies 2017, 10, 535 23 of 28

The feasibility of the control strategies by the proposed prediction-realization approach for all the
four cases are shown with the blue line in subplots (g) of Figures 8–11. It can be seen that there is no
infeasible operations at all, i.e., the proposed approach can ensure the operation feasibility in any case
of the wind power generation.

Subplots (h) of Figures 8–11 give the computation time taken by the seven processors to solve the
MINLP OPF problems for 49 scenario combinations in real-time. It can be seen that the computation
time of each processor is less than the reserved time (TOPF = 112 s) which ensures the applicability of
the RT-OPF.

Table 6 compares the results in the scope of profitability of one-day operation in the four cases.
It is shown that, in Cases (2) and (4), the total yield (i.e., the objective function value) will be increased
in comparison to Cases (1) and (3), if the slack bus voltage is considered as a variable and optimized,
since, in this way, the active power losses are decreased. In contrary, when the reverse power flow is
allowed (i.e., Cases (3) and (4)), the active power losses increase dramatically owing to higher power
flow in the network. However, the effect of allowable reverse power flow is much more significant as
the total yield is increased by more than three times, due to the export of the surplus wind power to
the upstream HV network.

Table 6. Comparison of results of one day for four cases.

Case Ploss Average (kW) F1 ($/day) F2 ($/day) F3 ($/day) F4 ($/day) F ($/day)

1 29.61 7654.76 35.54 1540.61 773.73 5304.88
2 26 7651.96 31.2 1539.07 766.30 5315.39
3 97.94 14,007.64 117.52 −4730.28 821.61 17,798.78
4 88.95 14,007.63 106.74 −4741.06 811.02 17,830.94

6. Conclusions

RT-OPF is indispensable for network operations under intermittent wind power, but its numerical
implementation poses a significant challenge. In this paper, a prediction-realization approach RT-OPF
is introduced for energy systems to deal with fast changing wind power. In addition, our OPF
simultaneously considers curtailment factors as continuous free variables, the reference voltage at
the slack bus as discrete free variables, and possible reverse power flow to an upstream network.
This leads to a large-scale MINLP OPF problem with uncertain wind power generation. To address this
problem, we employ the available information of wind power, i.e., forecasted value in a long time cycle
(as the prediction horizon) and measured value in a short time cycle (as the sampling time interval),
and developed a two-phase solution approach. In the prediction phase, most probable wind power
scenarios are generated based on the Beta distribution for the prediction horizons. The corresponding
MINLP OPF problems are then solved in parallel. The results are saved as a lookup table which
provides a base for selecting a decision when the actual wind power value is available from one
sampling interval to the next. As a result, the proposed RT-OPF framework ensures feasible solutions
for the cases with and without reverse power flow to an upstream network. The solutions can be
realized in a very short sampling time. The results from a case study demonstrate the applicability of
the proposed RT-OPF framework.

One important point we discussed in the paper is the insurance of the operation feasibility.
A series of wind power scenarios are generated according to the stochastic distribution of wind power
and the corresponding optimization problems are solved in a predictive way. In the realization phase,
when the measured wind power is different from the predefined scenarios, we choose the solution
of the optimization problem with the scenario exactly higher than the measured value. The selection
leads to a higher curtailment of the generated wind power, i.e., it guarantees the feasibility with a
certain degree of conservativeness (with a lower yield). In fact, a reservation of some conservativeness
to ensure feasibility is also commonly used in industrial practice.
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Abbreviations

Sets and Indices

i, j Indices for buses, i.e., i, j = 1, · · · , Nbus.
m Index for sampling intervals, i.e., m = 1, · · · , M.
nc Index for wind power scenario combinations, i.e., nc = 1, · · · , Nc.
ns Index for wind power scenarios of each individual wind station (WS), i.e., ns = 1, · · · , Ns.
nw Index for WSs, i.e., nw = 1, · · · , Nw.
sb Set of buses.

Functions

f Objective function.
F Total value of objective function for one day.
F1 Total revenue from wind power injection for one day.
F2 Total cost of active energy losses in the grid for one day.
F3 Total cost of active energy at slack bus for one day.
F4 Total cost of reactive energy at slack bus for one day.
f (nc) Total value of objective function for scenario combination nc.
f1(nc) Total revenue from wind power injection for scenario combination nc.
f2(nc) Total cost of active energy losses in the grid for scenario combination nc.
f3(nc) Total cost of active energy at slack bus for scenario combination nc.
f4(nc) Total cost of reactive energy at slack bus for scenario combination nc.
FPDF Probability distribution function.
fP(nc) Network active power function for scenario combination nc.
fQ(nc) Network reactive power function for scenario combination nc.
g Equality equations.
ρ Density function.

Parameters

L Upper bound on integer variables.
M Total number of sampling intervals in each prediction horizon.
Nbus Total number of buses.
Ns Total number of wind power scenarios for each WS.
Npr Total number of processors.
Nc Total number of wind power scenario combinations.
Nw Total number of WSs.
Pd(i) Active power demand at bus i.
PriceP Price for active energy.
PriceO Price for reactive energy.
Pw.R(nw) Rated installed wind power of WS .
Qd(i) Reactive power demand at bus i.
Sl.max(i, j) Upper limit of apparent power flow of line between bus i and j.
SS.max Upper limit of apparent power at slack bus.



Energies 2017, 10, 535 25 of 28

Tp Length of prediction horizon.
TOPF Length of reserved time for computing OPF problems.
Ts Length of sampling interval.
Tr Length of reserved time for data management.
umax Upper limits on continuous decision variables.
umin Lower limits on continuous decision variables.
Vmax(i) Upper limit of voltage at bus i (i 6= 1).
Vmin(i) Lower limit of voltage at bus i (i 6= 1).
VS.max Upper limit of slack bus voltage.
VS.min Lower limit of slack bus voltage.
xmax Upper limits on state variables.
xmin Lower limits on state variables.
µd(i) Mean value for demand at bus i.
σd(i) Standard deviation for demand at bus i.
σw(nw) Standard deviation for wind power of WS nw.
γPs,rev Coefficient of reverse boundary on active power at slack bus.
γQs,rev Coefficient of reverse boundary on reactive power at slack bus.

Random Variables

Pw.A(nw, m) Actual wind power of WS nw in sampling interval m.
Pw(i, nc) Wind power of WS located at bus i for scenario combination nc.
Pw(nc) Vector of active power of WSs for scenario combination nc.
Pw(nw, ns) Wind power of WS nw for wind power scenario combination ns.
Pw.M(nw) Mean (forecasted) wind power of WS nw.
ξ Vector of random variables.

Decision Variables

l Vector of integer decision variables.
u Vector of continuous decision variables.
VS(m) Slack bus voltage in sampling interval m.
VS(nc) Slack bus voltage for scenario combination nc.
βw(i, nc) Curtailment factor of wind power for WS located at bus i for scenario combination nc.
βw(m) Vector of curtailment factors of wind power for WSs in sampling interval m.
βw(nc) Vector of curtailment factors of wind power of WSs for scenario combination nc.
∆VS(nc) Voltage change at slack bus for scenario combination nc.

State Variables

Ploss(nc) Active power losses for scenario combination nc.
PS(nc) Active power injected at slack bus for scenario combination nc.
PS(m) Active power injected at slack bus in sampling interval m.
QS(nc) Reactive power injected at slack bus for scenario combination nc.
QS(m) Reactive power injected at slack bus in sampling interval m.
S(i, j, nc) Apparent power flow from bus i to j for scenario combination nc.
V(i, nc) Voltage at bus i (i 6= 1) for scenario combination nc.
x Vector of state variables.
α(nw) First shape parameter of Beta distribution for WS nw.
β(nw) Second shape parameter of Beta distribution for WS nw.
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