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Abstract: To improve the diagnostic detection speed in electric vehicles, a novel diagnostic algorithm
of insulated gate bipolar transistor (IGBT) open circuit faults for power inverters is proposed in this
paper. The average of the difference between the actual three-phase current and referential three-phase
current values over one electrical period is used as the diagnostic variable. The normalization
method based on the amplitude of the d-q axis referential current is applied to the diagnostic
variables to improve the response speed of diagnosis, and to avoid the noise and the delay
caused by signal acquisition. In the parameter discretization process, the variable parameter
moving average method (VPMAM) is adopted to solve the variation of the average value over
a period with the speed of the motor; hence, the diagnostic reliability of the system is improved.
This algorithm is robust, independent of load variations, and has a high resistivity against false
alarms. Since only the three-phase current of the motor is utilized for calculations in the time domain,
a fast diagnostic detection speed can be achieved, which is significantly essential for real-time control
in electric vehicles. The effectiveness of the proposed algorithm is verified by both simulation and
experimental results.
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1. Introduction

With the advent of more stringent regulations related to emissions, fuel economy, and global
warming, as well as energy resource constraints, electrical, hybrid, and fuel-cell vehicles have attracted
increasing attention from vehicle constructors, governments, and consumers [1]. Electrical machines
and drives are a key enabling technology for electrical, hybrid, and fuel cell vehicles [2]. The fault
diagnosis of rotating electrical machines has received an intense amount of research interest during
the last 30 years [3]. The failure of inverters is fatal in electric vehicles. Therefore, it is vital to adopt
various algorithms to improve the diagnosis of the inverter faults. Timely maintenance and repair after
a failure is very important to prevent a secondary failure, and to ensure the safe and reliable operation
of the control system in electric vehicles.

Short-circuit faults and open circuit faults are the most common faults of insulated gate bipolar
transistors (IGBTs) in power inverters [4]. Short-circuit faults are generally protected by hardware
for its short maintenance time which is generally less than 10 µs. When open circuit faults occur, the
motor is still able to operate. A new secondary failure may occur if it is not detected in the meanwhile.
During driving, these faults may reduce safety which is fatal for electric vehicles. Therefore, it is
essential to detect the open circuit faults in time.
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According to the classification of diagnostic signals, the existing diagnostic algorithms for IGBT
open circuit faults can be broadly divided into the current-based diagnostic algorithms and the
voltage-based diagnostic algorithms. Since the voltage source inverter outputs the voltage signals,
the voltage-based diagnostic algorithms can quickly reflect the current status of the power switch and
have a high reliability. Fast detection times can be achieved by using voltage-based algorithms [5–7].
A very fast detection scheme is proposed for the conventional three-leg converter that minimizes
the use of voltage sensors in [8]. Faults and their locations are detected in less than 50 µs for the
studied parameters.

However, additional voltage sensors may be required, which increases the drive costs
and complexity. Furthermore, in order to avoid false alarms, some time-delay values must
be correctly defined, which can be very difficult since they depend on several variables [9].
Therefore, the voltage-based open circuit fault diagnostic algorithms are rarely used in electric vehicles.
Current-based fault diagnostic algorithms do not need to add additional sensors. However, they
have a certain response time constant because the current signal is a state parameter. Therefore,
the current-based fault diagnostic algorithms are influenced by the system state and they have a certain
time lag of detecting the faults.

For electric vehicles, in order to reduce the cost and complexity of the diagnostic system and
ensure their safe and reliable operation, it is required to detect the open circuit faults as fast as possible
while the diagnostic results need to be highly reliable without additional sensors [10].

An open circuit fault diagnostic algorithm based on the Park’s vector center is proposed in [11].
In this algorithm, open circuit faults are detected by calculating the position of the current trajectory’s
midpoint, which is the average value of the AC current space vector over one period. An open circuit
fault diagnosis algorithm based on Park’s vector slope is proposed in [12]. The slope of the diameter of
the current space vector trajectory is used to identify the faulty leg and the missing half-cycle of the
current waveform is used to localize the faulty switch. In order to solve the drawback of being load
dependent, a normalized DC current algorithm is proposed in [13], which is an improvement over
Park’s vector method. A modified normalized DC current algorithm is proposed in [14]. To prevent
multiple satisfactory conditions, a less restrictive method is employed to localize the faulty switch.
A fault detection and the improved fault-tolerant control for an open fault in the five-phase inverter
driving system is proposed in [15]. A new fault diagnostic algorithm named the wind speed based
normalized current trajectory is proposed and used to accurately detect and locate faulted IGBT in
the circuit arms [16]. A very fast and efficient field-programmable gate array (FPGA) based on the
open circuit switch fault detection method associated to fault tolerant converter topology in DC-DC
converters is proposed in [17]. The detection time of the fault detection method is equal to or less than
one switching period. Intelligent algorithms such as the clustering adaptive neuron fuzzy inference
system [18], fuzzy-based algorithm [19], and wavelet transforms and neural network algorithms [20]
are also proposed. However, due to the complexity of the intelligent algorithm and the large amount
of computation, it is not suitable for real-time applications.

The fault diagnostic algorithms are compared and analyzed for their effectiveness, resistivity
against false alarms, detection time, implementation, and tuning effort [21]. Among the open circuit
fault algorithms, the modified normalized DC current algorithm is found to be very effective in
detecting faults with a high resistivity to false alarms. In addition, it is independent of load variations.
However, the modified normalized DC algorithm requires the discrete Fourier transform of the
three-phase current, which may reduce the diagnostic detection speed.

The primary objective of this paper is to present a fast-acting diagnostic algorithm of IGBT
open circuit faults for power inverters to improve the diagnostic detection speed, while ensuring
the reliability of the diagnostic results in electric vehicles. The average of the difference between the
actual three-phase current and the referential three-phase current values over one electrical period
is used as the diagnostic variable. The three-phase referential current is obtained by transforming
the target d-q axis current. In order to eliminate the diagnostic error caused by the load variations,
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the normalization method is adopted. Since the magnitude of the d-q axis current is the same as the
magnitude of the three-phase current and is not affected by the signal acquisition, the average value of
the d-q axis current amplitude over one electrical period is taken as the normalized referential value.
In the parameter discretization process, the variable parameter moving average method (VPMAM) is
used to automatically adjust the counting cycle according to the motor speed to be adapted to the fault
diagnosis at different motor speeds. As only the three-phase current is used, the system does not need
additional sensors, which is beneficial regarding the system complexity and cost. This algorithm has
the advantages of fast detection speed and high resistivity against false alarms which are significantly
essential for real-time control in electric vehicles.

MATLAB/SIMULINK (MathWorks, Natick, MA, USA) models are built to analyze the proposed
algorithm. Furthermore, experiments are carried out to verify the algorithm.

2. Analysis of IGBT Open Circuit Faults

The structure of the three-phase inverter is shown in Figure 1, where the six half-bridges
corresponding to the six IGBTs are numbered T1–T6.

Energies 2017, 10, 552 3 of 16 

 

magnitude of the three-phase current and is not affected by the signal acquisition, the average value 
of the d-q axis current amplitude over one electrical period is taken as the normalized referential 
value. In the parameter discretization process, the variable parameter moving average method 
(VPMAM) is used to automatically adjust the counting cycle according to the motor speed to be 
adapted to the fault diagnosis at different motor speeds. As only the three-phase current is used, the 
system does not need additional sensors, which is beneficial regarding the system complexity and 
cost. This algorithm has the advantages of fast detection speed and high resistivity against false 
alarms which are significantly essential for real-time control in electric vehicles. 

MATLAB/SIMULINK (MathWorks, Natick, MA, USA) models are built to analyze the 
proposed algorithm. Furthermore, experiments are carried out to verify the algorithm. 

2. Analysis of IGBT Open Circuit Faults 

The structure of the three-phase inverter is shown in Figure 1, where the six half-bridges 
corresponding to the six IGBTs are numbered T1–T6. 

dcV

ai

bi

ci

 
Figure 1. Structure of the three-phase inverter. 

The current of phase A with an open circuit fault in T1 at 1000 rpm/100 Nm is shown in Figure 2. 
In normal operation, by the regulation of the motor current closed-loop, the actual and referential 
three-phase currents of the motor are basically coincident. When an open circuit fault occurs in T1 at 
0.05 s, phase A cannot output positive voltage, and then the current regulator can only output 
negative current, leading to the difference between the actual and referential three-phase current. 
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Figure 1. Structure of the three-phase inverter.

The current of phase A with an open circuit fault in T1 at 1000 rpm/100 Nm is shown in Figure 2.
In normal operation, by the regulation of the motor current closed-loop, the actual and referential
three-phase currents of the motor are basically coincident. When an open circuit fault occurs in T1 at
0.05 s, phase A cannot output positive voltage, and then the current regulator can only output negative
current, leading to the difference between the actual and referential three-phase current.
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Due to the three-phase symmetry, the trajectory of the stator current in normal operation is circular.
The trajectory of the stator current at 1000 rpm/100 Nm is shown in Figure 3.Energies 2017, 10, 552 4 of 16 
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Figure 5. Diagram of the proposed open circuit fault diagnostic algorithm. 

Figure 3. Trajectory of the current with no fault at 1000 rpm/100 Nm.

When an open circuit fault occurs, the trajectory of the stator current will be distorted, resulting
in asymmetry, as shown in Figure 4. A trajectory similar to a straight line appears in the trajectory of
the stator current. The trajectory appears only on one side of the circle, and it is no longer symmetrical.
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Figure 4. Trajectory of stator current with an open circuit fault at 1000 rpm/100 Nm: (a) Open circuit
fault in T1; (b) Open circuit fault in T2; (c) Open circuit fault in T3; (d) Open circuit fault in T4; (e) Open
circuit fault in T5; and (f) Open circuit fault in T6.

3. Proposed Fault Diagnostic Algorithm

The proposed open circuit fault diagnostic algorithm is shown in Figure 5.
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The d-q axis current cannot be directly utilized for fault diagnosis because of the regulation of the
current closed-loop. In this paper, the average of the difference between the actual three-phase current
and the referential three-phase current values over one electrical period is used as the diagnostic
variable. The three-phase referential current can be obtained from the target d-q axis current through
the inverse Park transformation and inverse Clark transformation.

The average value of parameter X over one electrical period 〈X〉 can be expressed as follows:

〈X〉 = fcurrent

∫ 1
fcurrent

0
Xd t =

ωe

2π

∫ 2π
ωe

0
Xd t (1)

The difference between the actual three-phase current and the referential three-phase current
values can be expressed as follows:

en = i∗n − in (2)

To improve the reliability of the diagnostic system, the average value of en in one electrical period
〈en〉 is used as the diagnostic variable to reduce the misdiagnosis caused by the interference signal.
The value of 〈en〉 is related to the magnitude of the phase current which represents the current load
of the motor. In order to be independent of load variations, the normalization method is adopted.
There are mainly three different normalized referential values: the first order harmonic coefficients of
the three-phase current over one period [14]; the magnitude of the d-q axis current over one period [11];
and the average absolute values of the three-phase current over one period [9]. The first order harmonic
coefficients usually require a large amount of computation due to the utilization of the discrete Fourier
transform. The average absolute values of the three-phase current are affected by the noise of the
signal acquisition and signal delay. Since the amplitude of the d-q axis current is the same as the
magnitude of the three-phase current and is not affected by the signal acquisition, the 1/π time of
average amplitude of the d-q axis current over one period is used as the normalized referential value.
Thus, the normalized diagnostic variables can be expressed as follows:

dn =
π〈en〉〈√

(i∗d)
2 + (i∗q )

2
〉 (3)

Ideally, the three-phase current is fully balanced which can be expressed as follows:

ia = Im sin(ωet + φ)

ib = Im sin(ωet− 2π
3 + φ)

ic = Im sin(ωet− 4π
3 + φ)

(4)

where Im is the amplitude of the three-phase current, φ is the initial phase, and ωe is the electrical
angular velocity. If the current follows this well, the referential d-q axis current can be expressed
as follows:

i∗d = Im cos β

i∗q = Im sin β
(5)
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where β is the angle between the stator current vector and the d-axis.
The diagnostic variables can be obtained by substituting Equations (4) and (5) into

Equations (1) and (3). Ideally, in closely follows i∗n due to the current closed loop, and thus en is equal
to zero. Actually, en is not equal to zero due to the acquisition error and noise. However, the average
value of en over one period 〈en〉 is approximately equal to zero due to the randomness of error.
Therefore, dn is approximately equal to zero. When an open circuit fault occurs in T1, the upper
half-bridge of phase A cannot output voltage. Therefore the output current of phase A in the first half
of the period is zero, while the last half is normal. The output current of phase A can be expressed
as follows:

ia =

{
0 2π−φ

ω < t < (2k+1)π−φ
ω

Im sin(ωt + φ) (2k+1)π−φ
ω < t < (2k+2)π−φ

ω

(6)

Substituting Equation (6) into Equations (1) and (3), the diagnostic variable of phase A can be
expressed as follows:

da =

π×
[

ωe
2π

∫ (2k+2)π−φ
ωe

2kπ−φ
ωe

Im sin(ωet + φ)dt− ωe
2π

∫ (2k+2)π−φ
ωe

(2k+1)π−φ
ωe

Im sin(ωet + φ)dt
]

ωe
2π

∫ (2k+2)π−φ
ωe

2π−φ
ωe

[√
(Im sin β)2 + (Im cos β)2

]
dt

= 1 (7)

It can be similarly analyzed when the open circuit fault occurs in the other half-bridges. It can
be proven that the value of the diagnostic variable dn is approximately equal to 1 for an open circuit
fault in the upper half-bridge and −1 for an open circuit fault in the lower half-bridge. Therefore, the
open circuit fault can be located by identifying which diagnostic variable is beyond the threshold K f ,
as shown in Table 1.

Table 1. Localization of the open circuit fault. IGBT: Insulated Gate Bipolar Transistor.

Faulty IGBT da db dc

T1 > K f - -
T2 - > K f -
T3 - - > K f
T4 < −K f - -
T5 - < −K f -
T6 - - < −K f

Ideally, the values of the diagnostic variables are 0 and 1 in normal and faulty conditions,
respectively. Therefore, K f should be between 0 and 1. A smaller value of K f can improve the
diagnostic speed of the system, but may also lead to the possibility of misdiagnosis and vice versa.
In order to improve the system response speed and diagnostic reliability, the selection for the value of
K f should consider the worst condition (usually a huge load variation) [9]. The value of K f should be
as small as possible in the case of meeting the worst condition.

In the analysis above, 〈X〉 is defined as an analog parameter which needs to be discretized in the
control process. The simple moving average method is commonly utilized to discretize the parameter.
The simple moving average method averages a fixed number of data. It can be expressed as follows:

Xk_Avg =
n−1

∑
i=0

X((k− i)τ)/n (8)

where Xk_Avg is the moving average value at k-time, n is the number of data, τ is the control period,
and X((k− i)τ) is the actual value at i-time before k-time.
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〈X〉 is the average value of the discrete variables over an electrical period. However, the electrical
period constantly changes with the motor speed. Therefore, the number of data used for the average
cannot simply be a fixed value, it should vary with the electrical period synchronously. The VPMAM
is obtained by replacing the parameter n of the simple moving average method with the parameter N
which varies with the electrical period. N can be expressed as follows:

N =
2π

ωeτ
(9)

Thus, the VPMAM can be expressed as follows:

〈X〉 = 1
N

N−1

∑
i=0

X((k− i)τ) =
ωeτ

2π

ωeτ
2π −1

∑
i=0

X((k− i)τ) (10)

4. Simulation and Analysis

MATLAB/SIMULINK models are developed to examine the proposed algorithm. The permanent
magnet synchronous motor (PMSM) is an attractive candidate for electric vehicles due to its advantage
of high power density [22]. A 75-kW PMSM for an electric vehicle is used in this paper, and its
parameters are shown in Table 2 [23].

Table 2. Parameters of the Permanent Magnet Synchronous Motor (PMSM).

Parameter Symbol Value

Number of pole pairs p 6
Stator resistance Rs 4.23 mΩ

Magnet flux linkage λs 0.1039 Wb
d-axis inductance Ld 0.171 mH
q-axis inductance Lq 0.391 mH

DC linkage voltage Vdc 288 V
Maximum speed nb 4000 rpm

Peak motor current Ipk 570 Apk
Rated power Pr 75 kW
Peak torque Tmax 540 Nm

Coefficient of RSac to RsDC M 0.1
Hysteresis current coefficient Kh 0.6637

Eddy current coefficient Ke 0.00084
Stray loss coefficient cStr 2.56 × 10−9

Mechanical friction torque Tfric 5.24
Windage torque coefficient cwind 3.35 × 10−3

The simulation model is shown in Figure 6.
As shown in Figure 6, the simulation model includes the DC voltage source subsystem,

the 75 kW PMSM subsystem, the universal bridge subsystem, and the PMSM-space vector modulation
(PMSM-SVM) subsystem. Moreover, the proposed diagnostic algorithm is included in the PMSM-SVM
subsystem. The pulse width modulation (PWM) frequency is set as 10 kHz and the proportional
integral (PI) current regulating frequency is set as 20 kHz. The dead time and the voltage drop of the
power device are ignored in the simulation. The IGBT open circuit faults are generated by removing
the gate command signals of the required IGBTs.

In order to illustrate that the proposed algorithm is independent of load variations, low speed
600 rpm, rated speed 2000 rpm, and high speed 2800 rpm at rated torque conditions, rated speed
at 10% rated torque, and sudden change of the load torque conditions are analyzed in this paper.
Since the three phases are symmetrical, only the open circuit faults in phase A are analyzed.



Energies 2017, 10, 552 8 of 16
Energies 2017, 10, 552 8 of 16 

 

 
Figure 6. Simulation model. 

4.1. Analysis of the Response 

For convenience, the open circuit fault in the upper bridge of phase A is analyzed. Define x as: 

ex tω φ= +  (11)

Assuming that the open circuit fault occurs when 0x = , the diagnostic variable ad  changing 
with the rotor electrical angular degrees can be expressed as follows:

 

 

θ θ

θ

θ

θ π

θ θ

θ

−

−

  − −   −  = ≤= 

 >

 


2π 0

2

π sin d ( sin d ) 1 cos π
2d

1 π

m m

a
m

I x x I x x

d I x  (12)

As shown in Equation (12), 0.5ad =  when θ =π / 2 , and 1ad =  when θ =π . The diagnostic 
variable can reach 0.5 in one quarter of the electrical period and can reach 1 in half of the electrical 
period after the failure. Therefore, the detection speed is fast. 

If the average absolute value of the actual three-phase current over one electrical period is used 
as the normalized referential value [9], the corresponding diagnostic variable '

ad  can be expressed 
as follows: 

θ θ

θ
θ θ

θ

θ θ
θ

θ

−

−

 − − − = ≤= + −

 >

 
 

2π 0

2π 0

'
sin d ( sin d ) 1 cos π

3 cossin d sin d

1 π

a

x x x x

d x x x x  (13)

The two diagnostic variables with different normalized referential values varying with rotor 
electrical angular degrees are plotted in Figure 7. 

As shown in Figure 7, although the two diagnostic variables achieve stability at the same time, 
the algorithm presented in this paper has a higher value of the diagnostic variable and a better 
response before achieving stability. In fact, a value smaller than 1 is often used as a threshold 
considering the response. Compared with the algorithm using the actual current as the normalized 
referential value, the proposed algorithm can not only avoid the interference errors caused by the 
actual current acquisition, but also detect the faults faster. 

Figure 6. Simulation model.

4.1. Analysis of the Response

For convenience, the open circuit fault in the upper bridge of phase A is analyzed. Define x as:

x = ωet + φ (11)

Assuming that the open circuit fault occurs when x = 0, the diagnostic variable da changing with
the rotor electrical angular degrees can be expressed as follows:

da =


π
[∫ θ

θ−2π Im sin xd x−(−
∫ θ

0 Im sin xd x)
]

∫ θ
θ−2π Imd x

= 1−cos θ
2 θ ≤ π

1 θ > π

(12)

As shown in Equation (12), da = 0.5 when θ = π/2, and da = 1 when θ = π. The diagnostic
variable can reach 0.5 in one quarter of the electrical period and can reach 1 in half of the electrical
period after the failure. Therefore, the detection speed is fast.

If the average absolute value of the actual three-phase current over one electrical period is used
as the normalized referential value [9], the corresponding diagnostic variable d′a can be expressed
as follows:

d′a =


∫ θ

θ−2π sin xdx−(−
∫ θ

0 sin xdx)∫ θ
θ−2π |sin x|dx−

∫ θ
0 |sin x|dx

= 1−cos θ
3+cos θ θ ≤ π

1 θ > π

(13)

The two diagnostic variables with different normalized referential values varying with rotor
electrical angular degrees are plotted in Figure 7.

As shown in Figure 7, although the two diagnostic variables achieve stability at the same time,
the algorithm presented in this paper has a higher value of the diagnostic variable and a better response
before achieving stability. In fact, a value smaller than 1 is often used as a threshold considering the
response. Compared with the algorithm using the actual current as the normalized referential value,
the proposed algorithm can not only avoid the interference errors caused by the actual current
acquisition, but also detect the faults faster.
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4.2. Analysis of the Diagnostic Algorithm under Different Speed and Torque Conditions

The simulation results when an open circuit fault occurs in T4 at 0.1 s at 2000 rpm/358 Nm and
2000 rpm/36 Nm are shown in Figures 8 and 9. As shown in Figure 8, at 2000 rpm/358 Nm, the output
torque and current of the motor are stable and the diagnostic variable is around zero under normal
conditions. When an open circuit fault occurs in T4, phase A can only output positive current, while
the currents of phase B and phase C are distorted and fluctuate with the peak-to-peak value up to
1500 A. Furthermore, the output torque of the motor is unstable, the period of the torque ripple is
the same as the period of the phase current, and the peak-to-peak value of the torque ripple is above
800 Nm. The diagnostic variables change rapidly after the open circuit fault occurs. The value of
Da decreases to approximately 1.05 (existing error due to the white noise during current sampling
in the simulation) and the other two variables of Db and Dc increase to approximately 0.34 and 0.22.
Furthermore, when the current of phase A is in the upper half period at 0.1 s, the open circuit fault
does not affect the actual current. When the current of phase A crosses zero at 0.1011 s, and since
phase A cannot output negative voltage, the three-phase current starts to distort due to the open circuit
fault. The value of Da decreases to −0.5 and −1 at 0.1023 s (after 46% of the current period) and
0.1031 s (after 62% of the current period), respectively. At 2000 rpm/36 Nm, the stable value of the
three diagnostic variables are −1, 0.44 and −0.16, respectively. The simulation results are similar to
those at 2000 rpm/358 Nm except for the magnitude of the torque and current.

The simulation results when an open circuit fault occurs in T4 at 0.1 s at 600 rpm/358 Nm and
2800 rpm/256 Nm are shown in Figures 10 and 11. As shown, the performance of the diagnostic
algorithm at lower and higher speeds is consistent with that under rated condition. The open circuit
fault can be detected accurately and the value of Da is stable around −1. The simulation results show
that the proposed algorithm is independent of load variations and has a good robustness.
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4.3. Analysis of the Diagnostic Algorithm under a Sudden Change of Load Torque Conditions

To illustrate the resistivity against false alarms of the proposed algorithm, a torque pulse from
zero to the rated torque is applied to the motor at rated speed (2000 rpm), and the simulation results
are shown in Figure 12. When the load torque of the motor increases to the rated torque from zero at
0.01 s, the difference between the actual three-phase current and the referential three-phase current
values is slightly increased, leading to the increase of the diagnostic variables. When the load torque
of the motor decreases to zero from the rated torque at 0.05 s, the diagnostic variables also increase.



Energies 2017, 10, 552 12 of 16

However, as shown in Figure 12, the amplitudes of the diagnostic variables are always smaller than
0.5 under normal conditions.Energies 2017, 10, 552 12 of 16 

 

 
Figure 12. Diagnostic results under a sudden change of load torque conditions. 

5. Experimental Results 

The effectiveness of the proposed algorithm is tested experimentally with the PMSM as shown 
in Table 2. The experimental setup basically comprises a PMSM coupled to a Siemens dynamometer 
(1GP5-280) (Siemens Aktiengesellschaft, Munich, Germany) test system, a LiFePO4 battery pack (288 
V/180 Ah), a HBM torque meter (T40) (Hottinger Baldwin Messtechnik GmbH, Darmstadt, 
Germany) and an inverter developed internally. In the inverter, an Infineon six-pack IGBT 
(FS800R07A2E3) (Infineon Technologies AG, Neubiberg, Germany) is used as the power switches; a 
TI digital signal processor (TMS320F28335) (Texas Instruments Incorporated, Dallas, TX, USA) 
carries out the real-time algorithm; three LEM current sensors (HAH1DR 900-s) (LEM Switzerland 
SA, Genève, Switzerland) measure the stator phase current. The experimental bench is shown in 
Figure 13. 

 
Figure 13. Experimental Bench. 

The IGBT open circuit faults are controlled by the user by removing the gate command signals 
of the required IGBTs. The maximum implemented collector current of the IGBT used in the 

Figure 12. Diagnostic results under a sudden change of load torque conditions.

5. Experimental Results

The effectiveness of the proposed algorithm is tested experimentally with the PMSM as
shown in Table 2. The experimental setup basically comprises a PMSM coupled to a Siemens
dynamometer (1GP5-280) (Siemens Aktiengesellschaft, Munich, Germany) test system, a LiFePO4
battery pack (288 V/180 Ah), a HBM torque meter (T40) (Hottinger Baldwin Messtechnik GmbH,
Darmstadt, Germany) and an inverter developed internally. In the inverter, an Infineon six-pack IGBT
(FS800R07A2E3) (Infineon Technologies AG, Neubiberg, Germany) is used as the power switches; a TI
digital signal processor (TMS320F28335) (Texas Instruments Incorporated, Dallas, TX, USA) carries out
the real-time algorithm; three LEM current sensors (HAH1DR 900-s) (LEM Switzerland SA, Genève,
Switzerland) measure the stator phase current. The experimental bench is shown in Figure 13.
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The IGBT open circuit faults are controlled by the user by removing the gate command signals of
the required IGBTs. The maximum implemented collector current of the IGBT used in the experiments
is 800 A. Considering the reliability, the maximum amplitude of the phase current is limited to
600 A by the Altera complex programmable logic device (EPM240T100I5N) (Intel Corporation,
Santa Clara, CA, USA). The three-phase current will be distorted in the fault state. It is difficult
to obtain the experimental results at 2000 rpm/358 Nm and 2800 rpm/256 Nm because the distorted
current will exceed the limited amplitude of the phase current. Therefore, the experiments are operated
at 600 rpm/358 Nm and under a sudden change of the load torque conditions. The experimental
results are shown in Figures 14 and 15.

As shown in Figure 14, at 600 rpm/358 Nm, the output torque and current of the motor are stable
and the diagnostic variables are around zero under normal conditions. When an open circuit fault
occurs in T4 at 0.1 s, phase A can only output positive current, while the currents of phase B and
phase C are distorted and fluctuate with the peak-to-peak value up to 1200 A. Furthermore, the output
torque of the motor is unstable, the period of the torque ripple is the same as the period of the phase
current, and the peak-to-peak value of the torque ripple is above 700 Nm. The diagnostic variables
change rapidly after the open circuit fault occurs. The value of Da decreases to approximately −1
and the other two variables of Db and Dc increase to approximately 0.41 and 0.32. Moreover, when
the current of phase A is in the upper half period at 0.1 s, the open circuit fault does not affect the
actual current immediately. When the current of phase A is crossing zero at 0.1021 s, and since phase
A cannot output negative voltage, the three-phase current starts to distort due to the open circuit fault.
The value of Da decreases to −0.5 and −1 at 0.1045 s (after 27% of the current period) and 0.1047 s
(after 28% of the current period), respectively.

To illustrate the resistivity against false alarms of the proposed algorithm, a torque pulse from
zero to the rated torque is applied to the motor at rated speed (2000 rpm), and the experimental results
are shown in Figure 15. When the load torque of the motor increases to the rated torque from zero at
0.05 s, the difference between the actual three-phase current and the referential three-phase current
values increases slightly, leading to the increase of the diagnostic variables. When the load torque
of the motor decreases to zero from the rated torque at 0.2 s, the diagnostic variables also increase.
However, as shown in Figure 15, the amplitudes of the diagnostic variables are always smaller than
0.5 under normal conditions. Considering the response and reliability of the system, the threshold K f
is set to be 0.75.

As shown in Figures 14 and 15, the output torque and the diagnostic variables have a certain
lower harmonic. Under normal conditions, the three-phase current is not completely symmetrical,
however, the trend is basically the same as that in the simulations. The reason of the deviation is that
the simulation results do not take into account the dead-time effect of the switch, and the deviation
and noise of the current and the position acquisition, resulting in the simulation results being better
than the experimental results.

As shown in the simulation and experimental results, since the diagnostic variables are
normalized, the thresholds are universal and can distinguish the open circuit faults accurately at
different loads of the motor. Thus, this algorithm is independent of the load variations.

Typically, the detection speed of a current-based algorithm depends on the time instant of the
fault occurrence [24]. Specifically, if a fault occurs in the bottom IGBT and during the negative current
half-cycle of the respective phase, the effect can be immediately seen since the current tends to be zero.
Thus, the detection speed is relatively faster. However, if a fault occurs in the bottom IGBT and during
the positive current half-cycle of the respective phase, the fault effects cannot be immediately seen and
will just be seen at the next current half-cycle; hence, the fault can remain undetected for a period of
time that exceeds half of the current fundamental period. Thus, the detection speed is relatively slower.
An equivalent result is also verified for a fault in the top IGBT of the respective phase. Considering
this, the best way to evaluate the detection speed is to obtain the detection time for a fault occurrence
at different instants of the current period.
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Table 3 summarizes the detection speed results, showing the minimum, average, and maximum
detection times achieved by the different algorithms. The modified normalized DC current algorithm
is selected to compare with the proposed algorithm in this paper. Among the open-circuit fault
algorithms, the modified normalized DC current method is found to be very effective in detecting
faults with a high resistivity to false alarms. In addition, it is independent of the load variations [21].
Specifically, the minimum, average, and maximum detection times of the proposed algorithm are
calculated according to the experimental results at 600 rpm/358 Nm.

As shown in Table 3, the proposed algorithm presents a much faster detection speed than the
modified normalized DC current algorithm.

Table 3. Comparison of the detection speed.

Diagnostic Algorithm
Detection Speed (% Current Period)

Min Average Max

Modified Normalized
DC current [14] 33 79.5 125

Proposed Algorithm 14.9 36.2 64.9

6. Conclusions

In this paper, a fast-acting diagnostic algorithm of IGBT open circuit faults for power inverters in
electric vehicles is presented. The common open circuit faults of an inverter are analyzed. When an
open circuit fault occurs, the half-bridge of the inverter can only output positive or negative current,
resulting in the difference between the actual three-phase current and the referential three-phase
current values. Based on this difference, the diagnostic algorithm for open circuit faults is proposed,
combined with the normalization method and the VPMAM.

The effectiveness of the algorithm is verified by both simulations and experiments. This algorithm
is robust, independent of load variations, and has a high resistivity against false alarms. Since only the
three-phase current of the motor is utilized for calculations in the time domain, the algorithm needs
less implementation effort.

Compared with other similar diagnostic algorithms, the proposed algorithm is much faster.
The results show that the minimum detection speed of the proposed algorithm can be 14.9% of the
motor phase current fundamental period, which is essential for real-time control in electric vehicles.
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