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Abstract: Four typical types of artificial defects are designed in conducting the decomposition
experiments of SF6 gas to obtain and understand the decomposition characteristics of SF6

gas-insulated medium under different types of negative DC partial discharge (DC-PD), and use
the obtained decomposition characteristics of SF6 in diagnosing the type and severity of insulation
fault in DC SF6 gas-insulated equipment. Experimental results show that the negative DC partial
discharges caused by the four defects decompose the SF6 gas and generate five stable decomposed
components, namely, CF4, CO2, SO2F2, SOF2, and SO2. The concentration, effective formation
rate, and concentration ratio of SF6 decomposed components can be associated with the PD
types. Furthermore, back propagation neural network algorithm is used to recognize the PD types.
The recognition results show that compared with the concentrations of SF6 decomposed components,
their concentration ratios are more suitable as the characteristic quantities for PD recognition,
and using those concentration ratios in recognizing the PD types can obtain a good effect.

Keywords: SF6; negative DC-PD; decomposed components; concentration ratio; back propagation
neural network; PD recognition

1. Introduction

Given the connection of new large-scale energy and the rapid development of HVDC transmission
technology and flexible HVDC technology, DC gas-insulated equipment (DC-GIE) has attracted
significant attention because of its technological advantages in improving system reliability and
reducing space occupation [1–6]. Pure SF6 gas has stable chemical properties and is not easily
decomposed. However, under the effect of the partial discharge (PD), spark discharge, arc discharge,
overheating, and other factors, SF6 gas is decomposed into various low-fluoride sulfides (such as
SF5, SF4, SF3, SF2, and SF). These low-fluoride sulfides then react with the trace air and moisture that
inevitably exist in the DC-GIE to produce stable decomposition products, such as sulfuryl fluoride
(SO2F2), thionyl fluoride (SOF2), thionyl tetrafluoride (SOF4), sulfur dioxide (SO2), carbon tetrafluoride
(CF4), carbon dioxide (CO2), hydrogen fluoride (HF), and hydrogen sulfide (H2S) [7–12]. Some of these
products, particularly SO2, HF, and H2S, can corrode metal parts and solid insulation in equipment,
thereby accelerating insulation aging and reducing the overall insulation performance of the equipment.
Eventually, the safe and reliable operation of the equipment and the entire power grid is compromised.

SF6 gas component analysis (GCA) is a non-electrical detection method, which can effectively
avoid the complex electromagnetic interference of substations and has become a popular research
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topic in recent years [13–16]. In [17–19], the SF6 decomposed products under arc, spark, and corona
discharges were studied. Tang et al. compared and analyzed the decomposition characteristics of SF6

under two types of common PDs [20], and recognized four typical PD types [21,22]. A large number of
studies have shown that the type, concentration, and formation law of SF6 decomposed components
are closely related to the type and severity of insulation faults in GIE. However, the recent studies have
mainly focused on monitoring the insulation status of AC-GIE using the decomposition characteristics
of SF6 under PD [23–28]. The research focus has not extended to the DC field yet.

Therefore, four artificial models are designed in this study to simulate the common insulation
defects in DC-GIE. These four defect models are placed in the built decomposition device of SF6

under negative DC conditions, respectively, and PD initial voltage is applied 1.2 times on the defect.
As a result, SF6 decomposes differently under the four defects, and the decomposed components are
quantitatively detected by the gas chromatography/mass spectrometry (GC/MS) detection method.
The decomposition characteristics of SF6 under four types of negative DC partial discharge (DC-PD)
are obtained. The relationship between the decomposition characteristics of SF6 and the PD types
was further studied. Moreover, back propagation (BP) neural network algorithm [29–38] is used to
recognize the PD types. Then, the best characteristic quantity for PD recognition is extracted. This
study lays a solid foundation of using GCA method to diagnose the insulation faults in DC-GIE and
assess its insulation status.

2. Experiment

2.1. Experimental Wiring

The experimental wiring of SF6 decomposition under negative DC-PD is illustrated in Figure 1.
A voltage regulator (T1: 0–380 V) and a testing transformer (T2: 50 kVA/100 kV) provide the AC high
voltage (AC-HV). The AC-HV is converted into DC testing voltage by using a half-wave rectifier circuit,
which comprises a HV silicon stack (Ds: 100 kV/5 A) and a filter capacitor (Cf: 0.2 µF). Two protective
resistors (R1: 20 kΩ, R2: 20 kΩ) are used to protect the system. A capacitive voltage divider (Cv) is
used to measure the value of AC output voltage of the transformer, and a resistive voltage divider
(Rv) is employed to measure the value of DC testing voltage applied across the defect. A coupling
capacitor (Ck: 500 pF/100 kV) is used to extract the pulse voltage. A non-inductive detection impedance
(Zm: 50 Ω) is used to send the pulse current signal to the digital storage oscilloscope (DSO). The DSO
(WavePro 7100XL, New York, USA, analogue band: 1 GHz, sampling rate: 20 GHz, memory depth:
48 MB) is used to monitor the PD magnitude. The structure of the gas chamber is shown in Figure 2,
and its volume is 60 L. A GC/MS (Shimadzu QP-2010Ultra, Kyoto, Japan, precision: 0.01 ppm,
accuracy: ±10%) is used to measure the sample gas components quantitatively. The GC/MS uses He
(purity: 99.9995%) as the carrier gas and deploys the special capillary column CP-Sil5CB (Shimadzu,
Kyoto, Japan) to separate different components.
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Figure 1. Experimental wiring of SF6 decomposition under negative DC-PD. Figure 1. Experimental wiring of SF6 decomposition under negative DC-PD.
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Figure 2. Structure of the gas chamber: 1 stainless-steel shell; 2 top cover; 3 HV bushing; 4 HV 
conductor; 5 flange; 6 screw; 7 ball valve; 8 vacuum pressure gauge; 9 vacuum pump; 10 injection 
port; 11 supporting foot; 12 epoxy loop; 13 ground conductor; 14 insulation defect; and 15 sampling 
port. 

2.2. Insulation Defect Model 

As shown in Figure 3, typical defects in practical DC-GIE include: metallic protrusion, which is 
usually manifested as the abnormal bulge on a HV conductor [39]; free conductive particle, which is 
generally shown as the metal powder that can move freely in a cavity [40]; insulator pollution, which 
is formed by various pollution on the surface of an insulator [41]; and insulator gap, which is formed 
by peeling a gap between a HV conductor and disc insulator [42]. The protrusion defect is the most 
harmful and the particle defect is the most typical in DC-GIE. According to the characteristics of these 
defects, the four defect models (protrusion defect, particle defect, pollution defect, and gap defect) 
are designed in this study for experimental research, as shown in Figure 4. All electrodes shown in 
Figure 4 are made of stainless steel, and all plate electrodes have the same size: the thickness and 
diameter are 10 mm and 120 mm, respectively. The experiment in this study uses a needle-plate 
model to simulate the protrusion defect (Figure 4a). The distance between the needle and the plate is 
10 mm. The curvature radius of the needle tip is 0.3 mm. The model of the particle defect consists of 
a ball electrode (HV electrode), a bowl electrode (ground electrode), and 20 aluminum balls  
(Figure 4b). 
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11 supporting foot; 12 epoxy loop; 13 ground conductor; 14 insulation defect; and 15 sampling port.

2.2. Insulation Defect Model

As shown in Figure 3, typical defects in practical DC-GIE include: metallic protrusion, which is
usually manifested as the abnormal bulge on a HV conductor [39]; free conductive particle, which is
generally shown as the metal powder that can move freely in a cavity [40]; insulator pollution, which
is formed by various pollution on the surface of an insulator [41]; and insulator gap, which is formed
by peeling a gap between a HV conductor and disc insulator [42]. The protrusion defect is the most
harmful and the particle defect is the most typical in DC-GIE. According to the characteristics of these
defects, the four defect models (protrusion defect, particle defect, pollution defect, and gap defect)
are designed in this study for experimental research, as shown in Figure 4. All electrodes shown in
Figure 4 are made of stainless steel, and all plate electrodes have the same size: the thickness and
diameter are 10 mm and 120 mm, respectively. The experiment in this study uses a needle-plate model
to simulate the protrusion defect (Figure 4a). The distance between the needle and the plate is 10 mm.
The curvature radius of the needle tip is 0.3 mm. The model of the particle defect consists of a ball
electrode (HV electrode), a bowl electrode (ground electrode), and 20 aluminum balls (Figure 4b).
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Figure 4. Four kinds of insulation defect models (Unit: mm): (a) Protrusion defect; (b) Particle defect;
(c) Pollution defect; and (d) Gap defect.

The diameter of the ball electrode is 50 mm. A hollow sphere is cut to obtain the bowl electrode.
The diameters of the hollow sphere, circular incision, and aluminum ball are 100 mm, 90 mm, and 3 mm,
respectively. The ball and bowl electrodes form a concentric sphere structure. Some copper cuttings
are adhered on the surface of an epoxy cylinder to simulate the pollution defect (Figure 4c). The epoxy
is inserted between two plate electrodes. The size of the copper cuttings is 4 mm × 20 mm. The epoxy
cylinder is 25 mm thick and 80 mm in diameter. An epoxy cylinder is inserted between the two plate
electrodes to create the gap defect model (Figure 4d). A 2-mm gap is maintained between the HV
electrode and the epoxy. The epoxy cylinder is 50 mm thick and 80 mm in diameter.

2.3. Experimental Method

The experimental system is connected as shown in Figure 1. The defect model is placed in the
gas chamber, which is cleaned three times with SF6 gas. Then, the chamber is filled with 0.2 MPa
SF6. The concentration of H2O and O2 in the chamber satisfy the industrial standard of DL/T
596-1996 [43]. The experimental voltage is raised gradually until the oscilloscope can detect the PD
signal. This voltage is the PD initial voltage (U0). The decomposition experiment of SF6 is conducted
for 96 h under the voltage of 1.2 U0. The SF6 decomposed components are collected every 12 h. GC/MS
is used to measure the component concentration. All the experiments are conducted under the same
conditions to ensure comparability. The laboratory temperature and relative humidity are maintained
at 20 ◦C and 50%, respectively. The purity of SF6 gas is 99.9995%.

The experimental results show that the PD initial voltage of the system without the defect is 82 kV.
The PD initial voltages of the system after placing the four defects, and the corresponding experimental
voltages are shown in Table 1. No breakdown occurred at each experimental voltage.
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Table 1. Experimental voltages under four kinds of defects.

Voltage Defect Type

Protrusion Particle Pollution Gap

PD initial voltage (U0) −31.2 kV −28.3 kV −20.3 kV −49.7 kV
Experimental voltage (1.2 U0) −37.4 kV −34.0 kV −24.4 kV −59.6 kV

3. Experimental Results

3.1. PD Characteristics

PD has a cumulative effect on SF6 decomposition. That is, PD repetition rate (N, unit: pulse/s),
the average discharge magnitude of a single pulse (Qavg, unit: pC/pulse), and the average discharge
magnitude in a second (Qsec, unit: pC/s) affect the SF6 decomposition. A certain relationship exists
among these three parameters (N, Qavg, and Qsec), as shown in Equation (1). The measurements of N,
Qavg, and Qsec under the four defects are shown in Table 2. This experiment uses a 50 Ω non-inductive
resistor pulse detection unit to monitor the PD waveforms. A PD calibration circuit is used to calibrate
the PD magnitude, as recommended by IEC 60270:2000 [44]:

Qsec = Qavg × N (1)

Table 2. N, Qavg, and Qsec of PD caused by four kinds of defects.

Defect Type N (pulse/s) Qavg (pC/pulse) Qsec (pC/s)

Protrusion 1836 3.9 7160.4
Particle 322 10.5 3381.0

Pollution 216 6.1 1317.6
Gap 18 29.1 523.8

Table 2 shows that the PD characteristics under the four defects are significantly different. Under
the protrusion defect, Qavg is the smallest, N and Qsec are the largest, and discharge is the most stable.
In this study, the aluminum balls are selected as the metal particles that can move freely. The aluminum
balls easily jump under the influence of an electric field. After the aluminum balls fall, they slide to the
bottom of the bowl electrode. These balls have a concentrated distribution while moving. Therefore,
the PD under the particle defect is stable. Moreover, the PD has the second largest N, Qavg, and Qsec

under the particle defect compared with those under the other three defects. Under the pollution
defect, Qavg and Qsec are small, and N is slightly smaller than that under the particle defect. Under the
same experimental conditions, the gap defect has the most difficulty in producing PD, under this defect,
Qavg is the largest, N and Qsec are the smallest, and discharge has a large dispersion. In summary,
the N, Qavg, and Qsec under the four defects are significantly different, which is the basic reason for
the difference in the SF6 decomposition. This result provides a possibility to study and establish the
corresponding relationship between the decomposition characteristics of SF6 and the defect types.

3.2. Concentrations of SF6 Decomposed Components

Experimental results show that the negative DC partial discharges caused by the four defects
decompose SF6 gas and generate five stable decomposed components, namely, CF4, CO2, SO2F2,
SOF2, and SO2. The relationship between these five decomposed components and the defect types is
investigated in this study.



Energies 2017, 10, 556 6 of 16

3.2.1. Concentrations of CF4 and CO2

As shown in Figure 5a, the CF4 concentration presents a “linearly saturated” growth trend with
time under the particle defect. Under the protrusion and pollution defects, the CF4 concentrations
present an approximately linear growth trend with time. Under the gap defect, the CF4 concentration
features the popular logistic population growth trend called the “S” growth trend with time [45,46].
At 96 h, the CF4 concentration is 2.37 ppm under the particle defect. The CF4 concentrations are
less than 0.32 ppm under the other three defects. Thus, the generation amounts of CF4 are small,
and the change curves of the CF4 concentrations under these three defects are close to one another and
have two intersections in 24 h. Errors existed when GC/MS is used to detect the gas concentration.
Therefore, this study does not recommend selecting CF4 concentration as a characteristic quantity
to recognize the PD types. However, CF4 concentration can be used as an auxiliary criterion for
identifying the particle defect.
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As shown in Figure 5b, the CO2 concentration presents an approximately linear growth trend
with time under the gap defect. Under the other three defects, the CO2 concentrations present a
“linearly saturated” growth trend with time. At 96 h, the concentration relationship of CO2 under the
four defects is as follows: protrusion defect (20.3 ppm) > pollution defect (9.77 ppm) > particle defect
(5.67 ppm) > gap defect (4.69 ppm). CO2 is generated by the reaction of C atoms and O2. Under the
effect of the electric field, the charged particles hit the surface of the electrodes and release C atoms.
During the experiment, the applied voltage remains constant, and C atoms are produced continually.
Therefore, the growth trend of CO2 is mainly determined by the O2 concentration in the chamber. In the
early stage of the experiment, O2 is abundant, thus, the CO2 concentrations increase linearly with time
under the four defects. Under the gap defect, the N and Qsec are small, and the generation amounts of
SF6 decomposed components are small. Hence, the consumed O2 concentration is also small. In the
late stage of the experiment, O2 is also abundant, thus, the CO2 concentration increases linearly with
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time under the gap defect. Compared with those under the gap defect, the generation amounts of SF6

decomposed components under the other three defects are significantly larger, thus, the consumed
O2 concentrations are also remarkably larger. In the late stage of the experiment, the remaining small
amount of O2 inhibits the CO2 formation to some extent, thus, the CO2 concentrations present a
saturated growth trend with time under the other three defects. According to the growth trend and the
value of CO2 concentration, the four defects can be distinguished from one another. Therefore, CO2

concentration can be selected as a characteristic quantity to recognize the PD types.

3.2.2. Concentrations of SO2F2, SOF2, and SO2

Under the four defects, the concentrations of SO2F2, SOF2, and SO2 approximately present a
“linearly saturated” growth trend with time (Figure 6).
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namely, protrusion defect > particle defect > pollution defect > gap defect, which are consistent with 
the value relationships of N and Qsec under the four defects. Thus, the N and Qsec of PD are the main 
factors that influence the formations of SO2F2, SOF2, and SO2. The differences among the curves in 
Figure 6a,b are evident. According to the growth trend and the value of SO2 concentration, the four 
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The concentration relationships of SO2F2, SOF2, and SO2 under the four defects are the same,
namely, protrusion defect > particle defect > pollution defect > gap defect, which are consistent with
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the value relationships of N and Qsec under the four defects. Thus, the N and Qsec of PD are the main
factors that influence the formations of SO2F2, SOF2, and SO2. The differences among the curves in
Figure 6a,b are evident. According to the growth trend and the value of SO2 concentration, the four
defects can be distinguished from one another. Therefore, the concentrations of SO2F2, SOF2, and SO2

can be selected as characteristic quantities to recognize the PD types.
The formation processes of SO2F2 and SOF2 are shown in Figure 7. Under the effect of the electric

field, the charged particles hit the SF6 molecule and generate low-fluoride sulfides (such as SF5, SF4, SF3,
and SF2), and hit the H2O and O2 molecules and generate O atom and OH ion. During the experiment,
the applied voltage remains constant, and low-fluoride sulfides are produced continually. Therefore,
the growth trends of SO2F2 and SOF2 are mainly determined by the concentrations of H2O and O2 in
the chamber. In the early stage of the experiment, H2O and O2 are abundant, thus, the concentrations of
SO2F2 and SOF2 increase linearly with time. H2O and O2 in the chamber are gradually consumed with
time. Moreover, the formation rates of SO2F2 and SOF2 are significantly larger than other components.
In the late stage of the experiment, the further increase in the concentrations of SO2F2 and SOF2 at
large rates is difficult to ensure with the remaining H2O and O2 in the chamber, thus the formations
of SO2F2 and SOF2 are prevented to some extent. Therefore, the concentrations of SO2F2 and SOF2

present a saturated growth trend with time in the late stage of the experiment.
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SO2 is produced by the hydrolysis reaction of SOF2. Thus, the growth trend of SO2 is determined
by the concentrations of SOF2 and H2O. The SOF2 concentrations present a “linearly saturated”
growth trend with time under the four defects. Similarly, the SO2 concentrations also present a
“linear-saturated” growth trend with time under the four defects because of the growth trend of SOF2

concentrations and the consumption condition of H2O in the chamber.

3.3. Formation Rates of SF6 Decomposed Components

The severity of the insulation defect is difficult to assess accurately based only on the
concentrations of SF6 decomposed components. The formation rates of SF6 decomposed components
should also be considered because they can directly reflect the fault consumed energy, fault type, fault
severity, and fault development process. Therefore, this study adopts the effective formation rate
(RRMS) [47] to study the relationship between SF6 decomposed components and PD types. RRMS is
expressed as follows:

RRMS =

√√√√√ 4
∑

j=1
R2

aij

4
, (2)

where Raij is the absolute formation rate of component i in day j. Ra is the absolute formation rate
(ppm/day) and is calculated using the following equation:

Ra =
Ci2 − Ci1

∆t
, (3)
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where Ci1 is the concentration of component i from the first measurement time, Ci2 is the concentration
of component i from the second measurement time,4t is the time interval between two measurement
times, and4t = 1 day in this study.

The effective formation rates of SF6 decomposed components under the four defects are shown
in Table 3. Under the protrusion defect, the RRMS of CF4 is the smallest, and the effective formation
rates of CO2, SO2F2, SOF2, and SO2 are remarkably larger than those under the other three defects.
The RRMS of SOF2 under the particle defect is three times the RRMS of SOF2 under the pollution defect,
which is eight times the RRMS of SOF2 under the gap defect. The RRMS of CO2 under the pollution
defect is nearly two times the effective formation rates of CO2 under the particle and gap defects.
Under the gap defect, the sum of the effective formation rates of SF6 decomposed components is the
smallest. The effective formation rates of SF6 decomposed components under the four defects are
different from one another, thus, they can be used to recognize the PD types.

Table 3. Effective formation rates of SF6 decomposed components.

Defect Type RRMS (ppm/day)

CF4 CO2 SO2F2 SOF2 SO2

Protrusion 0.04 5.59 18.79 79.96 1.95
Particle 0.68 1.53 1.66 10.00 1.25

Pollution 0.05 2.76 1.02 3.50 0.33
Gap 0.09 1.26 0.44 1.31 0.10

Under the particle defect, the aluminum balls (Weihua Aluminum Industry Co., Ltd., Wuhan,
China, mass fraction of C element: 0.88%) can provide C atoms for CF4 formation, and the PD has
the second largest N, Qavg, and Qsec, thus, the RRMS of CF4 is the largest. Under the pollution defect,
the epoxy block can provide abundant C atoms for CO2 formation, thus, the RRMS of CO2 is larger
than that under the particle defect. Under the protrusion, pollution, and gap defects, the RRMS
relationship of CO2 is consistent with the value relationships of N and Qsec. Therefore, the RRMS of CO2

is determined by the following two aspects: (1) the N and Qsec of PD; (2) whether an organic insulating
material is present near the PD area. Under the four defects, the RRMS relationships of SO2F2, SOF2,
and SO2 are consistent with the value relationships of N and Qsec. Thus, the N and Qsec of PD are the
main factors that influence the effective formation rates of SO2F2, SOF2, and SO2.

3.4. Concentration Ratios of SF6 Decomposed Components

The gas chamber volume and trace H2O and O2 affect the concentrations and formation rates
of SF6 decomposed components. Based on the three-ratio method in oil chromatographic analysis,
C(SOF2)/C(SO2F2), C(CF4)/C(CO2), and C(SO2F2 + SOF2)/C(CF4 + CO2) were selected as characteristic
quantities to recognize the PD types [21,22]. These three concentration ratios have definite physical
meaning. C(SOF2)/C(SO2F2) is used to describe PD severity; C(CF4)/C(CO2) is used to describe the
structure of insulation defect; C(SO2F2 + SOF2)/C(CF4 + CO2) is used to describe the deterioration
degree of carbonaceous material (the metal part and organic insulation). In [21,22], the formation
characteristics of SO2 were not studied because of the limitations of the experimental conditions. SOF2

is prone to hydrolysis in producing SO2. Currently, the common electrochemical sensors can respond
to SOF2 and SO2 in the field overhaul. IEC 60480:2004 [48] stipulates that the sum of the concentrations
of SOF2 and SO2 in the SF6 gas that can be recycled cannot exceed 12 ppm. Thus, SO2 is an important
component and can be selected as a characteristic gas for field detection. Based on the experimental data in
this study, C(SOF2 + SO2)/C(SO2F2), Ln(C(CO2)/C(CF4)), and C(SO2F2 + SOF2 + SO2)/C(CF4 + CO2) are
selected as characteristic quantities to study the relationship between the decomposition characteristics
of SF6 and PD types.

The value relationship of C(SOF2 + SO2)/C(SO2F2) under the four defects is: particle defect >
protrusion defect > pollution defect > gap defect (Figure 8a). A smaller value of C(SOF2 + SO2)/C(SO2F2)
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indicates a larger PD energy and a more serious fault. Therefore, the PD energy under the particle
defect is the smallest, and the PD energies under the other three defects are close to one another.
The curves in Figure 8b can be easily distinguished from one another, the curves have no intersection,
indicating significant differences among the structures of the four defects. Thus, Ln(C(CO2)/C(CF4))
can be used to recognize the four defects in this study.Energies 2017, 10, 556 10 of 16 

 

0 12 24 36 48 60 72 84 96
0

2

4

6

8

10

12  Protrusion
 Particle
 Pollution
 Gap

C(
SO

F 2+S
O

2)/C
(S

O
2F 2)

t/h
(a)

0 12 24 36 48 60 72 84 96
0

2

4

6

8  Protrusion
 Particle
 Pollution
 Gap

L
n(
C(

C
O

2)/C
(C

F 4))

t/h
 

(b) 

0 12 24 36 48 60 72 84 96
0

5

10

15

20

25  Protrusion
 Particle
 Pollution
 Gap

C(
SO

F 2+S
O

2F 2+S
O

2)/C
(C

F 4+C
O

2)

t/h
(c)

Figure 8. Change curves of the concentration ratios of SF6 decomposed components with time:  
(a) C(SOF2)/C(SO2F2); (b) Ln(C(CO2)/C(CF4)); and (c) C(SOF2 + SO2F2 + SO2)/C(CF4 + CO2). 

A smaller value of C(SO2F2 + SOF2 + SO2)/C(CF4 + CO2) indicates a more serious deterioration of 
the carbonaceous materials. Therefore, the deteriorations of the carbonaceous materials under the 
pollution and gap defects are the most serious, and that under the protrusion defect is the lightest.  

If the concentration ratios of the SF6 decomposed components are to be used in recognizing the 
PD types in the field fault diagnosis, then the selected ratios cannot present significant fluctuations 
with time. Even if insulation defects exist in GIE, the concentrations of SF6 decomposed components 
have been basically stable after a long period of operation, thus, the concentration ratios are unlikely 
to appear as large fluctuations with time. As shown in Figure 8, the values of C(SOF2 + SO2)/C(SO2F2), 
Ln(C(CO2)/C(CF4)), and C(SO2F2 + SOF2 + SO2)/C(CF4 + CO2) are basically stable after 36 h. The change 
curves of C(SO2F2 + SOF2 + SO2)/C(CF4 + CO2) under the pollution and gap defects are close, whereas 

Figure 8. Change curves of the concentration ratios of SF6 decomposed components with time:
(a) C(SOF2)/C(SO2F2); (b) Ln(C(CO2)/C(CF4)); and (c) C(SOF2 + SO2F2 + SO2)/C(CF4 + CO2).



Energies 2017, 10, 556 11 of 16

A smaller value of C(SO2F2 + SOF2 + SO2)/C(CF4 + CO2) indicates a more serious deterioration
of the carbonaceous materials. Therefore, the deteriorations of the carbonaceous materials under the
pollution and gap defects are the most serious, and that under the protrusion defect is the lightest.

If the concentration ratios of the SF6 decomposed components are to be used in recognizing the
PD types in the field fault diagnosis, then the selected ratios cannot present significant fluctuations
with time. Even if insulation defects exist in GIE, the concentrations of SF6 decomposed components
have been basically stable after a long period of operation, thus, the concentration ratios are unlikely to
appear as large fluctuations with time. As shown in Figure 8, the values of C(SOF2 + SO2)/C(SO2F2),
Ln(C(CO2)/C(CF4)), and C(SO2F2 + SOF2 + SO2)/C(CF4 + CO2) are basically stable after 36 h.
The change curves of C(SO2F2 + SOF2 + SO2)/C(CF4 + CO2) under the pollution and gap defects
are close, whereas the other curves can be easily distinguished from one another. Therefore, C(SOF2

+ SO2)/C(SO2F2), Ln(C(CO2)/C(CF4)), and C(SO2F2 + SOF2 + SO2)/C(CF4 + CO2) can be used to
recognize the PD types.

4. PD Recognition

This study uses the back propagation (BP) neural network algorithm [29–38] to recognize the PD
types. The concentrations and concentration ratios of SF6 decomposed components are selected as
the input matrix of the network. Then the recognition results are analyzed, and the best characteristic
quantity for PD recognition is extracted.

BP neural network is a multi-layer feedforward network, which uses the steepest descent method
to achieve the minimum of mean square error between the expected output and actual output.
The structure of BP neural network is shown in Figure 9, including the input, hidden, and output
layers. The learning process of BP neural network is composed of the forward propagation (FP) of
signal and the BP of error. In the FP process, the input signals are transferred from the input layer to
the hidden layer until the output layer. If the output layer does not obtain an expected output, then
the weights and thresholds should be adjusted to reduce the predicted error in the BP process.
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Step 1: Set the variables and parameters. As shown in Figure 8, the values of C(SOF2 + SO2)/C(SO2F2),
Ln(C(CO2)/C(CF4)), and C(SO2F2 + SOF2 + SO2)/C(CF4 + CO2) are basically stable after 36 h.
The experimental data of these three concentration ratios after 36 h are selected as the input matrix of
the network, namely, Ik = [c(SOF2 + SO2)/c(SO2F2), Ln(c(CO2)/c(CF4)), c(SOF2 + SO2F2 + SO2)/c(CF4 +
CO2)]k, where k = 1, 2, . . . , 24, as shown in Table 4. The protrusion, particle, pollution, and gap defects
are encoded as the network output. The output matrix (T) is shown in Table 5.

Step 2: Initialize the network. Random numbers in the range of [0, 1] are assigned to the connection
weights and the thresholds. Set the maximum number of iterations is 100, the learning rate is 0.1,
the permissible error between expected output and actual output is 0.01, and the number of the hidden
layers is 10.
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Step 3: Input the training samples. The 75% (18 groups) of the above 24 groups of experimental
data are randomly extracted as the training samples, and the remaining 25% data (6 groups) are used as
the test samples. The training samples are used to train the BP neural network model. Then, the trained
model is used to recognize the test samples.

Step 4: Train BP neural network and recognize PD types. To make the recognition results statistically
significant, Step 3 is repeated 100 times. Thus, the number of the test samples is 600. The trained BP
neural network models are used to recognize these 600 groups of test samples, the recognition results
are shown in Table 6. Therefore, the concentration ratios of SF6 decomposed components are used to
recognize the PD types, the total recognition accuracy rate is: (169 + 132 + 114 + 109)/600 ≈ 87%.

Table 4. Input matrix of BP neural network.

PD Type k t/h C(SOF2 + SO2)/C(SO2F2) Ln(C(CO2)/C(CF4)) C(SO2F2 + SOF2 + SO2)/C(CF4 + CO2)

Protrusion

1 36 4.57 5.59 18.28
2 48 4.33 5.53 17.27
3 60 4.17 5.33 17.79
4 72 4.27 5.21 19.19
5 84 4.29 5.04 19.44
6 96 4.25 4.97 18.97

Particle

7 36 8.22 0.78 5.49
8 48 7.29 0.83 5.67
9 60 6.83 0.79 5.72
10 72 6.89 0.76 5.90
11 84 6.78 0.85 5.84
12 96 6.69 0.87 5.98

Pollution

13 36 3.77 4.09 1.53
14 48 3.84 4.12 1.62
15 60 3.65 4.10 1.57
16 72 3.67 3.92 1.79
17 84 3.86 3.88 1.86
18 96 3.79 3.84 1.86

Gap

19 36 3.05 2.18 1.99
20 48 3.01 2.21 1.82
21 60 3.17 2.35 1.64
22 72 3.20 2.48 1.54
23 84 3.35 2.59 1.55
24 96 3.26 2.69 1.44

Table 5. Output matrix of BP neural network.

Number Output Matrix (T) PD Type

1 [0, 0, 0, 1] Protrusion
2 [0, 0, 1, 0] Particle
3 [0, 1, 0, 0] Pollution
4 [1, 0, 0, 0] Gap

Table 6. Recognition result using the concentration ratios of SF6 decomposed components as the
input matrix.

Item
PD Type

Total
Protrusion Particle Pollution Gap

Sample number 169 141 138 152 600
Accuracy number 169 132 114 109 524

Accuracy rate 100% 93.62% 82.61% 71.71% 87.33%

Similarly, the concentrations of SF6 decomposed components are selected as the input matrix of
the network. From the previous analysis, CF4 concentration is not suitable as a characteristic quantity
to recognize the PD types. Thus, the input matrix is Ik = [c(CO2), c(SO2F2), c(SO2F2), c(SO2)]k, where
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k = 1, 2, . . . , 32. The output matrix remains unchanged (Table 5). Steps 2–4 are conducted, and the
recognition results are shown in Table 7. Therefore, the concentrations of SF6 decomposed components
are used to recognize PD types, the total recognition accuracy rate is: (167 + 165 + 105 + 104)/800 ≈ 68%.

Table 7. Recognition result using the concentrations of SF6 decomposed components as the input matrix.

Item
PD Type

Total
Protrusion Particle Pollution Gap

Sample number 176 216 187 221 800
Accuracy number 167 165 105 104 541

Accuracy rate 94.89% 76.39% 56.15% 47.06% 67.63%

Evidently, the total accuracy rate of PD recognition by using the concentration ratios is nearly 20%
higher than that by using the concentrations. Moreover, c(SOF2 + SO2)/c(SO2F2), Ln(c(CO2)/c(CF4)),
and c(SOF2 + SO2F2 + SO2)/c(CF4 + CO2) have definite physical meaning. Therefore, these three
concentration ratios are more suitable as the characteristic quantities for PD recognition than the
concentrations of SF6 decomposed components.

To test the recognition performance of BP neural network, the 24 groups of concentration ratios
data in this study are selected to train the network model. Then, the trained model is used to recognize
another 24 groups of concentration ratio data produced by the same experiment. These 24 groups of
data are also basically stable. The deviations of the concentrations of SF6 decomposed components
between these two experiments are less than 10%. The confusion matrix of the recognition result is
shown in Table 8, the total recognition accuracy rate is 87.5%, and a good recognition effect is obtained.

Table 8. Confusion matrix of the recognition result.

Real PD Type Number of Samples in Each PD Type in the Recognition Result

Protrusion Particle Pollution Gap

Protrusion 6 0 0 0
Particle 0 6 0 0

Pollution 0 0 5 1
Gap 0 0 2 4

5. Discussion

This research studied the decomposition characteristics of SF6 under negative DC-PD, and used
BP neural network algorithm to recognize four typical insulation faults in DC-GIE. This study could
lay a solid foundation of using GCA method to diagnose the insulation faults in DC-GIE and assess its
insulation status. However, the concentrations of SF6 decomposed components are not only related
to PD type, they are also affected by PD strength [49], the H2O [50], O2 [51], and absorbent [52] in
DC-GIE, and so on. This study did not consider these impact factors. To achieve better performance
in using GCA method for PD recognition, the influence of these factors on the concentrations of SF6

decomposed components must be studied. Moreover, this study used the decomposition characteristics
of SF6 to recognize the four common PD types in DC-GIE, and obtained a good recognition effect
in the laboratory. We should focus on the research of the field application in the future, and use
the engineering data to verify the validity of the method in this study and make corresponding
improvements to this method.

6. Conclusions

The decomposition characteristics of SF6 under four types of negative DC partial discharges are
obtained in this study. The relationship between the decomposition characteristics of SF6 and the PD
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types was further studied. Moreover, BP neural network algorithm is used to recognize the PD types.
The following conclusions can be drawn from this study:

• The negative DC partial discharges caused by the four defects decompose the SF6 gas and
generate five stable decomposed components, namely, CF4, CO2, SO2F2, SOF2, and SO2. A close
relationship exists between the decomposition characteristics of SF6 and the types of insulation
defects. The decomposition characteristics of SF6 can be used to diagnose the type and severity of
insulation fault in DC-GIE.

• BP neural network algorithm is used to recognize the PD types. The recognition results show
that the total recognition accuracy rate is 67.63% and 87.33% when the concentrations and
concentration ratios of SF6 decomposed components are selected as the input matrix of the
network, respectively. Therefore, the concentration ratios of SF6 decomposed components are
more suitable as the characteristic quantities for PD recognition than the concentrations of those.

• C(SOF2 + SO2)/C(SO2F2), Ln(C(CO2)/C(CF4)), and C(SO2F2 + SOF2 + SO2)/C(CF4 + CO2) are
used to recognize the PD types. The 24 groups of concentration ratio data in this study are
selected to train the BP neural network model. Then, the trained model is used to recognize
another 24 groups of concentration ratio data produced by the same experiment. The total
recognition accuracy rate is 87.5%, and a good recognition effect is obtained.
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