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Abstract: The kinetics of methane hydrate formation in marine sediments with different water
saturations are important to assess the feasibility of the hydrate production and understand the
process of the secondary hydrate formation in the gas production from hydrate reservoir. In this
paper, the behaviors of methane hydrate formation in marine sediments from the South China Sea
at different water saturation levels were experimentally studied in isobaric conditions. The marine
sediments used in the experiments have the mean pore diameter of 12.178 nm, total pore volume
of 4.997 × 10−2 mL/g and surface area of 16.412 m2/g. The volume fraction of water in the marine
sediments ranges from 30% to 50%. The hydrate formation rate and the final water conversion
increase with the decrease of the formation temperature at the water saturation of 40%. At the
same experimental conditions, the hydrate formation rate decreases with the increase of the water
saturation from 40% to 50% due to the reduction of the gas diffusion speed. At the water saturation of
30%, the hydrate formation rate is lower than that at the water saturation of 40% due to the effect of
the equilibrium hydrate formation pressure, which increases with the decrease of the water saturation.
The final water conversion is shown to increase with the increase of the water saturation, even the
formation process at higher water did not end. The experiments at low water saturation show a better
repeatability than that at high water saturation.

Keywords: marine sediments; methane hydrate; formation behavior; water saturation

1. Introduction

Natural gas hydrates (NGHs) are widely distributed in earth and have been recognized as
a potential energy resource [1]. Currently, the explored and proven NGH reservoirs mainly distribute
in the ocean and permafrost, and the reserve in the ocean is far larger than the total reserve in the
permafrost [2,3]. It is well-known that most of the naturally gas hydrates exist in the form of inclusions
within sediment (contains silica sand, sand stone, clays, etc.), with only six percent of NGHs occur in
the form of bulk hydrates in nature [3]. In order to recover natural gas hydrate from seabed sediments,
it is important to understand the kinetics of gas hydrate formation and decomposition in marine
sediments. The hydrate formation behaviors in porous media are important for the reliable assessment
of the feasibility of producing natural gas from the earth’s gas hydrate reservoir and the application of
the hydrate formation method. In addition, the secondary hydrate formation was observed in the gas
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production from hydrate reservoir through numerical simulation. The secondary hydrates play a role
in reducing the effective permeability, resulting in the gas accumulation and a low gas production
rate [4–6]. This is caused by the gas and water flow toward the upper well in the gas production
process, in which the water saturation may change rapidly. Therefore, it is important to study the
hydrate formation behaviors in marine sediments with different water saturations.

In regard to the kinetics of bulk hydrate systems, the formation kinetics of the hydrate in
the sediments are affected by many factors, including not only the pressure, temperature and the
rate constant, but also the specific surface area and the characteristics of host sediment, etc. [7–10].
Zhou et al. [11] measured hydrate formation data in the water-saturated silica sand and achieved
a comparatively low conversion (only 11%) of the water to hydrate. They found that particle size
distribution plays an important role in hydrate formation, and available void spaces (which are not
filled with water) also affect the hydrate formation kinetics. Linga et al. [12] also reported the data of
hydrate formation in silica sand bed (particle size 329 µm) and they achieved 74% water to hydrate
conversion in a (spatially) heterogeneous manner. Liu et al. [13] found that the methane hydrate formed
in silica sands has the similar characteristics regarding cage occupancy and hydration number with
bulk hydrate. The particle size does not have influence on the hydrate composition. Katsuki et al. [14]
observed that the crystal morphology in the porous medium filled with the methane-saturated liquid
water depends upon the magnitude of the mass transfer of the methane molecules in the liquid water.
Babu et al. [15] observed a clear hydrate front moving across the bed in a 50% water saturated silica sand
bed during the hydrate formation process, and hydrate crystals were observed to form in the interstitial
pore space available between the silica sand particles. The water content of the sediments was found to
have a significant impact on the formation behaviors of gas hydrates. Fitzgerald et al. [16] studied the
formation behaviors of methane hydrate in the pore space of glass beads at various water saturations.
They observed that the hydrate formation displays multistage formation behavior and the hydrate
growth rate is higher for systems with the lower initial water saturation. Bagherzadeh et al. [17]
investigated the formation kinetics of methane hydrate in different water saturated silica sand beds
(100%, 75%, 50%, and 25%) through magnetic resonance imaging techniques. Faster hydrate formation
in a bed with lower water content was observed, which shows that there is a better contact of hydrate
forming gas with available water due to the void spaces available in a partially saturated bed, thus
resulting in higher water to hydrate conversion. Kumar et al. [18] studied the effects of different ratios
of the silica sand and clay, and the different water saturation on hydrate formation behaviors. It was
proven that the presence of the clay reduces the hydrate formation kinetics significantly, and lower
water saturation leads to the higher conversion rate of water to hydrate in both of the pure sand bed
and the sand-clay mixture bed.

In 2007, China announced the first time to recover gas hydrate samples at the water depth
1500 m and 200 m below seafloor level in the Shenhu area, south of the Pearl River Mouth Basin [19].
Sun et al. [20] found that the equilibrium temperature of methane hydrate in the sediment sample
from the South China Sea with in situ pore water was decreased compared to the bulk hydrate, and it
was controlled by the pore water ions. In our previous work, the equilibrium formation conditions
of methane hydrate in different samples of marine sediments were measured. It was found that the
equilibrium hydrate formation pressure increases with the decrease of the water saturation in the
sediments at a given temperature [21]. Till now, compared to the studies of the equilibrium conditions,
most of the studies of the hydrate formation kinetics were carried out in pure silica sand and glass
beads in the lab. There is few studies on the hydrate formation behaviors in marine sediments.

In the present work, to provide the experimental data for using in future hydrate exploitation
from marine sediments, and to gain a better understanding of the hydrate formation properties in
marine sediments with different water saturations, we have performed experiments and investigated
the formation behaviors of methane hydrates in marine sediments from the South Sea of China.
The experiments were carried out in the temperature range of 274.15–281.15 K and the initial formation
pressure of 14.4 MPa.
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2. Experimental Section

2.1. Apparatus

The details of the experimental apparatus have been reported in our previous work [22,23].
As shown in Figure 1, the experimental apparatus consists of the high-pressure hydrate crystallizer
(CR), the supply vessel (SV), the gas/liquid supply system, the temperature-controlled water bath
and the data acquisition system. The effective maximum volume of the cell of the crystallizer and
the supply vessel is 416 and 1091 cm3, respectively. The cell of crystallizer is volume-variable with
a movable piston The Proportion Integration Differentiation (PID) regulator and the pressure (P)
controller are used to control the pressure in the high-pressure hydrate crystallizer (CR). Two pressure
(P) transducers (MBS3000, Danfoss, Copenhagen, Denmark) are employed for pressure measurement,
with a maximum certainty of 0.01% of the span (0–25 MPa). A Pt1000 thermoprobe (JM6081, JinMing,
Tianjin, China) is used to measure the temperature in the crystallizer within a precision of ±0.05 K.
The crystallizer temperature is controlled by a temperature-controlled water bath within a range of
263.15–303.15 K and with an uncertainty of 0.1 K. The signals of the pressure and the temperature are
continuously monitored and recorded by a data acquisition system coupled with a computer [22,23].
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Figure 1. Schematic of the experimental apparatus. 
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Figure 1. Schematic of the experimental apparatus.

2.2. Materials

The methane with the purity of 99.9% was supplied by Foshan Hua Te Gas Co. The marine
sediments from the Shenhu Area in the South China Sea were supplied by Guangzhou Geological
Survey. The physical properties of the sediment samples are listed in Table 1. The density of the dry
samples was measured by the true density meter (VPY-30, Quantachrome, Boynton Beach, FL, USA).
The particle diameter distributions of the dry samples were measured by the Mastersizer 2000 particle
size analyzer (Malvern Instruments. Ltd., Worcestershire, UK), as shown in Table 2. It can be seen that
the distributions of particle sizes consist of silty sand level (69.79%), fine sand level (15.51%), medium
sand level (2.73%), clay level (2.48%), coarse sand level (0.3%) and gravel level (0). The measured
particle diameter distributions are also shown in Figure 2. Specific surface area and pore size analyzer
(ASIQMO002-2, Quantachrome, Boynton Beach, FL, USA) was used to measure the distributions of
pore volume and the specific surface area of the samples. The measured results of pore surface area
and pore volume are shown in Table 3.
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Table 1. Properties of the marine sediments.

Depth
(m)

Density
(g/mL)

Surface
Weighted Mean
Diameter (µm)

Volume
Weighted Mean
Diameter (µm)

Specific
Area (m2/g)

Average Pore
Diameter (nm)

Pore
Volume
(mL/g)

1600 2.81 7.898 37.488 16.412 12.178 0.04997

Table 2. Specifications of the marine sediments used in experiments.

Equivalent Component Clay Silty Sand Fine Sand Medium Sand Coarse Sand

Size (µm) <4 4–63 63–250 250–500 500–2000
Percentage (%) 2.48 69.79 15.51 2.73 0
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Figure 2. Particle size distribution of the sample.

Table 3. Pore distribution of the marine sediments.

Diameter
(nm)

Pore Volume
(mL/g)

Pore Surface Area
(m2/g)

Incremental Pore
Volume (mL/g)

Incremental Pore
Area (m2/g)

3.4213 0.00072964 0.85307 0.001906900 2.2294000
3.8340 0.00147650 1.63230 0.001686400 1.7595000
4.3183 0.00227560 2.37240 0.001520200 1.4081000
4.9012 0.00316220 3.09600 0.001384700 1.1301000
5.6302 0.00425290 3.87100 0.001333900 0.9476400
6.5595 0.00553890 4.65510 0.001235500 0.7534300
7.8177 0.00729260 5.55240 0.001188600 0.6081400
9.5842 0.00954130 6.49090 0.001092800 0.4560900

12.3107 0.01279800 7.54900 0.000959080 0.3116300
17.5049 0.01800300 8.73850 0.000744420 0.1701100
30.5583 0.02630200 9.82480 0.000434170 0.0568310
192.0735 0.04599400 10.23500 0.000064794 0.0013494
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2.3. Experimental Procedure

The procedure for the sample preparation is as follows. In order to remove the influence of the
salt, the sediments were first washed by the deonized water three times. Then the samples were dried
at 373.15 K for 24 h and subsequently weighed to determine the dry samples at the room temperature.
To obtain the desired water content samples, the water and the dried sediments were mixed in the
beaker and stirred sufficiently. The water saturation was determined using the volume ratio of water
to the dry marine sediments, as shown in the equation below:

Sw = (Vw/(Vb + Vw)× 100) (1)

where Vw = mw/ρw is the water volume in the sample, mw is the mass of the added water, ρw is the
density of water with the value of 1 g/cm3, and Vb = mb/ρb is the bulk volume of the dry sediments.
Here, mb is the mass and ρb is the bulk density of the dry sediments. A known quantity of prepared
marine sediments were loaded into the crystallizer. In order to ensure the sameness of the gas–water
ratio in all the experiments, the water weight and the volume of the gas in the crystallizer were
kept constantly for different experiments by adjusting the effective volume through the piston in the
crystallizer under the conditions of different water saturations. In this work, the weight of water used
was 47.3 g and the volume of the gas in the crystallizer was 281.0 mL for different experiments. After
the samples were loaded, the crystallizer was installed and purged by a vacuum pump to remove
the remaining air. The crystallizer was cooled to the desired value of the formation temperature by
adjusting the water bath. Once the temperature of the system was stabilized, methane gas was charged
into the crystallizer and pressured up to the desired formation pressure. The pressure change in the
crystallizer with time was observed and recorded. When the pressure drop in the crystallizer was less
than 0.01 MPa over 3 h, the formation of hydrate was assumed to be complete. The moles of methane
consumed at time t were calculated using the Equation (2) on basis of the measured data of pressure
and temperature:

n =
P0V

Z0RT0
− PV

ZRT
(2)

where P is the system pressure at time t; P0 is the initial formation pressure; T is system temperature
at time t; T0 is the initial system temperature; V is the volume of the gas space in the crystallizer,
which is specified to be a constant for all tests. The compressibility factor Z was calculated from
the Soave-Redlich-Kwong (SRK) equation [24]. Assuming that there is 6.10 mol of water in 1 mol of
methane hydrate, the water conversion can be calculated by the methane consumption [25].

The rate of hydrate formation was calculated every 10 min by forward differentiation

(
dn
dt

)
t
=

nt+∆t − nt

∆t
, ∆t = 10 min (3)

Subsequently, the average rate for every 10 min period was calculated.

3. Results and Discussion

Table 4 summarizes the experimental conditions and results in detail, including the hydrate
formation pressure, formation temperature, water saturation, moles of methane enclosed into
the hydrate, and water to hydrate conversion at the end of the experiments. The experiments
were performed in marine sediments with the water saturation of 30%, 40%, 45% and 50% in
isochoric conditions.
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Table 4. Experimental conditions and results.

Items Formation
Temperature (K)

Initial Pressure
(MPa)

Water
Saturation (%)

Final Gas
Consumption (mol)

Water Conversion
(mol%)

1 274.15 14.4 30 0.172 39.93
2a 276.15 14.4 30 0.165 38.30
2b 276.15 14.4 30 0.162 37.60
3 278.15 14.4 30 0.148 34.36
4 274.15 14.4 40 0.207 48.05

5a 276.15 14.4 40 0.194 45.03
5b 276.15 14.4 40 0.196 45.50
5c 276.15 14.4 40 0.196 45.50
6 278.15 14.4 40 0.187 43.41
7 281.15 14.4 40 0.155 35.98
8 274.15 14.4 45 0.218 50.61
9 276.15 14.4 45 0.194 45.03

10 278.15 14.4 45 0.178 41.32
11 274.15 14.4 50 0.198 45.96

12a 276.15 14.4 50 0.184 42.71
12b 276.15 14.4 50 0.185 42.95
12c 276.15 14.4 50 0.201 46.66
13 278.15 14.4 50 0.166 38.53

Figure 3 represents the data of the pressure drop and the temperature change for methane hydrate
formation conducted in the marine sediments with the water saturation of 40% at different formation
temperatures under the initial formation pressure of 14.4 MPa (experiments 4, 5a, 6 and 7). Figure 4
gives the comparison of gas uptake (water to hydrate conversion) corresponding to the experiments
given in Figure 3. As shown in Figures 3 and 4, the gas uptake rate and the final gas uptake increase
with the decrease of the formation temperature, and the formation duration decreases with the decrease
of the formation temperature. It is also worth noticing that the pressure curves exhibit a smoother
trend. No multistage was observed in the hydrate formation process at the water saturation of 40%.
Because the equilibrium hydrate formation pressure increases and the driving force of the hydrate
formation decreases as the temperature increases, it should be caused by the difference of the driving
force for the hydrate formation [24]. As shown in Table 4, the final water conversion in the experiments
at the water saturation of 40% only ranges from 35.98% to 48.98%. As shown in Figure 3, the stable
pressure for experiments 4, 5a, 6 and 7 are 12.44, 12.50, 12.52 and 12.75 MPa respectively. As calculated
by Li et al. [24], the equilibrium formation pressure for bulk methane hydrate at the temperature of
276.15 K is only 3.50 MPa. It can be seen that, the pressure inside the crystallizer gradually decreases
and reaches stable at a higher pressure than the equilibrium hydrate formation pressure for bulk
hydrate, resulting in a relatively lower water conversion to hydrate. The final water conversion in
these experiments is much lower than that in the work of Linga et al. [12], in which more than 74.0%
of water conversion to hydrate was achieved in all experiments conducted in silica sand bed at 4.0
and 1.0 ◦C. The low water conversion in these experiments may be due to the higher equilibrium
hydrate formation pressure in marine sediments than that in silica sand. In porous media, the water
has three states, which are bulk water, bound water and surface water in confined space. It was found
that the bound water and surface water have lower activity than bulk water, resulting in the higher
equilibrium hydrate formation pressure [26]. In the study of Linga et al. [12], the silica sands with the
BET surface area of 0.3499 cm2/g and an average diameter of 329 µm were used in the experiments.
It has been found that the equilibrium hydrate formation pressure in silica sands is same to bulk
hydrate [27]. In this study, the surface area of the marine sediments is 16.412 m2/g, which is much
larger than that of silica sands. Because the specific surface area of the marine sediments is very large
and consequently more water should contact with the surface of the marine sediments, resulting in the
formation depression of the hydrate in sediments [21,28]. In our previous work, the low conversion
of water to hydrate was also found in silica gels with different pore diameters of 9.03, 12.95, 17.96
and 33.2 nm. The highest water conversion of 42.63% is obtained at the initial formation pressure of
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9.4 MPa and the formation temperature of 276.15 K in the silica gels with the mean pore diameter of
33.2 nm [22]. It was found that the final conversion of water to hydrate increases with the increase of
the pore size due to that the equilibrium hydrate formation pressure decreases with the increase of the
pore size.

For the bulk hydrate, the equilibrium hydrate formation pressure is 2.90 and 4.24 MPa at the
temperature of 274.15 and 278.15 K, respectively. Compared to the bulk hydrate, the final pressure the
has a small increase with the increase of the formation temperature, as shown in Figure 3. A possibility
is that the stable pressure increases with the increases of the hydrate saturation and the water
conversion. Another possibility is the very slow solid body diffusion of methane through a gas hydrate
layer that builds at the gas–water interface and will not allow measuring any further conversion on
the timescale of lab experiments.
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Figure 5 shows the hydrate formation rate in the experiments 4, 5a, and 6 calculated by using
Equation (2). It can be found that the hydrate formation rate increases with the decrease of the
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formation temperature. For the experiments 4 and 5a, the hydrate formation rate is low at the
beginning. From Figure 3, it can be seen that the temperature in the crystallizer is much higher than
the bath temperature at the beginning due to the temperature increase in the gas injection process,
may resulting in a low rate of the hydrate formation. In addition, the delay in oversaturation of gas in
water to be reached and the stochastic nature of gas hydrate formation may result in the lower hydrate
formation rate in the beginning stage. With the temperature decrease due to the heat transferred
from the crystallizer to the water bath, the hydrate formation rate increases. Subsequently, the gas
uptake rate in all experiments decreases gradually as the pressure decreases. As shown in Figure 5,
the hydrate formation rate in different experiments drops sharply and gets down to zero at about
150 min. However, the hydrate formation duration is longer at the lower formation temperature, but
the hydrate formation rate is very low in the later stage.

Figure 6 shows the gas uptake profiles during hydrate formation at various water saturations of
30%, 40%, 45% and 50% (experiments 2a, 5a, 9, and 12a) under the conditions of 14.4 MPa and 276.15 K,
respectively. As observed, the gas uptake rate at the beginning in the experiments at different water
saturations shows significant difference. The gas uptake rate at the water saturation of 45% and 50%
is significantly lower than that at the water saturation of 30% and 40%. Both the hydrate formation
rate and the final gas consumption at the water saturation of 40% are higher than those at the water
saturation of 30%, but the formation duration is shorter. For the experiments at the water saturation of
45% and 50%, the hydrate formation process can be divided into two periods. It is different from that
at the water saturation of 30% and 40%, which has no obvious multistage of the hydrate formation.
For a typical example, the first period of experiment 9 is from the initial time to Point A. In the first
period, the hydrate forms at a fast rate, which is consistent with that in marine sediments with water
saturation of 30% and 40%. The second period is from Point A to the end of the experiment. In the
second period, the hydrate formation rate is much lower than that in the first period and decreases
gradually as the hydrate formation processes. It also can be found that the hydrate formation rate
at the water saturation of 50% is lower than that at the water saturation of 45% in the second period.
Because the hydrate formation duration is so long in the experiments at the water saturation of 45%
and 50%, the formation processes were not over at the end of the experiments. However, it can be seen
that the final gas consumption should be higher than that at the water saturation of 30% and 40%; this
is due to the lower equilibrium hydrate formation pressure and higher driving force for the hydrate
formation for the experiments at the water saturation of 45% and 50%.
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Figure 6. Comparison of gas uptake for the experiments at different water saturations.

Kumar et al. [18] and Chari et al. [29] have reported that the hydrate forms faster in the sediments
with lower water saturation. The experiments of Kumar et al. [18] and Chari et al. [29] were performed
in the silica sand with the size distribution of 30–400 µm and spherical silica particles with the diameter
of 30–70 µm, respectively. The contact area between gas and water in sediments for the hydrate
formation is reduced due to the higher proportion of water in the void space at the higher water
saturation. The hydrate formation occurs firstly at the interface between gas and water, which presents
a high hydrate formation rate in the first period. After the rapid formation stage, the gas should diffuse
through the hydrate layer into the inner of the bed to form the hydrate with the water molecules
in the second period. Higher water saturation means higher proportion of the free water and less
void space and tortuous pathways in the marine sediments, resulting in lower diffusion speed of
methane gas. Therefore, the hydrate formation rate decreases with the increase of the water saturation
from 40% to 50%. The phenomena are same to that in the experiments of Kumar et al. [18] and
Chari et al. [29]. However, different from the silica sand, the equilibrium hydrate formation pressure
in marine sediment increases as the water saturation decreases for a given temperature [21]. In marine
sediments with the water saturation of 30%, the gas diffusion speed in sediments is enough high, and
the equilibrium hydrate formation pressure also affects the hydrate formation rate. Therefore, both the
hydrate formation rate and the final gas consumption at the water saturation of 30% are lower than
those at the water saturation of 40% due to the higher equilibrium hydrate formation pressure. It can
be concluded that, for the equilibrium hydrate formation pressure and the gas diffusion speed, both
affect the hydrate formation rate in marine sediments, and the hydrate formation in marine sediments
at different water saturation levels presents different mechanisms.

Figure 7 gives the temperature change profiles during the hydrate formation in the experiments
shown in Figure 6. As shown in Figure 7, the temperature in the crystallizer is much higher than the bath
temperature at the beginning of the experiments due to the temperature increase in the gas injection
process. The initial temperature for different experiments shows some difference, which may be due to
the different circumstance temperature and the gas injection rates. It can be seen that the temperature
inside the crystallizer in the experiments at the water saturation of 40% decreases most slowly, even the
initial temperature is lower than that in other experiments. It should be due to the fastest rate of the
hydrate formation at the water saturation of 40%. The temperature inside the crystallizer decreases
more slowly for the experiment with higher hydrate formation rate. It illustrates that the heat released
from the hydrate formation has the significant effect on the temperature change in the sediments [12].

Figure 8 represents the gas uptake curves along with temperature profiles of the repeated
experiments at the water saturation of 40%. The gas uptake curves of the repeated experiments
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at the water saturation of 30% is also given in Figure 8. The formation temperature and initial formation
pressure are 276.15 K and 14.4 MPa, respectively. As shown, the pressure change and the gas consumption
rate show a good repeatability of the hydrate formation experiments at the water saturation of 30%
and 40%. Figure 9 represents the gas uptake curves of the experiments at the water saturation of 50%,
the initial formation pressure and the formation temperature are 14.4 MPa and 276.15 K, respectively.
As a comparison, the gas uptake curve of the experiment at the same pressure and temperature conditions
at the water saturation of 45% is also given. As shown in Figure 9, the repeated experiments at the water
saturation of 50% are not as good as that at the water saturation of 40%. The average standard deviations
for the repeated experiments at the water saturation of 30%, 40% and 50% are 0.00053, 0.00069, and 0.00198
mole of water, respectively. A possible explanation is to consider water migration and redistribution
which may occur during the hydrate formation and decomposition. As discussed above, for the high
water saturation, more free water may present in the voids or interstitial spaces of marine sediments.
The free water may transit in the voids or interstitial spaces in the sediments during the formation and
decomposition processes, resulting in the change of the gas–water contact area and the tortuous paths in
sediments for the gas diffusion. As shown in Figure 9, the gas consumption in the early rapid formation
stage is significantly different for various experiments. It may be due to the free water transition,
which changes the contact area of the free water and gas. However, even the hydrate formation rate
displays differently in the experiments with the same formation conditions for the water saturation of
50%; it is also lower than that at the water saturation of 45%. The gas–water contact area still seems to
be the controlling factor of the hydrate formation rate.
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Figure 8. Temperature and gas uptake measurement curves of the repeated experiments at the water
saturation of 40%.
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Figure 9. Gas uptake measurement curves of the repeated experiments at the water saturation of 50%
and the experiment at the water saturation of 45%.

4. Conclusions

In this paper, the behaviors of methane hydrate formation in marine sediments with the water
saturation of 30%, 40%, 45% and 50% were investigated. The experiments were carried out in the
temperature range of 274.15–281.15 K and the initial formation pressure of 14.4 MPa. The final
conversion of water to hydrate ranges from 34.36% to 50.61% in the experiments, which is much
lower than that in silica sands due the higher equilibrium hydrate formation pressure in marine
sediments [12]. The hydrate formation rate and the final water conversion increase with the decrease
of the formation temperature at the water saturation of 40%, and an initial slow growth was observed
due to the high temperature in the sediments. The hydrate formation rate increases with the increase
of the water saturation from 30% to 40% due to the decrease of the equilibrium hydrate formation
pressure in marine sediments. With the further increase of the water saturation, the formation process
of methane hydrate at the water saturation of 45% and 50% can be divided into two periods. In the first
period, the hydrate formation occurs at the interface between gas and water, and hydrate forms quickly.
In the second, the gas should diffuse through the hydrate layer into the inner of the bed to form the
hydrate with the water molecules. The hydrate formation rate at the water saturation of 45% and 50%
is significantly lower than that at the water saturation of 30% and 40%, and decreases sharply with
the increase of the water saturation due to the decrease of the gas diffusion speed. It was concluded
that, if one wishes to model the rate of hydrate formation in marine sediments with different water
saturations, the effects of the water saturation on the equilibrium hydrate formation pressure and the
gas diffusion speed should be both taken into account. The experiments at the same pressure and
temperature conditions show a better repeatability at low water saturation than those at high water
saturation because the free water migrates in the hydrate formation and dissociation processes.
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