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Abstract: This paper proposes a high-gain disturbance observer (HDOB)-based controller for load
frequency control (LFC) of power systems with multiple areas. The main goal of LFC problem is
to maintain the frequency to its nominal value. The objective of this paper is to reject frequency
variations due to abrupt load changes and diverse uncertainties (e.g., inertia and damping parameters,
and interconnection topology, etc.) by employing the HDOB for the LFC. The simulation results
demonstrate the effectiveness of the proposed HDOB-based LFC by showing that it successfully
rejects frequency variations owing to load changes and frequency variations occurring in various
locations in interconnected power systems. Besides, it is shown that the proposed LFC can eliminate
frequency deviations although there are delays in transmission among the power systems with
multiple areas.

Keywords: load frequency control (LFC); high-gain disturbance observer (HDOB) controller; area
control error (ACE)

1. Introduction

Frequency is an important quality index in power systems since it indicates if the balance
between the electrical load and the power supplied by generators is maintained. A large frequency
deviation can harm equipment, decay load performance, cause the transmission lines to be overloaded,
damage protection schemes, and ultimately lead to the frequency instability. Frequency instability
is the condition where the system fails to maintain its frequency within a certain operating point.
Since frequency is proportional to the rotational speed of the generator, the problem of frequency
control may be directly translated into a speed control problem of turbine-generator unit.

Frequency control is constructed by three levels: primary, secondary, and tertiary control.
Primary control is provided in all generating units and responds within few seconds. As soon as the
imbalance occurs, the governor changes its speed with a certain proportional action. Under normal
operation, the primary control can attenuate small frequency deviation, but for larger deviation,
secondary control is needed. Since the primary control is nothing but the proportional control from
control theoretic point of view, it cannot guarantee the zero-steady state error. Secondary control
is provided to steer frequency deviation to zero. Secondary control is commonly referred as load
frequency control (LFC). Following a serious situation, if the frequency is quickly dropped to a critical
value, tertiary control may be required to restore the nominal frequency.

In this paper, interconnected power systems are considered. Interconnected electric power systems
allow utilizing tie-lines to transmit power from one area to another area. Hence any load disruption
can cause frequency fluctuation due to change of tie line power deviation. LFC aims to drive frequency
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deviation and tie line power deviation to zero under unknown load in power systems. The effect
of the system frequency due to load power change is described by a swing equation [1]. However,
the component of power systems such as generators and loads are dynamic, thus result in uncertain
parameters in the swing equation. Hence the LFC has to be able to handle the frequency under this
circumstance. The LFC needs to get the frequency from all interconnected areas and its own frequency
to determine the proper control effort. Because of transmission distance and filters in measurement
devices, the frequency measurements are delayed which may harm the response of the LFC. Therefore,
considering the measurement delay is important in designing a proper LFC.

Classical control strategies for the LFC use integral of tracking error as a control signal [1].
However, those methods are incapable of dealing with parameter variations and nonlinearities
effectively. Studies on the LFC has been reported using a suboptimal LFC regulator to handle the
limitation of power systems observability [2,3]. Various adaptive control techniques are proposed for
plant parameter changes in [4,5]. Despite the promising concept of adaptive controllers, the control
algorithm is too complicated to implement in large scale systems and can show poor transient
performance which can be critical in power systems. Several papers propose an observer for dealing
with uncertain load changing in power systems with multiple areas [6–16]. In [6–8], a disturbance
observer is considered to handle large-scale wind power in power systems. In these applications,
the uncertainty and external disturbance are viewed as a total disturbance and rejected by an active
disturbance observer proposed by [9–13]. The disturbance is estimated using an extended state
observer (ESO) in [15]. However, from [16], higher order ESO is needed to get the perfect estimation.
In principle, an exact system model has to be known to design such disturbance observers, which hardly
holds in practice due to uncertain parameters (e.g., inertia and damping parameters) in the system.

In this paper, a high-gain disturbance observer (HDOB)-based robust LFC [17] is designed and
applied to power systems with multiple areas in order to reject frequency deviations. The HDOB- based
LFC consists of two parts: controller for the nominal model and HDOB. The control for the
nominal model is designed first under the assumption that there are no uncertainties in the system
under consideration. Then, a HDOB is designed to estimate all uncertainties including model
uncertainties and external disturbances, and the estimated disturbance is added to the nominal
control to reject uncertainties.

For the purpose of showing the effectiveness of the proposed scheme, three simulation results are
given. One shows that the proposed HDOB-based LFC can eliminate the frequency deviation induced
by load changes taking place at various locations in power systems under uncertainties in the inertia
and damping parameters in the swing equation. The second simulation result demonstrates that the
proposed LFC can get rid of the frequency deviation despite the measurement delay which can lead
to harmful effect in existing approaches. In addition, a severe uncertainty in power systems is that a
generator can trip or even one area can be disconnected from the other power systems areas due to
severe fault or operational reason. So, it is necessary to investigate robustness of the proposed LFC
against such topology changes. Simulation results demonstrate that the HDOB-based LFC indeed
shows robustness against topologies in one area power system and between areas.

2. Dynamic Model of Power Systems with Multiple Areas

In this section, a mathematical model of power systems with multiple areas for LFC design is
introduced [1,11]. A typical power systems with multiple areas is considered in this paper (Figure 1).
As shown in Figure 1, each control area has its own load power change ∆Pli . Unpredicted fluctuations
of load power ∆Pli is treated as a disturbance for the system. Under this circumstance, both primary
and secondary controls attempt to remove the frequency deviation in each area. The droop coefficient
Rj represents the proportional gain used in the primary control. Furthermore, the objective is to design
a secondary control (LFC) to improve the result of the primary control.
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Figure 1. The dynamic system of ith area.

From Figure 1, the system is comprised of the generators, as an electrical power generation, and a
load. The number of the generators in the ith area is denoted as mi. The generator model consists of
two major generation units: a governor and a turbine. Both are represented in a first order linearized
model. The dynamics of the governor can be expressed as:

Ggov =
1

Tgj s + 1
, (1)

and the dynamics of non-reheating turbine unit can be expressed as:

Gtur =
1

Tchj
s + 1

, (2)

where Tgj and Tchj
are the time constants of the governor and the turbine model in the jth generator.

The basis for attaining the regulation function is the tie line bias control concept that is
introduced over 50 years ago [18] and widely used to model the power flow between two or more
buses [2–6,9–11,19,20]. Tie line power deviation ∆Ptiei is defined as the deviation power exported to
the ith area and is equal to the sum of all outflowing line power changes in the line that connects to the
ith area with its neighboring areas:

∆Ptiei = ∑
j

∆Ptieij . (3)

Tie line power change in the ith area corresponding to the jth area, ∆Ptieij is defined as:

∆Ptieij =
2πTij

s
(
∆ fi − ∆ f j

)
, (4)

where Tij is synchronizing torque coefficient and ∆ fi and ∆ f j are frequency deviation of the ith area
and the jth area. For the purpose of taking the measurement delay from the ith area to the jth area into
account, delay τij is applied. See eτij in Figure 1.

In this LFC model, strongly connected and synchronized generators are in one area power system.
Assuming that all generators have coherent response of load changing, yields an equivalent equation
as follows:

Geqi =
1

Meqi s + Di
, (5)

where the effects of system loads are lumped into a single damping constant Di with the summation of
inertia constants of all generating units denoted as Meqi . Area control error (ACE) is used to obtain
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power deviation reference. ACEi represents the surplus or deficiency of the ith area generation and
is the summation of tie line power deviation ∆Ptiei and frequency deviation ∆ fi multiplied by bias
factor βi:

ACEi = ∆Ptiei + βi∆ fi. (6)

Along with the primary control, the secondary control converts ACE to a command and drives
the speed changer of the governing system. Then the speed governing characteristic is shifted to a new
set point and results in the matching load demand. Each corresponding generator produces energy
based on its constant share control effort αk.

Let generating energy ∆Pci (t) as control input u(t). For mi connected generators in the ith
area, frequency deviation ∆ fi can be represented in a function of u(t), load change ∆Pli (t), and the
summation of all frequency deviation from other areas ∆ fd(t). The function can be written in frequency
domain as follows:

∆ fi (s) =
1

Meqi .s + Di
[

(
α1

ρ1(s)
+

α2

ρ2(s)
+ . . . +

αk
ρmi (s)

)
U(s)

−
(

1
R1ρ1(s)

+
1

R2ρ2(s)
+ . . . +

1
Rkρmi (s)

)
∆ fi (s)− ∆Pli (s) +

T
s

e−τ∆ fd(s)]
(7)

where αk is the constant share effort for the kth generator, T and ρk(s) are defined as

T = 2π ∑
j

Tij, (8)

ρk(s) =
(
Tgk s + 1

)(
Tchk

s + 1
)
. (9)

Hence, the general function of frequency deviation ∆ fi is written as follows:

∆ fi(s) =
1

γ(s)

(
σ(s)u(s)− ∆Pli (s) +

T
s

e−τ∆ fd(s)
)

(10)

where:
γ(s) = Meqi s + Di + ∑mi

k=1
1

Rkρk(s)
,

σ(s) = ∑mi
k=1

αk
ρk(s)

.
(11)

In this LFC problem, the ACE is considered as the system output y(t). With ∆ fi defined in (10),
the output y(t) can be expressed as:

Y(s) =
1

γ(s)

[(
βi +

T
s

)
σ(s)U(s)−

(
βi +

T
s

)
∆Pli (s) +

T
s

(
βi +

T
s
− γ(s)

)
e−τ∆ fd(s)

]
= Gu(s)U(s) + Gl(s)∆Pli (s) + G f (s)e−τ∆ fd(s),

(12)

where Y(s) is the Laplace transform of y(t). In (12), Gl(s)∆Pli (s) and G f (s)e−τ∆ fd(s) can be treated
as one external disturbance Dex(s). In other words, the ith area considers neighboring frequency
deviation and power load change as its external disturbance. In view of (12), the input-output relation
of the system in the ith area can be written as:

Y(s) = Gu(s)U(s) + Dex(s) (13)

where Gu(s) is defined as:

Gu(s) =
1

γ(s)

(
βi +

T
s

)
σ(s) =

a(2mi−1)s(2mi−1) + a(2mi−2)s(2mi−2) + . . . + a1s + a0

b(2mi+2)s(2mi+2) + b(2mi+1)s(2mi+1) + . . . + b1s + b0
. (14)
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Multiplying right and left side in (13) with 1/Gu(s) yields:(
c3s3 + c2s2 + c1s + c0 + cle f t(s)

)
Y(s) = U(s) +

Dex(s)
Gu(s)

, (15)

where cle f t(s) is a proper transfer function. For the purpose of the controller design, it is desirable to
obtain a simplest possible model. To this end, the previous equation can be written as:

(
s3)Y(s) =

1
c3

U(s) +
1
c3

Dex(s)
Gu(s)

−
(

c2s2 + c1s + c0 + cle f t(s)
c3

)
Y(s)

=: gU(s) + D(s)

(16)

where D(s) denotes a lumped disturbance and g is a parameter. Hence, in the time domain, the model
can be expressed as: ...

y (t) = gu(t) + d(t) (17)

where d(t) is the inverse Laplace transform of D(s). The corresponding state space model is given by:

.
x =

 0 1 0
0 0 1
0 0 0

x +

 0
0
g

u +

 0
0
1

d,

y =
[

1 0 0
]
x

(18)

where x =
[

y
.
y

..
y
]T

. Note that g is determined by other parameters, for example, Tgi , Tchi
,

and Meqi and so on. In general, inertia parameter Meqi and damping constant Di are uncertain. Hence,
g is uncertain as well but its upper and lower bounds can be known since those of Meqi and Di can
be known. This paper pays particular attention to the uncertainties in Meqi and Di. Consequently,
the resulting model (18) is a third order uncertain model with unknown bounded external disturbances.
As a matter of fact, it is not easy to design an observer due to the uncertain parameter g since it is not
clear which value is used for g in the observer model. Note that y(t) representing ACE is the only
measurable signal in general.

With the uncertain model in mind, the LFC problem is to design u using the measurement y(t)
such that x converges to zero despite uncertain g and external disturbance d. Note that convergence of
x to zero implies that the frequency is regulated to its nominal value.

The nominal model of the uncertain model can be assumed as:

.
x =

 0 1 0
0 0 1
0 0 0

x +

 0
0
g

ur,

y =
[

1 0 0
]
x

(19)

where ur is the controller for the nominal model and g denotes the nominal parameter of g.
For this nominal model, there are many standard control design methods to regulate the state.

For example, pole placement and linear quadratic regulator (LQR) are the representatives of such
methods. However, difficulty here is that the original model is uncertain and, in general, the state x
is not measurable. Hence, the objective of the LFC is to design a robust output feedback stabilizing
control for (18). For control design, it is assumed that the lumped disturbance d(t) is unknown and
bounded. In the next section, a HDOB based robust output feedback control design is presented.
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3. Review of HDOB Based Controller

This section briefly reviews the basic concept of the HDOB in [17]. The dynamic system in
Figure 1 shows that each control area has different physical parameters and coefficients for the droop
control. This makes the problem even more challenging, that the controller should be able to handle
the presence of disturbances as well as the parameter uncertainties. Regarding this issues, a HDOB
based controller is employed as it is known to be robust against large parameter uncertainties and
external disturbances.

The structure of HDOB based controller is described by Figure 2 where y is the plant output, and
u is the control signal [17]. QA and QB are stable low pass filters, C(s) is the controller for the nominal
model, P(s) uncertain dynamic system and Pn(s) is the nominal model given by:

P(s) :


.
xi = xi+1 , i = 1, . . . , n− 1
.
xn = φ1x1 + . . . + φnxn + g(u + d)
y = x1

, (20)

Pn(s) :


.
xi = xi+1 , i = 1, . . . , n− 1
.
xn = φ1x1 + . . . + φnxn+

y = x1

gur, (21)

where φi and g denote the uncertain parameters of P(s), xi the state of the plant P(s), φi and g are
known nominal parameters of Pn(s), xi the state of the nominal Pn(s).

Suppose that Pn(s) is the same as P(s). By multiplying plant output y with the inverse of nominal
model P−1

n , we could obtain ûp which is roughly the same as the actual input to the uncertain system,
i.e., u + d. The estimated disturbance d̂ is obtained by subtracting ûpwith filtered control input u†.
Low pass filter QA and QB are formulated as:

QA(s) = QB(s) =
α0

(τs)n + αn−1(τs)n−1 + . . . + α1τs + α0
. (22)

Thus, filtered nominal model P−1
n QA can be written in state space as:

P−1
n (s)QA(s) :

.
q = Aατq + Bατy (23)

where:

Aατ =

[
−Bατ | In−1

0T
n−1

]
, Bατ =


1
τ αn−1

...
1

τn α0

 (24)

with α
′
i s and τ > 0 design parameters, and q is the state vector of P−1

n QA. With the parameters given
earlier, ûp can be expressed as:

ûp =
1
g

( .
qn −φ

Tq
)
= −α0

τn

1
g
(q1 − y)− 1

g
φ

Tq, (25)

where φ =
[
φ1...φn

]T . While the filtered control signal u is defined as u† = p1 that can be written in a
state space as:

QB(S) :
.
p = Aατp +

α0

τn Bu (26)

where p is the state vector of QB with B = [0n−1 1]T . Consequently, the HDOB estimates the
disturbance d̂ with:

d̂ = ûp − u†. (27)



Energies 2017, 10, 595 7 of 21

Energies 2017, 10, 595 6 of 20 

 

( ): 	 = , = 1,… , − 1= +⋯+ + ( + )	 = , (20)

( ): ̅ = ̅ , = 1,… , − 1̅ = + ⋯+ +	 = ̅ ̅ , (21)

where  and  denote the uncertain parameters of ( ),  the state of the plant ( ),  and ̅ 
are known nominal parameters of	 ( ), ̅  the state of the nominal	 ( ). 

Suppose that ( )  is the same as ( ).	By multiplying plant output y with the inverse of 
nominal model , we could obtain  which is roughly the same as the actual input to the 
uncertain system, i.e., + . The estimated disturbance  is obtained by subtracting with filtered 
control input . Low pass filter 	 and 	 are formulated as: ( ) = ( ) = ( ) + ( ) +⋯+ + . (22)

Thus, filtered nominal model 	can be written in state space as: ( ) ( ):q = Aατq+ Bατ  (23)

where: 

Aατ = − | In-1
0n-1

T 	 ,Bατ = 1 ⋮1  (24)

with  and > 0 design parameters, and  is the state vector of 	.With the parameters 
given earlier,  can be expressed as: = qn − ϕTq = − ( − ) − ϕTq, (25)

where ϕ = … .	While the filtered control signal u is defined as =  that can be written 
in a state space as: ( ): p = Aατp+ B  (26)

where  is the state vector of 	  with B = 0n-1 1 .  Consequently, the HDOB estimates the 
disturbance  with:  = − . (27)

 
Figure 2. The block diagram of the HDOB based controller. 

As shown in Figure 2, the closed-loop system consists of the uncertain system ( ), the nominal 
controller ( ), and (22)–(27). The proposed HDOB based robust control is given by: 

Figure 2. The block diagram of the HDOB based controller.

As shown in Figure 2, the closed-loop system consists of the uncertain system P(s), the nominal
controller C(s), and (22)–(27). The proposed HDOB based robust control is given by:

u = ur − d. (28)

Assumption 1. All the uncertain parameters in P(s) and the unknown external disturbance d in (20)
are bounded.

Assumption 2. The stabilizing control ur for nominal model Pn(s) is given.

Theorem 1. [17] Suppose that Assumptions 1 and 2 are satisfied. Then, there exists τ∗ for a given ε > 0 such
that the HDOB based control (19) with any 0 < τ < τ∗ results in:

lim
t→∞
||x(t)− x(t)|| < ε. (29)

The idea behind the HDOB based control is that the HDOB makes the input-output relation of
the combined system of P(s) and HDOB almost the same as that of Pn(s) by canceling the estimated
disturbance. Hence, the nominal control ur can stabilize the whole system. Another important feature
of the employed HDOB is that the state the P−1

n (s)QA(s), i.e., q, is, in fact, the state estimate of the
uncertain plant P(s) [17,21]. This feature is importantly used in the proposed LFC design.

4. HDOB Based LFC for the ith Area

In this section, the proposed HDOB based LFC is presented. In accordance with the design
procedure in the previous section, the nominal control is designed first. In order to design the nominal
control ur for the nominal model (18), any state feedback control law can be employed. For example,
using pole placement or LQR, we can design ur as follows:

ur =
[

k1 k2 k3

]
x =

[
k1 k2 k3

] y
.
y
..
y

, (30)

where k1, k2, k3 are feedback gains and they are determined such that:
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becomes asymptotically stable. In this paper, the state feedback gain k1, k2 and k3 are determined
using LQR method. The performance index is:

J =
∫ ∞

0
[qT(t)Qq(t) + uT(t)Ru(t)]dt, (32)
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where Q and R are weighting matrices. The optimal state feedback control gains are computed by
minimizing J and given by: [

k1 k2 k3

]
= −R−1BTP (33)

where B =
[

0 0
−
g
]T

, and P is the solution of the Riccati equation. Since x is not measurable,
we can use its estimate q in the nominal control ur. Hence, the nominal control is:

ur = −
[

k1 k2 k3

]
q. (34)

The HDOB can be designed according to the design method explained in the previous section
with n = 3. Based on these, the proposed HDOB based LFC is given by:

u = ur − sat
(

d̂
)
=
[

k1 k2 k3

]
q− sat

(
d̂
)

, (35)

where d̂ is the output of the HDOB given in (27) and function sat() designates the saturation function.
The saturation function is employed at the output of the HDOB to avoid the peaking phenomenon
which means that a very large control value due to a small τ can make the state of the system very
large as well. Since the HDOB designated in this paper is a high-gain observer type, employing
such a saturation function is necessary [22,23]. The HDOB consists of two design parameters: α

′
i s

and τ. Since the nominal model is a third order model, the parameter α
′
i s are chosen such that

s3 + α2s2 + α1s + α0 becomes stable. In addition, τ is determined sufficiently small.

5. Case Study

In this section, the proposed method is tested to validate its performance against the parameter
uncertainties and abrupt load changes in three different cases. Since the moment inertia of generators
Meq may varies within a certain bounded interval, first the simulations are carried out to confirm the
robustness of the proposed controller to handle this uncertainty. Second, measurement delay between
interconnected areas are considered with two different load changes: random and large amplitude step
load. Third, simulations with different number of interconnected areas and generators are carried out
to look into robustness of the proposed LFC against different network topologies of power systems.

5.1. Frequency Control without LFC

To understand the incompleteness of primary control in handling the frequency problem in
interconnected power systems, a simulation without LFC is done. The dynamic model of each area is
shown in Figure 1 with its parameters taken from [24] in Table A1. The primary control is employed
with two different types of loads. Firstly, random load changes are applied in five-area power systems.
The load change variation is chosen between −0.15 p.u. and 0.15 p.u. After that, a large amplitude of
step load is added in each area. When small random load variations occur in the system, the primary
control can manage the ACE with error 0–0.14 p.u. (Figure 3a). However, from Figure 3b, when a large
amplitude of step load is applied, the primary control fails to drive the ACE to zero. Therefore, a LFC
is required to achieve the frequency regulation after employing the primary control.
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Figure 3. Area control error (ACE) without applying load frequency control (LFC): (a) With small
random load changes; (b) With large amplitude of load changes. pu: p.u.

5.2. Robustness against Uncertain Moment of Inertia Meqi and Damping Coeficient Di

The proposed control is tested in the interconnected power system as illustrated in Figure 4. In this
network, each area is assumed to have its own LFC. In addition, unlike existing results, the simulation
study is conducted under the assumption that each area has different number of generators mi as
follows: m1 = 3, m2 = 2, m3 = 4, m4 = 3, m5 = 4, and that Meqi and Di are uncertain but their
upper and lower bounds are known which results in uncertain g. For simulation, arbitrary values for
uncertain Meqi and Di are selected from the intervals in Table A1 and the corresponding g is as follows:

g1 ∈ 104
[
0.76 20.4 ], g2 ∈ 104

[
0.02 52.7 ], g3 ∈ 104

[
1.72 139 ], g4 ∈ 104

[
1.10 29.7 ], g5 ∈ 104[6.02 488 ].

The system is tested with three different load changes: small random, large-amplitude load
changes and oscillating load changes. At first, the random loads in Figure 5 are applied and
compared with the active disturbance rejection control (ADRC) from [11]. As can be seen in Figure 6,
both controllers successfully manage the ACE with the presence of random loads and uncertain
parameters in the swing equation. However, in Area 1, 3 and 4, the HDOB has less ACE and ∆ f
compared to the ADRC. Even though in Area 2 and Area 5 the HDOB generates the same ACE as the
ADRC, but the HDOB produces smaller ∆ f than the ADRC in these areas.
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In the second case, a large amplitude of step load change is applied to each area at t = 1 s. For this
purpose, the following load changes are used with nominal power Pnominal = 1000 MW.

∆Pl1 = 100 MW , ∆Pl2 = 120 MW , ∆Pl3 = 110 MW , ∆Pl4 = 150 MW , ∆Pl5 = 80 MW ,

In order to investigate the robustness, the simulations are run 200 times and different Meqi and Di
are chosen randomly from the intervals in each simulation. The responses due to different parameters
are shown in Figures 7–11 for Area 1–5.
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after applying large-magnitude step load changes.
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added to each control area to ensure the stability under the presence of oscillating disturbances from 
electromagnetic power converters. The disturbances are presented in Figure 12, and the simulation 
results are presented in Figure 13. As shown in the results, the HDOB successfully eliminates the 
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Figure 11. Various response of LFC due to uncertain Meq and Di in Area 5 with: (a) HDOB; (b) ADRC;
after applying large-magnitude step load changes.

The results are also compared with responses by ADRC and shows the HDOB yields less error
in ACE and ∆ f in transient time and faster responses. In the third case, oscillating disturbances are
added to each control area to ensure the stability under the presence of oscillating disturbances from
electromagnetic power converters. The disturbances are presented in Figure 12, and the simulation
results are presented in Figure 13. As shown in the results, the HDOB successfully eliminates the
oscillating disturbances and performs better than the ADRC.
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Figure 13. ACE and ∆ f of the HDOB and ADRC based LFC with oscillating load changes and uncertain
Meq and Di in: (a) Area 1; (b) Area 2; (c) Area 3; (d) Area 4; and (e) Area 5.
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5.3. Robustness against the Delay

In this scenario, the measurement delays between interconnected areas are taken into account.
The delay is chosen as 0.5 s with the random and step load changes as the previous simulation are used.
Again, uncertain parameters for Meq and Di used in the previous simulation are also applied in this
simulation. One simulation result is presented in Figure 14 for random load changes, and Figure 15
for step load changes. As a matter of fact, over 200 simulations, quite similar results are obtained.
Figures 14 and 15 indicate that both controllers drive the ACE to zero in despite of the delay. However,
the proposed HDOB based LFC produces less frequency deviation and faster response than the
ADRC. Hence, the HDOB has better performance in dealing with measurement delay under both load
variations. See Table A3 in Appendix A for quantitative values of frequency deviation.
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Figure 15. ACE, frequency deviation ∆ f , and control signal ∆Pc of the HDOB based LFC with large
amplitude step load changes and considering measurement delays in: (a) Area 1; (b) Area 2; (c) Area 3;
(d) Area 4; and (e) Area 5.

5.4. Robustness against Power Systems Topology

This section covers about the performance of LFC in various power system topology. As can
be seen in the dynamic system illustrated in Figure 1, the topology can be varying in the number
of generators mi and number of interconnected areas. Hence the interest is to know the effect of
LFC responses in terms of different number of generators mi and number of interconnected areas.
Furthermore, it is also important to confirm the capability of the proposed method in different power
system topology. The effect of mi and number of interconnected areas are studied separately and
compare with the response of ADRC. The ±20% of Meq and Di are chosen as parameters simulations.

5.4.1. Robustness against Different Number of Generators mi

At first the simulation is conducted to know the effect of the controller with changing mi.
The different topologies as shown in Figure 16 are used. The responses after applying 105 MW
step load changes in t = 1 s are compared with ADRC and presented in Figures 17 and 18. Clearly the
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performances of both controllers are getting degraded as mi increases. However, the HDOB has better
performance regardless of the value of mi.Energies 2017, 10, 595 16 of 20 
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Figure 16. The topology to study the robustness of controller against different number of connected
generators in: (a) m1 = 3 and m3 = 3; (b) m1 = 4 and m3 = 4; and (c) m1 = 5 and m3 = 5.
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5.4.2. Robustness against Different Number of Connected Areas

In this scenario, the network topologies as shown in Figure 19 are considered. First, the study
starts with two connected areas in Area 2 and Area 3 (Figure 19a), then the number of connected areas
is increased by one and it is continued until Area 2 and 3 are connected to five areas (Figure 19d).
For the sake of convenience, the number of connected areas in Area 2 is denoted by n2, and n3 for
Area 3, respectively. The simulations are carried out to study the effect of LFC with increasing ni.
In addition, it is also important to confirm the robustness of the designed LFC in different topology.
The responses after applying 105 MW step load changes at t = 1 s are depicted in Figure 20. As can be
seen, the proposed HDOB based LFC shows consistent performance in regulating ACE (the solid lines)
with the changing ni. On the contrary, in ADRC results, increasing ni by two or three decreases the
ACE by 0.05 p.u. and makes the overshoot larger (see the dashed lines).

Energies 2017, 10, 595 17 of 20 

 

 
(a) 

 
(b) 

Figure 18. Responses of LFC in Area 3 with different number of generators with: (a) HDOB; (b) ADRC; 
after applying large-magnitude step load changes. 

5.4.2. Robustness against Different Number of Connected Areas 

In this scenario, the network topologies as shown in Figure 19 are considered. First, the study 
starts with two connected areas in Area 2 and Area 3 (Figure 19a), then the number of connected 
areas is increased by one and it is continued until Area 2 and 3 are connected to five areas (Figure 
19d). For the sake of convenience, the number of connected areas in Area 2 is denoted by , and  
for Area 3, respectively. The simulations are carried out to study the effect of LFC with increasing . 
In addition, it is also important to confirm the robustness of the designed LFC in different topology. 
The responses after applying 105 MW step load changes at = 1	second are depicted in Figure 20. 
As can be seen, the proposed HDOB based LFC shows consistent performance in regulating ACE (the 
solid lines) with the changing . On the contrary, in ADRC results, increasing  by two or three 
decreases the ACE by 0.05 p.u. and makes the overshoot larger (see the dashed lines). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 19. The topology to study the robustness of controller against different number of connected 
areas in Area 2 and 3 corresponding with (a) two; (b) three; (c) four; (d) five; connected areas. Figure 19. The topology to study the robustness of controller against different number of connected

areas in Area 2 and 3 corresponding with (a) two; (b) three; (c) four; (d) five; connected areas.



Energies 2017, 10, 595 19 of 21

Energies 2017, 10, 595 18 of 20 

 

 
(a) 

 
(b) 

Figure 20. Responses of LFC in: (a) Area 2; (b) Area 3 with different number of connected areas after 
applying large-magnitude step load changes. 

6. Conclusions 

In this paper, LFC for power systems with multiple areas using the HDOB is designed. With the 
load changing tested in the system, the HDOB-based LFC suppresses maximum deviation in 
frequency and maintains the tie line power interchanges. The advantage of the HDOB-based LFC 
over existing results is that it reduces frequency deviations robustly in the presence of parameter 
uncertainties and transmission delay. In addition, it successfully eliminates the frequency deviation 
under topology variations of multiple areas. 
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Appendix A 

The parameters of generators and the proposed LFC are shown in the following tables  
(Tables A1 and A2). 

Table A1. Parameters of power systems with multiple areas. (In the case of  and , their upper 
and lower bounds are written). 

Generating Unit 
Parameters Area 1 Area 2 Area 3 Area 4 Area 5 
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,…,  0.4; 0.36; 0.42 0.44; 0.32 0.44; 0.45; 0.32; 0.40 0.43; 0.36; 0.41 0.45; 0.33; 0.42 ,…,  3; 3; 3.3 3.2273; 2.6667 3.54; 3.7; 3.6667; 3 3.1; 2.8; 3.01 2.9; 2.4; 3.22 	 ,…,  8; 8; 4 12;8 8; 8; 8; 8 8; 8; 9 8; 8; 9 ,…,  0.4; 0.3; 0.3 0.4; 0.6 0.2; 0.2; 0.3; 0.3 0.3; 0.5; 0.2 0.3; 0.3; 0.4 
β 1.0753 1.4902 0.922 1.0321 0.9718 

 0.0150 × [0.7 1.3] 0.0140 × [0.7 1.3] 0.0150 × [0.7 1.3] 0.0160 × [0.7 1.3] 0.0130 × [0.7 1.3] 
 0.4867 × [0.7 1.3] 0.3517 × [0.7 1.3] 1.006 × [0.7 1.3] 0.557 × [0.7 1.3] 0.45 × [0.7 1.3] 

Figure 20. Responses of LFC in: (a) Area 2; (b) Area 3 with different number of connected areas after
applying large-magnitude step load changes.

6. Conclusions

In this paper, LFC for power systems with multiple areas using the HDOB is designed. With the
load changing tested in the system, the HDOB-based LFC suppresses maximum deviation in frequency
and maintains the tie line power interchanges. The advantage of the HDOB-based LFC over existing
results is that it reduces frequency deviations robustly in the presence of parameter uncertainties and
transmission delay. In addition, it successfully eliminates the frequency deviation under topology
variations of multiple areas.
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Appendix A

The parameters of generators and the proposed LFC are shown in the following tables
(Tables A1 and A2).
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Table A1. Parameters of power systems with multiple areas. (In the case of Meqi and Di, their upper
and lower bounds are written).

Generating Unit
Parameters Area 1 Area 2 Area 3 Area 4 Area 5

mi 3 2 4 3 3
Tg1,...,mi

0.08; 0.06; 0.07 0.06; 0.06 0.075; 0.08; 0.06; 0.08 0.08; 0.06; 0.07 0.082; 0.065; 0.063
Tch1,...,mi

0.4; 0.36; 0.42 0.44; 0.32 0.44; 0.45; 0.32; 0.40 0.43; 0.36; 0.41 0.45; 0.33; 0.42
R1,...,mi 3; 3; 3.3 3.2273; 2.6667 3.54; 3.7; 3.6667; 3 3.1; 2.8; 3.01 2.9; 2.4; 3.22

Ramp rate1,...,mi 8; 8; 4 12;8 8; 8; 8; 8 8; 8; 9 8; 8; 9
α1,...,mi 0.4; 0.3; 0.3 0.4; 0.6 0.2; 0.2; 0.3; 0.3 0.3; 0.5; 0.2 0.3; 0.3; 0.4
β 1.0753 1.4902 0.922 1.0321 0.9718
Di 0.0150 × [0.7 1.3] 0.0140 × [0.7 1.3] 0.0150 × [0.7 1.3] 0.0160 × [0.7 1.3] 0.0130 × [0.7 1.3]

Meqi 0.4867 × [0.7 1.3] 0.3517 × [0.7 1.3] 1.006 × [0.7 1.3] 0.557 × [0.7 1.3] 0.45 × [0.7 1.3]

Table A2. Parameters of HDOB and LQR.

Parameters Area 1 Area 2 Area 3 Area 4 Area 5

τ 0.003
saturation level 20

QA(s) = QB(s)
1

τs3 + 4τ2s2 + 3τs + 1

Table A3. 1
100
∫ 100

0 ∆ f (t)dt.

Figure
Number

Area 1 Area 2 Area 3 Area 4 Area 5

ADRC HDOB ADRC HDOB ADRC HDOB ADRC HDOB ADRC HDOB

6 −0.007 −0.001 −0.007 −0.001 −0.007 −0.001 −0.007 −0.001 −0.007 −0.002
7–11 −0.009 −7 × 10−4 −0.011 −0.001 −0.013 −0.001 −0.014 −0.003 −0.014 −0.002
13 0.004 1.0 × 10−4 0.004 1.0 × 10−4 0.004 1.0 × 10−4 0.004 1.1 × 10−4 0.004 9.2 × 10−5

14 −0.001 −2.9 × 10−5 2.9 × 10−5 3.2 × 10−5 0.0078 7.5 × 10−5 −9.5 × 10−4 −4.9 × 10−6 −0.007 −4.8 × 10−4

15 −0.004 −3.3 × 10−4 −0.004 −3.3 × 10−4 −0.004 −3.3 × 10−4 −0.003 −3.3 × 10−4 −0.004 −3.3 × 10−4
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