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Abstract: Limited driving range remains one of the barriers for widespread adoption of electric
vehicles (EVs). To address the problem of range anxiety, this paper presents an energy consumption
prediction method for EVs, designed for energy-efficient routing. This data-driven methodology
combines real-world measured driving data with geographical and weather data to predict the
consumption over any given road in a road network. The driving data are linked to the road
network using geographic information system software that allows to separate trips into segments
with similar road characteristics. The energy consumption over road segments is estimated using a
multiple linear regression (MLR) model that links the energy consumption with microscopic driving
parameters (such as speed and acceleration) and external parameters (such as temperature). A neural
network (NN) is used to predict the unknown microscopic driving parameters over a segment
prior to departure, given the road segment characteristics and weather conditions. The complete
proposed model predicts the energy consumption with a mean absolute error (MAE) of 12–14% of
the average trip consumption, of which 7–9% is caused by the energy consumption estimation of the
MLR model. This method allows for prediction of energy consumption over any route in the road
network prior to departure, and enables cost-optimization algorithms to calculate energy efficient
routes. The data-driven approach has the advantage that the model can easily be updated over time
with changing conditions.
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1. Introduction and State-of-the-Art

The electric vehicle (EV) has great potential in reducing the impact of the transport sector on
global warming by decreasing greenhouse gas (GHG) emissions, particularly in combination with low
emission electricity production, and improving local air quality by having no tail-pipe emissions [1].
Despite the EV’s environmental benefits, its market penetration and widespread adoption is only
moderately progressing, with a market share still below 1% for passenger vehicles in the European
Union [2]. Consumer EV adoption behavior is found to be influenced by attitudinal factors related to
the high initial purchase cost, the consumer’s perception of supportive policy and attitude towards
technical features [3]. Both the high purchase cost and limited range are a result of the current
development state of the battery technology. Limited by the specific energy and cost of the battery,
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most current commercial vehicles have a battery pack with a capacity of no more than 30 kWh,
resulting in a New European Drive Cycle (NEDC) range of maximum 250 km [4], which can decrease
significantly for real-world use where the energy consumption is reported to increase up to 60% [5–7].
This limited driving range combined with an absence of a vast and dense public charging infrastructure
network enforces the need for accurate range estimation to address the problem of range anxiety [8].

The estimation of the driving range is a combination of both estimating the remaining energy in
the battery and predicting the future energy consumption. Most studies regarding range estimation
are focused on the prediction of the variable energy consumption and assume the remaining energy
in the battery, in the form of state-of-charge (SoC) and state-of-health (SoH), are given. Energy
consumption of an EV depends on the characteristics of the vehicle and its drivetrain, the drive cycle
(the speed profile driven) and auxiliary consumption. In real-world driving, this speed profile—and
therefore energy consumption—is extremely variable and dependent on both road characteristics [9,10],
such as road type and altitude profile, and driving style [11,12]. Additionally, the speed profile is
affected by a number of external influences, such as traffic [13], weather [14] and driver mood, which
either influence the behavior of or impose a behavior on the driver and trigger the use of auxiliaries.
The energy consumption of auxiliaries is heavily dependent on the weather. Field tests and long term
trials show that these auxiliaries are responsible for an important portion of the average real-world
consumption [5,7,15].

This complex system of energy consumers and their influencing factors make a prediction of the
energy consumption difficult. As reported in [16], energy estimation models are generally created
for the purpose of EV drivetrain design and optimization [17,18], assessment of the influences on the
energy consumption [10,19,20], global energy consumption or grid impact due to the introduction
of EVs or hybrid vehicles [14,15], or (all-electric) range prediction [21]. Energy estimation for the
purpose of range prediction either relies on vehicle simulations where drivetrains and vehicle behavior
are being simulated [13,22], sometimes down to the component level, or statistical models. Vehicle
simulation models require calibration and validation using real-life tests or roller bench tests, and use
detailed speed profiles or drive cycles as input for their estimation. Statistical models rely on the
availability of real-world data and vary in the extent to which they can be linked with the physical
underlying principles and speed profile [16,23–25]. An important part of any energy estimation model
for the prediction of energy consumption in real-world circumstances is thus the prediction of the
speed profile driven. The speed profiles for real-world energy prediction are often presented in a
discrete set of drive cycles or a combination of these drive cycles [26,27].

Energy-efficient routing allocates an energy cost to all the links or segments in a road network and
applies cost-optimization algorithms to determine to path with the lowest energy consumption.
For a prediction over the road network, whether it be driver-centric or non-centric (with a set
destination), individual predictions over the individual road segments have been proposed for
EVs [23,28], and combustion engine vehicles [29]. The speed profile driven over road segment will
depend on the road characteristics, the vehicle performance, the traffic and the driver himself. Driving
behavior can change average speed (i.e., speeding or conservative driving) and the aggressiveness
of acceleration. A third factor of driving behavior is the capability to anticipate behavior of other
vehicles or traffic lights to avoid slowing down and accelerating again, which in combination with
intelligent traffic systems (ITS) has proven to reduce fuel consumption in internal combustion engine
(ICE) vehicles [30] and energy consumption in EVs [13]. Traffic density can influence the driving
behavior by imposing a de facto maximum speed or a higher frequency of stops and accelerations.
Weather, in the form of temperature, rain and daylight might influence the driving behavior towards a
more cautious style to lower the risk for accidents [12].

The goal of this paper is to develop a data-driven method to predict the energy consumption
of an EV, usable for energy-efficient routing. The prediction must be performed on the individual
segments in a road network, and account for external disturbances that influence the speed profile
and auxiliary consumption. By calculating the energy consumption over the complete road network,
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energy-optimal solutions can be calculated using cost-optimization algorithms known as shortest-path
algorithms. The proposed model applies a statistical model for the energy consumption estimation,
based on the underlying physical principles, and a machine learning technique that accounts for the
external disturbances on the speed profile. By separating the model in in this way, it benefits from
the power and flexibility of data mining techniques, while preserving the interpretability (because its
strong link with the underlying physical principles) of the computationally simple statistical model.
Both the statistical model and machine learning are based on real-world measured data, so external
influences are implicitly present in the data, and the model is not calibrated to only specific conditions.
The data-driven approach of this method will allow the developed model to be easily updated over
time and adjusted to changing conditions.

2. The Proposed Energy Prediction Model

The proposed method applies a machine learning technique and a statistical method to real-world
measured driving data and energy consumption data of EVs, weather data and geographical
information. The real-world driving, energy, weather, and geographical data are first linked to the
road characteristics of the individual road segments by location, using global positioning system (GPS)
coordinates. The data are then used to train a NN that predicts the speed profile (translated into
microscopic driving parameters) from the road characteristics, weather and traffic-related parameters,
and construct an energy consumption estimation model using multiple linear regression (MLR).
The regression model estimates the energy consumption based on some measurable road and external
parameters, and the predicted values for the microscopic driving parameters from the NN. A schematic
overview of the proposed energy prediction method, its inputs and output and flow of calculations is
given in Figure 1.

Energies 2017, 10, 608 3 of 17 

 

accounts for the external disturbances on the speed profile. By separating the model in in this way, it 
benefits from the power and flexibility of data mining techniques, while preserving the 
interpretability (because its strong link with the underlying physical principles) of the 
computationally simple statistical model. Both the statistical model and machine learning are based 
on real-world measured data, so external influences are implicitly present in the data, and the model 
is not calibrated to only specific conditions. The data-driven approach of this method will allow the 
developed model to be easily updated over time and adjusted to changing conditions. 

2. The Proposed Energy Prediction Model 

The proposed method applies a machine learning technique and a statistical method to real-
world measured driving data and energy consumption data of EVs, weather data and geographical 
information. The real-world driving, energy, weather, and geographical data are first linked to the 
road characteristics of the individual road segments by location, using global positioning system 
(GPS) coordinates. The data are then used to train a NN that predicts the speed profile (translated 
into microscopic driving parameters) from the road characteristics, weather and traffic-related 
parameters, and construct an energy consumption estimation model using multiple linear regression 
(MLR). The regression model estimates the energy consumption based on some measurable road and 
external parameters, and the predicted values for the microscopic driving parameters from the NN. 
A schematic overview of the proposed energy prediction method, its inputs and output and flow of 
calculations is given in Figure 1. 

 
Figure 1. Schematic overview of the proposed energy prediction models and their flow of calculations. 
MLR: multiple linear regression; GPS: global positioning system. 

Although the flow of calculations moves as indicated in Figure 1, the logic for the layout of the 
proposed method was derived in another sequence. To provide the reader the same feel and logic 
behind the build-up of the model, the individual parts of the proposed method will be presented in 
the same order as they were developed. In the remaining part of this section, first a description of the 
available data is given, then the energy consumption estimation model is presented, followed by the 
method to link the vehicle monitoring data with the road network (segmentation method), and finally 
the NN for speed profile prediction is presented. 

2.1. Description of the Available Data 

The model is built by combining information from datasets originating from different sources. 
The data consists of vehicle monitoring data, a road network database, weather data and an altitude 
map. The vehicle monitoring data consists of two datasets. One dataset consists of 30 EVs which were 
monitored for a period of more than 1 year. The vehicles were monitored as part of the Flemish Living 
Labs project EVteclab [31,32]. These vehicles are of the Ford Connect EV model, which is a Ford 
Connect transformed to an EV drivetrain by the Punch Powertrain company [33]. The vehicles were 
monitored with a logger that measured both GPS data and data from the vehicle controller area 
network (CAN). The GPS data were logged at a 1 Hz frequency, the CAN data at a 5 Hz frequency. 
The GPS data provided the timestamp, latitude, longitude, and vehicle speed. Vehicle accelerations 
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MLR: multiple linear regression; GPS: global positioning system.

Although the flow of calculations moves as indicated in Figure 1, the logic for the layout of the
proposed method was derived in another sequence. To provide the reader the same feel and logic
behind the build-up of the model, the individual parts of the proposed method will be presented in
the same order as they were developed. In the remaining part of this section, first a description of the
available data is given, then the energy consumption estimation model is presented, followed by the
method to link the vehicle monitoring data with the road network (segmentation method), and finally
the NN for speed profile prediction is presented.

2.1. Description of the Available Data

The model is built by combining information from datasets originating from different sources.
The data consists of vehicle monitoring data, a road network database, weather data and an altitude
map. The vehicle monitoring data consists of two datasets. One dataset consists of 30 EVs which
were monitored for a period of more than 1 year. The vehicles were monitored as part of the Flemish
Living Labs project EVteclab [31,32]. These vehicles are of the Ford Connect EV model, which is a
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Ford Connect transformed to an EV drivetrain by the Punch Powertrain company [33]. The vehicles
were monitored with a logger that measured both GPS data and data from the vehicle controller area
network (CAN). The GPS data were logged at a 1 Hz frequency, the CAN data at a 5 Hz frequency.
The GPS data provided the timestamp, latitude, longitude, and vehicle speed. Vehicle accelerations are
calculated as the discrete derivative of the GPS speed. Although GPS speed measurements themselves
are accurate, the 1 Hz measurement frequency can introduce some loss of accuracy, especially in the
calculations of the accelerations. The CAN data provided information on the energy consumption in
the form of battery voltage, current and SoC. This dataset will be referred to as Dataset 1. The second
dataset concerns three 2014 Nissan Leaf used as taxis in the Brussels Capital Region. They are driven
24/7 by multiple drivers per vehicle. As for Dataset 1, the GPS is logged with a 1 Hz frequency,
while the CAN-bus data is logged with a 1 Hz frequency. This dataset will be referred to as Dataset 2.
The vehicle specifications of both vehicles are presented in Table 1.

Table 1. Overview of the vehicle specifications of both vehicle models in the two datasets. EV: electric vehicle.

Reference
Name Vehicle Model Mass (kg) Motor

Power (kW)
Top Speed

(km/h)
Torque
(Nm)

Battery
Capacity (kWh)

Driving
Range (km)

Dataset 1 Punch Powertrains
Ford Connect EV 1900 60 120 (limited) 300 (limited) 27 130

Dataset 2 Nissan Leaf (2014) 1601 80 144 300 (limited) 24 199

The road database consists of data on the Belgian road network, where the monitored vehicles
were predominantly driven. The road network database has navigating capabilities and contains
information per segment such as road type, segment length, expected speed over the segment and
whether the road was a one-way road, a bridge or a tunnel. The database did not contain any
information on the presence of traffic lights and pedestrian crossings, nor did it mention the local
speed limit. For the Brussels Capital Region, the road database information was extended with the
presence of pedestrian crossings, traffic lights and speed bumps by adding these layers, provided by
Brussels UrbIS®©, to the base road network. The vehicles in Dataset 1 were driven in a mix of highway,
rural and urban roads, while the vehicles in Dataset 2 were predominantly driven in a dense urban
road network.

The geographical data consists of a 3 arc-second precision digital elevation map (DEM) coming
from the shuttle radar topography mission (SRTM) that provides altitude information on the major
part of the globe. The altitude information was extracted from the DEM for each GPS coordinate of the
driving data with the use of the geographic information system (GIS) software ArcGIS. To link the
driving data to the road network, their GPS coordinates and the road database were joined spatially.
The resulting dataset is thus a combination of vehicle GPS data, road information per segment and
altitude. To visually illustrate the data, Figure 2 shows the road network in the Brussels Capital Region
with part of Dataset 2’s driven trips and the color-scaled altitude map as used in ArcGIS.

The weather data was measured and provided by the Royal Meteorological Institute (RMI) of
Belgium and contained temperature, wind speed and direction, and precipitation on an hourly basis
for weather stations close to the respective regions in Flanders (Flanders, Belgium) where the vehicles
of each dataset were driven. The weather data are considered sufficiently accurate and representative
for the whole of the vehicle monitoring datasets because of the limited area of the regions where the
vehicles were driven.

As the procedure to link the altitude and road information with the GPS coordinates is
computationally intensive, only a representative selection of the vast amount of vehicle monitoring data
was taken to establish the scientific value of the proposed methodology. The selection is considered
representative if it covers a sufficient part of the road network (i.e., all types of roads) under various
conditions. Therefore, the selection for Dataset 1 contained multiple vehicles driven in different parts
of the region, on a variety of road types and spread out over multiple months of monitoring. After
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filtering the selected data, the used data consisted of 3700 km driven by three different vehicles for
Dataset 1 and 10,700 km driven by 2 vehicles in Dataset 2.
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2.2. Energy Estimation Model

The model is based on the underlying physical model that describes the forces acting on a vehicle
in motion. The mechanical energy dE required at the wheels to cover the distance ds is written as:

dE =
1

3600

[
mg( f cosϕ + sinϕ) +

1
2
(ρCx A

(vEV + vw)
2

3.6
) +

(
m + m f

)dv
dt

]
ds (1)

dE Mechanical energy required at the wheels to drive a distance ds [kWh]
m Total vehicle mass [kg]
m f Fictive mass of rolling inertia [kg]
g Gravitational acceleration [m/s2]
f Vehicle coefficient of rolling resistance [-]
ϕ Road gradient angle [◦]
ρ Air density [kg/m3]

Cx Drag coefficient of the vehicle [-]
A Vehicle equivalent cross section [m2]

vEV Vehicle speed between the point i and the point j [km/h]
vw Wind speed projected to the opposing direction of the driving direction [km/h]
ds Distance driven from point i to point j [km]

The terms in (1) represent respectively the rolling resistance, potential energy, aerodynamic loss
and inertial energy. Assuming in a first order the rolling resistance coefficient, drag coefficient, air
density and vehicle mass are constant, the energy consumption can be described as a linear combination
of the kinematic parameters ds, v2 ds, dv

dt ds, and h = ds sinϕ. To represent the consumption of the
auxiliaries, the formula was then extended with a time-linear, temperature scaled term. The simplified
linear representation of the energy consumption of the EV can now be written as:

EEV = B1 s + B2 (vEV + vw)
2 s + B3 a s + B4 h + B5 AuxT Auxtt (2)

AuxT Temperature scaling
Auxt Fraction of time the auxiliaries are switched on

t Time
s Distance
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By applying MLR to the real-world driving and energy data, the coefficients of the linear
combination in (2) are determined. The effect of wind speed on energy consumption does not feel as
very significant because, in general, wind speed is moderate compared to vehicle speed and driving
direction during driving mostly shifts frequently. However, upon close examination of the outliers in
results of the energy estimation using (2), it was established that the wind can have a large influence
on energy consumption in some cases. Therefore, wind speed was added to the predictor variables
in (2) by projecting it on the driving direction. Figure 3 presents an example of energy consumption
estimation using (2) for a measured trip with reported heavy headwinds. It depicts the individual
contributions of the regression terms in a cumulative way along the progression of a trip, with and
without the superposition of headwind on the speed predictor. Superposing the projected wind speed
to the vehicle speed in the aerodynamic term of the energy equation reduced the error from around
30% to only a few percent over the trip.
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individual contributions estimated from the regression model for a trip with strong headwind. The top
figure does not take into account the headwind whereas the lower figure shows the result of the
regression when superposing the headwind to the vehicle speed.

The sensitivity analysis of the energy demand, presented in [34], highlights the effect of a variable
rolling resistance and, to a lesser extent, vehicle mass on the energy consumption of the EV. The rolling
resistance coefficient can vary considerably because of many factors, such as road surface, road wetness,
tires and tire pressure, with reported variations up to 65% [22,35], and therefore require extensive
measurements to characterize it. There also exist methods to estimate vehicle mass and the rolling
resistance coefficient online [36]. If explicit measurements of rolling resistance and vehicle mass are
available, these parameters can easily be drawn out of the regression coefficients and added explicitly
to the predictors in (2) to account for their variability.

By constructing the model using the MLR based on the vehicle dynamics equation, the method is
both computationally simple and increases interpretability through the causal relations in the model.
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To allow the MLR to detect the individual influences on the energy consumption more easily, the trips
are split into shorter segments, so more variability resides in the measured data.

2.3. Segmentation Method

The trips can be split into shorter segment with more distinct conditions to avoid over-aggregation
and a loss of variability in the data. The energy estimation is done on these segments and are
later recombined for an estimation on trip level. Based on (2), the formula for the simplified linear
representation of the energy consumption in function of its predictors now becomes:

∆E = ∑ ∆Esegments

=
trip
∑

segments j

[
B1 ∆sj + B2

n
∑
i
(vEV i + vwi)

2∆si + B3

(
CMF+

j

)
∆sj

+B4

(
CMF−j

)
∆sj + B5 ∆Hposj ∗+B6 ∆Hnegj + B7 AuxTj ∆tj + ε

] (3)

with:

CMFj =
∑n

i=2
∣∣vEV

2
i − vEV

2
i−1
∣∣

∆s
(4)

AFj =
n

∑
i
(vEV i + vwi)

2∆si (5)

while:

Bi : regression coefficients
∆E : energy
vEV i : vehicle speed at time ti

vwi : wind speed value projected on the driving direction at time ti

∆s : distance
∆si : distance driven between ti−1and ti

AuxT : temperature scaling
Auxt : fraction of time auxiliaries are switched on
∆t : time
∆Hpos : positive elevation changes
∆Hneg : negative elevation changes
ε : error term
n : number of data points in segment j

The constant motion factor (CMF), defined in (4), is the sum of kinetic energy changes per unit
distance and is equivalent to the acceleration term in (2). Because the sum of the positive and negative
kinetic energy changes over a segment are not necessarily equal, they are split up in CMF+ and CMF−

in (3). The CMF and aerodynamic factor (AF), defined in (5), are a translation of the speed profile for
this method and represent respectively the performed accelerations and driving speed.

The method to split the trips into micro-trips or segments is an important part in the complete
proposed method. The simplified linear representation of the energy consumption expressed in (3)
requires a minimum of aggregation of data points, but over-aggregation of the predictors leads to
loss of variability. A common practice in many analysis [37] consists of splitting trips into micro-trips
of equal duration. However, this method leads to an arbitrary division in segments, as there is no
link between the road characteristics and the segments. By splitting the trips into segments in an
arbitrary way, driving and road conditions are not represented uniformly over the segments and their
representation cannot be controlled. Additionally, splitting trips into segments of equal duration makes
the duration predictor constant, making it hard to detect its relation to the dependent variable through
linear regression. One method to divide trips into segments with variable duration is to link the data
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points to the road segments by location. The segment length will then be variable and the speed
profile allocated to a specific road segments with its own characteristics. This method is therefore the
most sensible with respect to the complete proposed method. Applying this segmentation method,
the length of the obtained segments depends entirely on the length of the road segments. The road
segments’ lengths range from a few tens of meters up to three kilometers, with a high concentration
of very short segments. For very short segments, the number of data points per segment become too
low to obtain accurate results. Hence, sequential very short segments within one trip (containing
less than 100 data points) with identical road types were aggregated to combined segments up to
100 data points.

2.4. Speed Profile Prediction

In the energy model presented above, the speed profile is translated into two predictors: the
speed-related AF and the acceleration-related CMF. The AF and CMF are highly variable and unknown
prior to departure. All other predictors in (3) are either known or directly measurable for a chosen
route. To be able to predict the energy consumption over the route, the values of these two predictors
of the energy estimation model must be predicted. If we want to enable energy-efficient routing, this
prediction must be done for each individual segment of the road network to allocate an energy cost.
Because the interactions between the road characteristics, traffic situation and driver are complex
and likely to have non-linear and interdependent relations with the driving speed and accelerations
performed, the decision was taken to develop a model based on machine learning. The estimation
technique used is a neural network (NN) [38]. The NN is a powerful technique for black box function
approximation, capable of predicting non-linear, complex relations. A NN is trained to link attributes
from the road and the traffic of the road segments with the actual measured AF and CMF. Figure 4
illustrates the principle of the NN inputs and outputs.
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The available road-related attributes were the road type, altitude differences, indication of the
average speed, and crossings, and were extended with presence of traffic lights, speed bumps and
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pedestrian crossings for Dataset 2. In case sequential very short segments of the same road type were
aggregated to have sufficient data points, as explained in Section 2.3, their road related attributes
were aggregated as well. The traffic light information was added as static information to the road
database and merely indicates its presence on a segment, without information on signal phases.
The crossings were categorized as left turn, right turn, straight through and were categorized according
the magnitude of the angle. The measured average speed over a segment could have been used as a
predictor, as the real-time average speed can be imported using real-time traffic services. However,
because no data from traffic services were available that would allow verification of this assumption,
it was opted not to do so and have a more conservative performance of the prediction. The dataset
did not contain explicit characteristics of traffic, but the weather characteristics (temperature and
precipitation), time of the day, and day of the week were considered implicit indicators of traffic
state. Although the prediction of CMF and AF by the NN is based on many road-related attributes,
weather characteristics and implicit traffic indicators, these parameters do not comprise of all the
attributes, or account for all complex interactions that influence the speed profile. Unique events, such
as accidents, sport events or road works, will have an influence on the traffic state [39,40]. Individual
driving style can modify the speed profile, while the traffic light status can change it fundamentally.
As this information was not present in the available datasets, it presents some limitations of the model
in its current state.

3. Results

The proposed model is a combination of a NN for the prediction of the CMF and AF (representing
the speed profile) on the road segments, followed by the MLR model to estimate the energy
consumption from the predicted CMF, the predicted AF, and the remaining measurable parameters
in (3). Based on the schematic overview of the model, presented in Figure 1, a detailed overview of the
proposed model with its inputs and outputs is given in Figure 5.
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To construct the data-driven model, the selected datasets are first split up into 80–20% for
training-testing of the entire model as a cascade of the NN and MLR. The 80% for training is then split
up in 90% in training and 10% in validation of the NN specifically. The data partitioning and data
process flow is illustrated in Figure 6.
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There is no specific test set for the NN, as the test set will serve to evaluate the complete cascade
model. The filtering process focused on mainly three issues: the correct spatial joining between
the GPS coordinates and the road database (for example if the vehicles drove on a factory site—the
spatial joining would then incorrectly link those GPS points to the nearest road segment), the correct
synchronization between the CAN data and GPS data, and the occurrence of a charging event during
the segment. The results of the energy estimation model, NN prediction and the complete proposed
model for energy consumption prediction will be presented in Sections 3.1–3.3 respectively.

3.1. Energy Estimation Model

Applying the MLR with the segmentation based on (3) for Dataset 1 and Dataset 2 result in the
correlation coefficient, regression coefficients and p-values presented in Table 2. Comparison of the
results for Dataset 1 and Dataset 2 shows that the energy estimation model is vehicle-specific—as the
regression coefficients are different—but have similar order of magnitudes and trends. All p-values
for the regression coefficients B1–B7 are below 0.0001, indicating these terms are very significant.
The MLR also generates an intercept, which is a constant term (or offset) that equals the prediction
when all predictors are zero. However, the vehicle dynamics in (1), leading to the simplified linear
representation of the energy consumption in (2), do not have a constant term. This means no physical
interpretation can be given to this intercept term and a part of the variability which is not explained by
the model is contained within the intercept term for a better fit.

Table 2. Overview of the regression coefficients and p-values for energy estimation model based for
Dataset 1 and Dataset 2.

MLR Results of the Energy Estimation Model

Coefficient Intercept
Rolling

Resistance
(B1)

Aerodynamic
(B2)

Positive
Accelerations

(B3)

Negative
Accelerations

(B4)

Positive
Altitude

(B5)

Negative
Altitude

(B6)

Auxiliaries
(B7)

Dataset 1
R2 = 0.96

Bi −0.0071 0.0670 1.10 × 10−5 2.75 × 10−5 1.64 × 10−5 0.00423 0.00389 0.136
p-values <0.5 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Dataset 2
R2 = 0.93

Bi −0.0024 0.0541 5.23 × 10−6 1.92 × 10−5 1.21 × 10−5 0.00341 0.00259 0.297
p-values <0.05 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

For both datasets, the coefficient for the positive altitude changes is larger than the coefficients
for the negative altitude changes, which is physically correct as only part of the potential energy
will be recovered in kinetic energy or electrical energy through regenerative braking. The ratio of
the negative to the positive coefficient for Dataset 2, 0.00259/0.00341 = 76%, is consistent with the
typical drivetrain efficiency [5] and efficiency of regenerative braking [41]. However, for Dataset 1
this value of 0.389/0.423 = 93% is high. It should also be mentioned that for Dataset 1, the value of
these coefficients was sensitive to the trips contained in the dataset and had subsets where the negative
coefficient was larger than the positive, which is physically impossible because it would mean more
energy is recovered during downhill than what was consumed during uphill. In energy-efficient
routing this must be avoided because it will potentially lead to a suggestion of routes with many
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altitude differences instead of avoiding them. The reason for the sensitivity of the coefficients for
the altitude contribution in Dataset 1 is suspected to be the small variability of the altitude in the
geographic region of Dataset 1, which makes it harder to detect its influence in the variability of the
energy consumption. However, because the altitude differences are so small in this region, this will
also introduce low average absolute errors compared to the total energy estimation.

3.2. Speed Profile Prediction

The data for the NN is split up into 90% for training and 10% for validation. The regression plots
for the prediction of the AF and CMF on Dataset 2 are given in Figures 7 and 8.Energies 2017, 10, 608 11 of 17 
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The correlation coefficient of 0.97 and 0.93 for the two respective predictions is high. However,
there is a spread of the data points around the blue line, especially for the CMF prediction, which



Energies 2017, 10, 608 12 of 18

indicates not all the variability is explained by the current predictors. This is due to the fact that the
driven speed and accelerations are complex variables with a lot of interdependent influencing factors
and they are sensitive to random events. When including explicit information on traffic density and
driving style, more variability of the data can be explained, similarly to what was observed after
including the traffic lights and speed bumps in Dataset 2.

Table 3 presents the correlation coefficient R and the mean squared error (MSE) for the prediction
of the AF and CMF for both Dataset 1 and Dataset 2. The values obtained in Table 3 have a very stable
behavior when calculated multiple times.

Table 3. Correlation coefficient (R) and mean squared error (MSE) for the prediction of the AF and
CMF for both Dataset 1 and Dataset 2.

Variable
Dataset 1 Dataset 2

R MSE R MSE

AF 0.97 2.57 × 106 0.97 4.17 × 105

CMF 0.91 5.37 × 106 0.93 9.37 × 105

According to the values presented in Table 3, the NN is more performant for Dataset 2. This is
attributed to the extension of the input parameters for the prediction with traffic lights, pedestrian
crossings and speed bumps in Dataset 2. This information was not available in Dataset 1. However,
the large difference in the MSE between the 2 datasets is also partly due to the different sizes of the
road segments in both sets. On average, the larger road segments in Dataset 1 will cause larger absolute
errors with similar relative errors.

3.3. Energy Consumption Prediction Model

The proposed method is a combination of the MLR for the energy consumption estimation, based
on the vehicle dynamics equation, and a NN for the prediction of the speed profile. Using a multistep
model can lead to an increased loss of accuracy as the error is accumulated in each step. To benchmark
the results, the results of the proposed model were compared to two other models. The first benchmark
model is a NN prediction that was trained with the same parameters as the proposed model in the
input, and the energy consumption in the output. The second benchmark model is a simple calculation
of the energy consumption by multiplication of the distance with the total real-world measured average
energy consumption. The models’ performance will be analyzed through two absolute error indicators
which are calculated on the part of the data preserved for testing: root-mean-square error (RMSE)
and mean absolute error (MAE). If the error is defined as the target value (vt) minus the predicted
value (vp), the indicators are calculated as:

ε =
(
vt − vp

)
(6)

RMSE =

√
∑n

1 ε2

n
(7)

MAE =
∑n

1 |ε|
n

(8)

The root-mean-square error penalizes the predictions far off target. The performance indicators
for the NN–MLR model and the two benchmark models for Dataset 1 and Dataset 2 are presented in
Table 4 also indicates the average consumed energy per segment, <E>, for both datasets.
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Table 4. Performance indicators for the energy prediction model and the two benchmark models for
comparison on segment level. RMSE: root-mean-square error; MAE: mean absolute error; <E>: average
consumed energy per segment.

Dataset Performance
Indicator

NN–MLR
Prediction

NN
Prediction

Average Consumption
Prediction <E> (kWh)

Dataset 1
RMSE (kWh) 0.0733 0.0923 0.0723

0.159MAE (kWh) 0.0516 0.0615 0.0503
MAE/<E> 0.32 0.38 0.32

Dataset 2
RMSE (kWh) 0.0267 0.0335 0.0341

0.0336MAE (kWh) 0.0190 0.0230 0.0232
MAE/<E> 0.57 0.68 0.69

Regarding the performance indicators, Table 4 shows that for Dataset 1, the NN–MLR and
average consumption predictions have a similar performance and outperform the direct NN prediction.
For Dataset 2, the NN–MLR clearly outperforms the two other prediction methods, which have a
similar performance. This is consistent with the observation from Table 3 in Section 3.2, which showed
that the prediction of the AF and CMF had better results in Dataset 2 due to the presence of traffic
lights and speed bumps in the NN predictors. The performance of all three prediction methods is
significantly lower in Dataset 2 compared to Dataset 1. This can be explained by the difference in the
composition of the road network of both datasets. Dataset 1 contains a mixture of highway, rural and
urban roads, with a considerable number of rural roads, while Dataset 2 primarily consists of dense
urban roads. This results in significantly shorter road segments with much more diverse conditions
and lower average energy consumption. This also contributes to the power of the NN prediction stage
in the NN–MLR and its better performance for in Dataset 2. To visualize the energy consumption
prediction for the individual segments, the regression plot for the prediction of the energy consumption
of the segments in Dataset 2 in given in Figure 9.
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If the segments are recombined to the original trips, we can evaluate the performance of the
prediction methods on trip level. The same performance indicators for the prediction of the segments
are calculated for the trips and presented in Table 5. The performance indicators on trip level have the
same trend as on segment level: the average consumption prediction performs best for Dataset 1 by a
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small margin, the NN–MLR performs best in Dataset 2 by a significant margin. The values of the MAE
per average consumed energy decreases significantly for the prediction on trip level. This is because
the errors on the segment prediction are symmetrically distributed and partly cancel each other out
when recombined to trips. To visualize the energy consumption prediction for the individual trips,
the regression plot for the prediction of the energy consumption of the trips in Dataset 2 is given in
Figure 10. The figure demonstrates the good results for the NN–MLR prediction on trip level.

Table 5. Performance indicators for the energy prediction model and the two benchmark models for
comparison on trip level.

Dataset Performance
Indicator

NN–MLR
Prediction

NN
Prediction

Average Consumption
Prediction <E> (kWh)

Dataset 1
RMSE (kWh) 0.605 0.539 0.471

2.4MAE (kWh) 0.335 0.364 0.316
MAE/<E> 0.14 0.15 0.13

Dataset 2
RMSE (kWh) 0.142 0.178 0.178

0.78MAE (kWh) 0.0917 0.119 0.119
MAE/<E> 0.12 0.15 0.15
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To evaluate how much of the prediction error in the NN–MLR is attributed to the MLR,
the measured values of the CMF and AF can be inserted into the MLR, instead of the predicted
values by the NN stage. Table 6 shows the performance indicators on segment and trip level of for
Dataset 1 and Dataset 2, in the case the measured values of the AF and CMF are the inputs to the MLR.
The results show a MAE of 7.1% and 8.5% of the mean energy consumed per trip for Dataset 1 and
Dataset 2, respectively. This represents approximately half of the mean error created by the NN–MLR.
It is important to observe the high value of MAE/<E> for the estimation on the segments in Dataset 2.
The large error for short segments demonstrates the incapability of the MLR to estimate the instant
power consumption and the need for aggregation of data points.
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Table 6. Performance indicators MLR energy estimation model on trip and segment level by considering
the measured CMF and aerodynamic predictor as input.

Indicator
Dataset 1 Dataset 2

RMSE MAE MAE/<E> RMSE MAE MAE/<E>

MLR estimation for segment 0.0350 0.0231 0.15 0.0146 0.0133 0.39
MLR estimation for trip 0.275 0.170 0.071 0.465 0.0663 0.085

The results presented here are averages for the prediction on segments originating from a random
selection from all road segments in the datasets, which are not limited to a specific selection of an
area in the road network or specific road types (such as highway or arterials), as is often done in
literature [29]. The NN–MLR has a better overall performance than the two benchmark models and
has several other advantages. It performs significantly better when diverse conditions that influence
energy consumption and driving behavior are present. This illustrates the power of a NN in the
prediction of these non-linear systems. If the energy consumption is close to the average energy
consumption (in less diverse conditions), the NN–MLR loses part of its advantage compared to the
average consumption model, because, by cascading both models, the error produced in the NN is
propagated in the MLR. However, cascading both models grants more flexibility and preserves the link
with the underlying physical relationships. This facilitates interpretation of (causal) relations between
the inputs and outputs of the model.

4. Conclusions

This paper presents a data-driven energy consumption prediction method for EVs, suited for
energy-efficient routing. It uses a cascade of a NN and a linear regression model. The MLR model is
used to estimate the energy consumption, given a number of predictor variables, while the NN serves
to predict the unknown predictor variables (inputs) of the MLR. The proposed method predicts the
energy consumption on the individual segments of the road network, allowing a cost allocation to each
link in the road network, so cost-optimization algorithms can define energy-efficient routes. The MLR
is performed on smaller parts of trips (segments) to capture more variability in the data. It was decided
to segment the trips based on the actual road segments in the network instead of an arbitrary division
in order to allocate driving parameters to the road characteristics of the segments. The NN is trained
to predict the speed profile, here translated in an AF and CMF (representing accelerations), from road-,
traffic-, and weather-related attributes. It is the cascade of first the NN for speed profile prediction
and thereafter the regression for energy estimation that form the proposed energy prediction model.
To evaluate its performance, the proposed NN–MLR model is compared to two benchmark models.
A first benchmark model is a NN that directly predicts the energy consumption from the road and
traffic related attributes, omitting the regression part, and the second benchmark model is a simple
estimation calculated with the total average consumption. The NN–MLR prediction has an overall
better performance than both benchmark models. In a dense urban environment, subject to more
diverse conditions, the NN–MLR prediction has a significantly better performance than the other
two. When recombined to trips, the performance increases as errors on segments are symmetrically
distributed and partly cancel each other out. For the proposed complete energy prediction model,
approximately half of the total error can be allocated to the NN prediction of the CMF and AF.
The proposed NN–MLR has a MAE that is 12–14% of the average trip consumption of which only
7–9% is caused by the MLR energy estimation itself. These results are averages for the prediction
originating from a random selection from all road segments in the datasets, and is not limited to a
specific selection of an area in the road network or specific road types, as is often done in literature.

The model results show it is, on average, able to predict the energy consumption more precisely
than an average consumption model. It distinguishes different energy consumption influencing factors
per road segment (such as road characteristics, weather, altitude differences), making this approach
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suited for energy consumption prediction for any given road in the network prior to departure and
enables cost-optimization algorithms to calculate energy-efficient routes. Furthermore, by separating
the model in a stage for the prediction of the speed profile and a stage for the energy consumption
estimation (MLR), it benefits from the power and flexibility of data mining techniques, while preserving
the interpretability of the results because of the preserved link with the underlying physical model.
The data-driven approach allows this method to be easily applied to other EVs and allows for the
developed model to be easily updated over time to adjust to changing conditions.
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