
energies

Article

An Energy Aware Unified Ant Colony System for
Dynamic Virtual Machine Placement in
Cloud Computing

Xiao-Fang Liu 1,2, Zhi-Hui Zhan 2,* and Jun Zhang 2,*
1 Department of Computer Science, Sun Yat-sen University, Guangzhou 510006, China; xfliu@163.com
2 School of Computer Science and Engineering, South China University of Technology,

Guangzhou 510006, China
* Correspondence: zhanapollo@163.com (Z.-H.Z.); junzhang@ieee.org (J.Z.)

Academic Editor: Yun Li
Received: 31 December 2016; Accepted: 17 February 2017; Published: 1 May 2017

Abstract: Energy efficiency is a significant topic in cloud computing. Dynamic consolidation of
virtual machines (VMs) with live migration is an important method to reduce energy consumption.
However, frequent VM live migration may cause a downtime of service. Therefore, the energy
save and VM migration are two conflict objectives. In order to efficiently solve the dynamic VM
consolidation, the dynamic VM placement (DVMP) problem is formed as a multiobjective problem
in this paper. The goal of DVMP is to find a placement solution that uses the fewest servers to host
the VMs, including two typical dynamic conditions of the assignment of new coming VMs and the
re-allocation of existing VMs. Therefore, we propose a unified algorithm based on an ant colony
system (ACS), termed the unified ACS (UACS), that works on both conditions. The UACS firstly
uses sufficient servers to host the VMs and then gradually reduces the number of servers. With each
especial number of servers, the UACS tries to find feasible solutions with the fewest VM migrations.
Herein, a dynamic pheromone deposition method and a special heuristic information strategy are
also designed to reduce the number of VM migrations. Therefore, the feasible solutions under
different numbers of servers cover the Pareto front of the multiobjective space. Experiments with
large-scale random workloads and real workload traces are conducted to evaluate the performance
of the UACS. Compared with traditional heuristic, probabilistic, and other ACS based algorithms,
the proposed UACS presents competitive performance in terms of energy consumption, the number
of VM migrations, and maintaining quality of services (QoS) requirements.

Keywords: dynamic virtual machine placement (DVMP); ant colony system (ACS); energy saving;
cloud computing

1. Introduction

Cloud computing is a large-scale distributed computing paradigm in which customers are able
to access elastic resources on demand over the Internet by a pay-as-you-go principle [1–3]. Cloud
computing facilitates services at three different levels, including Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service (SaaS), and four deployment models, including
private cloud, community cloud, public cloud, and hybrid cloud [4]. With the increasing size of storage
requirements, the inefficient use of resources causes high energy consumption [5,6]. Reports show
that energy consumption has occupied a significant proportion of the total cost of data centers [7].
Energy efficiency is becoming a challenge in data center management [8–11]. In cloud computing,
virtualization is adopted for abstraction and encapsulation such that the underlying infrastructure
can be unified as a pool of resources and multiple applications can be executed within isolated virtual

Energies 2017, 10, 609; doi:10.3390/en10050609 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/journal/energies

Energies 2017, 10, 609 2 of 15

machines (VMs) on the same server simultaneously [12]. This allows the consolidation of VMs on
servers and provides an opportunity for energy saving, since an active but idle server often costs much
more in terms of power consumption, using between 50% and 70% of the power of a fully utilized
server [13]. However, the servers in data center utilize 10% to 50% most of the time and rarely reach
100% [14]. The low utilization is often caused by the over-provisioning of resources since the data
center is designed to support the peak load [15].

When a request comes, the data center needs to create a VM and decides which server to place.
However, the VM workload often experiences variability during the running time [16]. There are two
commonly used strategies; static allocation and dynamic allocation. Static resource allocation adopts
the planned assignment unless an exception occurs. Provisioning for the peak workload is simple
but inefficient and leads to a low resource utilization. To reduce resource waste, Speikamp et al. [17]
optimized the assignment based on daily workload cycles. Setzer et al. [18] also modeled the problem
as a capacity constraint optimization and adopted a mathematical method to consolidate the VMs on a
minimum number of servers. To increase the resource utilization, some researchers propose resource
reservation methods. The resource demand pattern of each VM is modeled, and then a consolidation
algorithm based on the stationary distribution of the VM patterns is adopted for assignment. In [19],
a Markov chain is used to capture the burstiness of workload firstly, and then the VMs are allocated
based on their workload patterns. All these static resource allocation methods assume that the
workload patterns of servers are known and the VM set is stable. However, the VMs usually present
quite different resource demands and execution times [20]. The static allocation methods may not
work well in these cases.

In recent years, the dynamic allocation of VMs with live migration has received significant
attention. The VMs are firstly assigned to servers according to a normal workload, and then migration
procedure is performed when servers are overloaded or underutilized. The idle servers can respond
to the incremental workload and can also be switched to sleep mode. Thus, the VMs are assigned to
the minimum active servers to reduce energy consumption and meanwhile meet QoS requirements.
Different from static resource allocation, dynamic resource allocation methods do not need planning.
The number of active servers is adjusted dynamically. The threshold-based method is simple and
commonly used. In commercial and open-source approaches such as VMware’s Distributed Resource
Management [21], the management performs VM migrations when the resource utilization violates
the predefined threshold. However, setting static thresholds is not efficient for non-stationary resource
usage patterns. Beloglazov et al. [22] proposed an adaptive threshold method based on the historical
data and adopts a modified best-fit decreasing (BFD) method to dynamically allocate VMs. In order to
reduce the number of unnecessary migrations, server loads, or VM resource requirements, a prediction
method is introduced. The workloads of different applications are classified using k-means in [23,24].
Zhang et al. [25] considered the heterogeneity of the workload and implemented resource prediction
according to application characteristics. The VMs are allocated according to a standard convex
optimization method and a container-based heuristic method. Recently, Verma et al. [26] proposed a
dynamic resource prediction method by feature extraction from users’ data and allocated the VMs by
a best-fit decreasing algorithm. In addition to the above deterministic algorithms for VM assignment,
probabilistic methods are also proposed to solve large-scale problem with thousands of servers.
In [15], Mastroianni et al. proposed a probabilistic consolidation method, ecoCloud, to implement VM
assignment and migration according to the local information of each server.

In addition to traditional heuristic and probabilistic methods, evolutionary algorithms have also
been widely used in DVMP due to their good performance on complex optimization problems [27–29].
In [30], Mi et al. proposed a genetic algorithm based approach to adaptively adjust the VMs according
to time-varying requirements. In [31], Ashraf et al. employed ant colony optimization (ACO) to find
a VM migration plan to consolidate VMs on underutilized servers. In [32], Farahnakian assigned
the VMs by a best-fit algorithm first and then performed an ant colony system for VM migration
when observing workload variation. A VM migration is allowed only if it is able to reduce the energy

Energies 2017, 10, 609 3 of 15

consumption and the number of VM migrations. Thus, it may not work well on the situations where
many VMs present short-term bursts and a large number of servers are overloaded.

The approaches mentioned above all deal with the VM assignment and VM re-allocation
separately. However, these methods are not efficient in cases when new application requests and
migrations occur simultaneously. Moreover, the VM re-allocation procedure is to find a new server in
which to place the corresponding VM. Thus, we can use a unified algorithm for the assignment and
re-allocation of VMs. In this paper, we formulate the dynamic virtual machine placement (DVMP)
as a multiobjective combinatorial optimization problem and design an online algorithm and an ant
colony system (ACS) based unified algorithm, termed UACS, to consolidate VMs for saving energy
and reducing the number of migrations while meeting QoS requirements simultaneously. This is a
further extension of our early work on VM assignments at a certain time in [33]. In UACS, multiple
ants construct solutions concurrently with the guidance of a pheromone and heuristic information.
A dynamic pheromone deposition method is designed to support the dynamic VM assignment and
migration. In order to reduce the number of VM migrations, heuristic information is also introduced
to help the solution construction. The QoS requirements are formalized via Service Level Agreements
(SLA). Experiments with large scale random workload or real workload traces are carried out to evaluate
the performance. Not only the traditional heuristic approach, BFD [22], and the probabilistic method,
ecoCloud [15], but also a recently proposed ACS-based algorithm, ACS-VM [32], are implemented for
comparison. Compared with the traditional heuristic, probabilistic, and other evolutionary algorithms,
the proposed UACS achieves competitive performance in terms of energy consumption, the number
of VM migrations, and the number of SLA violations.

The remainder of this paper is organized as follows. Section 2 describes the DVMP problem,
performance metrics, and the ant colony system in detail. Section 3 develops the proposed algorithm,
UACS. Experiments are undertaken to evaluate the performance of the UACS in Section 4. Finally,
the conclusions are drawn in Section 5.

2. Model

2.1. DVMP Problem

Elasticity is one of the most important characteristics of cloud computing. Once the cloud data
center receives an application request from a customer, a VM is created to host the application. Then the
VM is assigned to one available server according to the placement strategy. With the time-varying
resource requirement, the original assignment may violate the QoS requirements. Some servers are
overloaded and some servers are underutilized. This triggers VM migration. However, live migration
may cause the downtime of the service. Thus, minimizing the number of migrations is another
objective to improve the QoS requirments. How to assign the VMs to reduce energy consumption
while using as few as migrations as possible and meeting QoS becomes a challenge. Since the two
objectives in terms of energy consumption and the number of migrations conflict with each other,
the DVMP is modeled as a multiobjective optimization, minimizing energy consumption and the
number of migrations while meeting QoS requirements. The time is split into intervals t = [1, 2, ..., T].
In interval t, we assume that there is an available server set Pt = {1, 2, . . . , Mt} with a size of Mt, the VM
set that has already been assigned to servers At = {1, 2, . . . , Ht} with a size of Ht, and a new incoming
VM set Vt = {1, 2, ..., Nt} with size of Nt. The assigned VMs in At are allowed to be migrated to other
servers and the new incoming VMs in Vt need to be allocated to servers. Two resources, CPU and
RAM, are considered in this paper. In interval t, the CPU and RAM requirements of each VM j are
denoted as vcjt and vmjt. The corresponding resource capacities of each server i for CPU and RAM in
interval t are denoted as PCit and PMit, respectively. To ensure the performance of user applications,
the maximum resource utilization is defined as R. The peak workload of each VM is assumed to be
less than the maximum amount of resources provided by each server. For a placement solution St in
interval t, a zero-one adjacency matrix Xt is used to represent the assignment relationship between the

Energies 2017, 10, 609 4 of 15

VMs and the servers. In Xt, the element xijt is used to describe whether VM j is assigned to server i.
The DVMP problem for minimizing energy E and the number of VM migrations L is formulated as:

Minimize F(St) = (E(St), L(St)) (1)

subject to:

xijt =

{
1, if server i hosts the VM j at interval t
0, otherwise

∀i ∈ Pt and ∀j ∈ (Vt ∪ At) (2)

yit =

{
1, if ∑j∈Vt xijt + ∑k∈At xikt ≥ 1
0, otherwise

∀i ∈ Pt (3)

∑
i∈Pt

xijt = 1 ∀ j ∈ (Vt ∪ At) (4)

∑
j∈Vt

vcjt · xijt + ∑
k∈At

vckt · xikt ≤ R · PCit · yit, ∀i ∈ Pt (5)

∑
j∈Vt

vmjt · xijt + ∑
k∈At

vmkt · xikt ≤ R · PMit · yit, ∀i ∈ Pt (6)

The value of xijt is set as 1 if VM j is assigned to server i, as in Equation (2). In Equation (3), yit
presents whether there are any VMs assigned to server i in interval t. A VM is allowed to be assigned to
one and only one server, as shown in Equation (4). Each server must satisfy the resource requirements
of VMs on it, as with constraints (5) and (6). The energy consumption E and number of migrations L
will be described in detail in the following section.

2.2. Performance Metric

2.2.1. SLA Violation

In data center, it is important to meet QoS requirements. QoS requirements are often defined
by SLAs, such as minimum latency or maximum response time [5]. In this paper, we adopt the
workload independent metric defined in [5] to evaluate the SLA violation level. The metric calculates
the percentage of time that the CPU utilization of the active servers appeared larger or equal to 100%
and is defined as SLAO (where O represents server overload) as follows:

SLAO =
1
N

N

∑
i=1

Tui

Tai
(7)

where N is the number of active servers during the runtime, Tui is the total time that the CPU utilization
of server i reaches 100%, and Tai is the total active time of server i.

2.2.2. Number of Migrations

Migration may cause the performance degradation of VMs and a downtime of services. The time
used for one migration is determined by the memory of the VM and the network bandwidth between
the source and destination server [32]. Thus, we calculate the number of migrations during the runtime
for evaluation.

2.2.3. Energy Consumption

A server in an idle state consumes a large amount of power, which is 50–70% of its maximum
power consumption [8]. As the CPU utilization increases, the power consumption of a server grows

Energies 2017, 10, 609 5 of 15

approximately linearly [34]. Therefore, similar to our previous study in static environments [33], we
still define the power model as:

P(u) = ridle · Pmax + (1− ridle) · Pmax · u (8)

where ridle is the ratio of power consumption in an idle server, Pmax is the maximum power
consumption of the server, and u (0 ≤ u ≤ 1) is the CPU utilization of the server. According to (8), we
can see that, by reducing the number of active servers, it is possible to reduce the energy consumption.

2.3. ACS

Inspired by the foraging behavior of ants, Dorigo and Gambardella proposed ACS firstly in 1997
for solving the traveling salesman problem (TSP) [35]. In ACS, multiple ants construct solutions with
the guidance of a pheromone and heuristic information in parallel. The pheromone is deposited
between city pairs to record the historical search experience. The heuristic information embedded with
a greedy selection based on the current state helps to find better solutions. In each generation, each ant
constructs a route by visiting the cities step by step. During the solution construction, pheromone local
updating is performed to evaporate the pheromone on the visited routes and diversify the solutions.
After all the ants have finished construction, the best solution is selected and used for pheromone
global updating to record the good solution. The algorithm terminates when the maximum generation
is reached.

3. Method

Due to the good performance of ACS on the static VMP problem presented in our previous
work [33], we developed an ACS based unified algorithm, UACS, for the DVMP. Different from
the VMP with fixed resource requirements considered in [33], the VMs with different arrival times,
durations, and time-varying resource requirements are tracked in the DVMP in this paper. The UACS
deals with the VM migration as a VM assignment problem. That is to say, the UACS can deal with not
only the new incoming VM assignment but also determine the VM migration plan. UACS is applied
periodically to assign new VMs and adaptively optimize the VM placement according to the workload.
The new unassigned VMs and the VMs on overloaded and underutilized servers are collected together
firstly. Then, the UACS is performed to obtain nondominated assignments stored in an archive. Finally,
we select one according to the preference of decision makers from the archive to execute the assignment.
The detail of the algorithm is described as follows. We take time t as an example.

3.1. VMs Set for Assignment

At time t, assume that new incoming VMs arrive and are collected in set NVt. Define the size of
NVt as |NVt|. The VMs on overloaded servers are collected together into a set OVt. To save energy.
the VMs on underutilized servers can be migrated. In order to reduce the number of unnecessary
migrations, some underutilized servers are reserved for the assignment of new VMs and VM migrations
from overloaded servers. The sum of total resource requirements of new VMs and total excess resource
requirements of overloaded servers are estimated and defined as TR. Then the remaining resources of
underutilized servers are accumulated gradually in order until the value reaches 2TR. Then the VMs
on the remaining underutilized servers are collected into a set UVt. The VMs in these three sets, NVt,
OVt, and UVt, are combined together into a set Vt. The size of Vt is denoted as Nt. The Vt set is the
VM input of the UACS algorithm. The other running VMs remain on their original assigned servers.
The pseudo code is presented in Algorithm 1.

Energies 2017, 10, 609 6 of 15

Algorithm 1. Construct VMs set for assignment

1. TRcpu ← 0, TRmemo ← 0; URcpu ← 0; URmemo ← 0; NVt ← φ; OVt ← φ; UVt ← φ

2. for each new coming VM j do
3. TRcpu ← TRcpu + vcj
4. TRmemo ← TRmemo + vmj
5. add VM into NVt

6. end for
7. for each overloaded server i do
8. TRcpu ← TRcpu + |PCi − UCi|
9. TRmemo ← TRmemo + |PMi − UMi|
10. add VMs on server i into OVt

11. end for
12. for each underutilized server i do
13. URcpu ← URcpu + |PCi − UCi|
14. URmemo ← URmemo + |PMi − UMi|
15. if URcpu ≥ 2 × TRcpu && URmemo ≥ 2 × TRmemo then
16. sleepindex← i;
17. go to line 19
18. end if
19. end for
20. for each underutilized server k behind server sleepindex do
21. add the VMs on server k into UVt

22. end for

3.2. Dynamic Pheromone Deposition

The pheromone in UACS is deposited on the VM pairs. The pheromone between the new
incoming VM and any other one is deposited with a value of the initial pheromone τ0 = 1/Mt, where
Mt is the number of available servers in the data center at time t. Since the VMs in OVt and UVt have
an original assigned server in the last time t − 1, these VM pairs inherit their pheromone in last time
t – 1 to make them have a higher opportunity to be grouped together. Thus, the number of migrations
may be reduced. In a special case, some VMs in OVt and UVt were not included for assignment at time
t – 1; the pheromone related to them is set as the initial pheromone τ0. In the following, the pheromone
between VM j and k is denoted by τ(k, j).

3.3. UACS

Pareto-based [36] and decomposition via aggregation [37] methods are often used in multiobjective
problems. In Pareto-based approaches, the Pareto dominance pushes the population toward the
Pareto front (PF) as shown in Figure 1. As illustrated in Figure 1b, decomposition via aggregation
decomposes a multiobjective problem into a set of scalar optimization subproblems and optimizes
them simultaneously. However, the setting of weights is a difficult problem especially when the two
objectives are not comparable [38]. Thus, in this paper, we adopt a different method with an external
archive to solve the problem, as shown in Figure 1c. The curve represents the PF, where the solutions
are nondominated by any others. The horizontal line with an arrow represents the optimization
direction of the number of migrations. The vertical line represents the optimization direction of
energy consumption. The circles with different fill patterns are solutions in different generations.
In each generation, certain number of servers are given, and we find feasible solutions within these
servers. Based on the power model defined in Section 2, the optimization of a number of active servers
coincides with the energy consumption. By the nondominated sorting of the obtained solutions, only
the solutions with minimum energy consumption and migrations are preserved. For example, Figure 1c
shows 12 solutions; four are hollow circles, four are circles with points, and four are circles with grids.

Energies 2017, 10, 609 7 of 15

At first, only the four solutions denoted as hollow circles are found, but only the two solutions closed
to the PF are stored in the archive, as grouped by the ellipse. Then the minimum servers among these
two nondominated solutions are denoted as Mmin. In the next generation, Mmin − 1 servers are given,
and UACS tries to find feasible solutions. Assume that the four solutions denoted as circles with points
are obtained in this generation. However, only two of them are nondominated solutions and are added
into the archive, also grouped by the ellipse. Similar search schema are performed in the following
generations. For example, assume that the four solutions denoted as circles with grids are found,
and three of them are nondominated solutions and are stored in the archive, as grouped by the ellipse.
Therefore, as the number of generations increases, the number of provided servers decreases, and the
computation concentrates on the unexplored areas. The optimization of the number of migrations
is implemented by the design of pheromone, heuristic information, and nondominated sortation.
Through multiple iterations, we can find solutions along the PF. Since Mmin is our optimization
objective, which is unknown in advance, we begin with Mmin = Mt + 1 in the initialization state, where
Mt is the number of available servers in the data center at time t. In order to simplify the symbol
representation, we use the vcj and vmj to represent the CPU and RAM requirements at time t.

Energies 2017, 10, 609 7 of 15

generations increases, the number of provided servers decreases, and the computation concentrates
on the unexplored areas. The optimization of the number of migrations is implemented by the
design of pheromone, heuristic information, and nondominated sortation. Through multiple
iterations, we can find solutions along the PF. Since Mmin is our optimization objective, which is
unknown in advance, we begin with Mmin = Mt + 1 in the initialization state, where Mt is the number
of available servers in the data center at time t. In order to simplify the symbol representation, we
use the vcj and vmj to represent the CPU and RAM requirements at time t.

Figure 1. The search schemas in methods (a) Pareto-based; (b) Decomposition via aggregation; (c)
UACS.

3.3.1. Solution Construction

After the initialization, UACS goes to construct solutions iteration by iteration so as to find
better feasible solutions with fewer servers. In each iteration g (g ≥ 1), UACS aims to find a feasible
solution with one server less than Mmin. Therefore, m ants try to place the Nt VMs to the Mg = Mmin − 1
servers. The ant constructs a solution with Nt steps by selecting a server to assign to each VM j (j ∈
Vt), according to the pheromone and heuristic information. The servers with enough remaining
resources for placing VM j are added into a set Cj, while the other available servers are added into a
set Dj. To get a feasible solution, we consider the servers in Cj firstly and then in Dj only when there
are no available servers with enough remaining resources. Since the pheromone is deposited
between VM pairs, the preference Pre(i, j) of VM j for server i is calculated as:

0

1
(,), if 0

(,)

, otherwise
i

i
k si

k j s
sPre i j

τ

τ
∈

 ≠=

 (9)

where si is the existing VM set on server i and |si| is the number of VMs deployed on server i.
The heuristic information for each server is calculated as

1.0
, if

1.0
(,)

2 , if

j

i i j i i j

i i

i i j i i j

j

i i

i C
PC UC vc PM UM vm

PC PMi j

PC UC vc PM UM vm
i D

PC PM

η

∈
− − − −

+ +
=

− − − −
− − ∈

 (10)

where UCi and UMi represent the usage of CPU and the memory of server i before joining VM j. In
order to reduce the number of migrations, the reassigned VMs tend to select the original servers for
placement. In order to enhance the probability of selecting the original server, the heuristic
information η(i, j) of the VM j and its corresponding original server i are set as five times that of (10).

With the design of the pheromone and heuristic information, the probability for assigning an
unassigned VM j to server i from a set Ij (Ij = Cj if the Cj ≠ φ; otherwise Ij = Dj) is calculated by:

Figure 1. The search schemas in methods (a) Pareto-based; (b) Decomposition via aggregation; (c) UACS.

3.3.1. Solution Construction

After the initialization, UACS goes to construct solutions iteration by iteration so as to find better
feasible solutions with fewer servers. In each iteration g (g ≥ 1), UACS aims to find a feasible solution
with one server less than Mmin. Therefore, m ants try to place the Nt VMs to the Mg = Mmin − 1
servers. The ant constructs a solution with Nt steps by selecting a server to assign to each VM j (j ∈ Vt),
according to the pheromone and heuristic information. The servers with enough remaining resources
for placing VM j are added into a set Cj, while the other available servers are added into a set Dj.
To get a feasible solution, we consider the servers in Cj firstly and then in Dj only when there are no
available servers with enough remaining resources. Since the pheromone is deposited between VM
pairs, the preference Pre(i, j) of VM j for server i is calculated as:

Pre(i, j) =

1
|si | ∑

k∈si

τ(k, j), if |si| 6= 0

τ0, otherwise
(9)

where si is the existing VM set on server i and |si| is the number of VMs deployed on server i.
The heuristic information for each server is calculated as

η(i, j) =

1.0∣∣∣∣ PCi−UCi−vcj

PCi

∣∣∣∣+∣∣∣∣ PMi−UMi−vmj
PMi

∣∣∣∣+1.0
, if i ∈ Cj

2−
∣∣∣ PCi−UCi−vcj

PCi

∣∣∣− ∣∣∣ PMi−UMi−vmj
PMi

∣∣∣, if i ∈ Dj

(10)

where UCi and UMi represent the usage of CPU and the memory of server i before joining VM j.
In order to reduce the number of migrations, the reassigned VMs tend to select the original servers for
placement. In order to enhance the probability of selecting the original server, the heuristic information
η(i, j) of the VM j and its corresponding original server i are set as five times that of (10).

Energies 2017, 10, 609 8 of 15

With the design of the pheromone and heuristic information, the probability for assigning an
unassigned VM j to server i from a set Ij (Ij = Cj if the Cj 6= φ; otherwise Ij = Dj) is calculated by:

p(i, j) =
Pre(i, j)η(i, j)β

∑
k∈Ij

Pre(k, j)η(k, j)β
, ∀i ∈ Ij (11)

where β (β > 0) is a predefined parameter that controls the relative importance of heuristic information.
For VM j, it chooses server i from the servers set Ij by applying the state transition rule given by:

i =

 argmax
k∈Ij

Pre(k, j)η(k, j)β, if q ≤ q0

I, otherwise
(12)

where q is a random number in range of [0, 1], I is a random integer selected from Ij by a roulette wheel
selection according to the probability distribution in (11), and q0 is a predefined parameter (0 ≤ q0 ≤ 1)
controlling the exploitation and exploration behaviors of the ant.

After all the ants have finished solution construction, it is firstly checked whether the solutions
are feasible. For the infeasible solutions, a local search by exchanging and moving the VMs, proposed
in [33], is performed to adjust the VM placement. Note that the local search herein is performed on the
obtained solutions not the current placement in data center, and it does not lead to real cost except
for time. If the solution is still infeasible after a local search, we provide more servers and adjust the
VMs on the overloaded servers to the new servers by a first-fit algorithm [39] until it becomes feasible.
The first-fit algorithm assigns the VMs to the first server with enough remaining resources in order.

3.3.2. Solution Preservation

The solutions are evaluated on two objectives, power consumption E and the number of migrations
L. We use an archive A with fixed size NA to store the nondominated solutions obtained until
the current generation. The current size of A is denoted as na. If na exceeds NA, solutions from
A (na − NA) are randomly discarded except for the solutions with minimum power consumption or
with minimum migrations.

3.3.3. Pheromone Update

During the solution construction process, a local pheromone update is performed to evaporate
the pheromone on visited VM pairs and avoid similarity between solutions. On each VM-pair (k, j) on
the same server, the pheromone is updated by:

τ(k, j) = (1− ρ) · τ(k, j) + ρ · τ0 (13)

where 0 < ρ < 1 is the pheromone decay parameter.
At the end of each generation, global pheromone updating is performed to reinforce the good

assignment. Since UACS aims to find a feasible solution with a given server number in each generation,
we select the one with minimum power consumption Sp from archive A to perform global pheromone
updating. For each VM-pair on the same server in Sp, the pheromone is updated as:

τ(k, j) = (1− ε) · τ(k, j) + ε · ∆τi, if (k, j) ∈ si, ∀si ∈ Sp (14)

∆τi =
1

Mmin +
1

LCi + LMi + 1
(15)

where ε (0 < ε < 1) is the parameter to control the degree of pheromone enhancement, si is the VM set
on server i, and LCi and LMi are the corresponding normalized remaining CPU and RAM on server i
(the ratio of remaining resource to the resource capacity).

UACS terminates when the maximum predefined generation is reached. The decision makers can
select a solution from archive according to their preference for VM assignment and migration. In this
paper, we focus more on energy saving, thus the solution with the minimum energy consumption

Energies 2017, 10, 609 9 of 15

firstly and minimum migrations secondly is selected from the archive to implement assignment and
migration. The process of UACS contains the ‘Construct VMs set for assignment’ procedure as in
Algorithm 1 and the ‘Initialize Pheromone Deposition’ procedure, as in Algorithm 2. The pseudo-code
of UACS is given in Algorithm 3.

Algorithm 2. Initialize Pheromone Deposition

1. τ0 ← 1/Mt

2. for each VM pair (k, j)
3. if VM k and VM j are included in the assignment in the last time then
4. τ(k, j)← τold(k, j)
5. else
6. τ(k, j)← τ0
7. end if
8. end for

Algorithm 3. UACS

1. Construct VM sets for assignment following Algorithm 1
2. Initialize pheromone τ as Algorithm 2
3. g← 1, Mmin ←Mt + 1, A← φ

4. while g ≤ Gmax do
5. Mg ←Mmin − 1
6. for each ant m do
7. Sm ← φ

8. for each VM j do
9. Cj ← φ; Dj ← φ

10. for each server i do
11. if there is enough remaining resources to place VM j then
12. add i into Cj
13. else
14. add i into Dj
15. end if
16. calculate Pre(i, j) by using (9)
17. calculate η(i, j) by using (10)
18. if VM j is assigned to server i in the last assignment then
19. η(i, j)← 5 × η(i, j);
20. end if
21. end for
22. if Cj 6= φ

23. Ij ← Cj
24. else
25. Ij ← Dj
26. end if
27. apply rule in (12) to select a server for VM j and add the assignment into Sm

28. apply pheromone local update rule in (13)
29. end for
30. if solution Sm is infeasible then
31. perform local search on Sm

32. if Sm is infeasible then
33. Given more servers, and the VMs on overloaded servers in Sm are adjusted by First-Fit algorithm
34. end if
35. end if
36. end for
37. add the solutions into A and update A by storing the nondominated solutions
38. update Mmin

39. apply global update rule in (14)
40. g← g + 1
41. end while
42. τold ← τ

Energies 2017, 10, 609 10 of 15

4. Results

To evaluate the performance of the proposed algorithm, a series of simulation experiments with
random workload and real workload are conducted. In each test instance, we assume that the allowed
maximum utilization of each server is Umax = 0.9. The server with utilization exceeding 100% is
considered overloaded while under Uunder = 0.5 is seen as underutilized. We compare UACS with
three algorithms, the traditional heuristic approach, BFD; probabilistic method, ecoCloud [15]; and
ACS-VM [32]. BFD is widely adopted for DVMP with a consolidation ratio of 11/9 and is used as a
baseline. It allocates the VM to the server that fits best. In ecoCloud, each server determines whether
to receive the VM for placement with a probability according to its own local information. ACS-VM
is a very recently proposed algorithm for VM migration and has shown good performance. These
representative algorithms make the comparisons more comprehensive and convincing. The parameters
of the compared algorithms are set follow the original paper. For UACS, the related parameters are
m = 5, q0 = 0.7, ρ = 0.1, ε = 0.1, β = 2.0, and NA = 10 and maximal generation Gmax = 20. The SLAO
violated level, the total number of VM migrations, and the energy consumption during the runtime of
all algorithms on each test case are reported.

4.1. Random Workload

In the random workload, each VM runs an application with a variable CPU and memory
utilization generated by a uniform distribution. The simulation is based on a Poisson arrival process
with different arrival rate λ. The duration of the VM is generated by a Gaussian distribution with
a mean value of 150 and a standard deviation of 10. Five test instances, named RW1 to RW5, are
performed. RW1 and RW2 are to evaluate the performance of algorithms with different configurations
of VMs and servers. RW3 and RW4 are to test the scalability of the proposed algorithm. In the real
cloud, the requests often present a periodicity variation with a large number of requests in the daytime
and fewer requests at night. Thus, we simulate an instance with an λ of “9.6 + 30 + 9.6” across one day
in RW5. The configurations of the servers and VMs in the five instances are listed as Table 1.

Table 1. Configurations of virtual machines (VMs) and servers in random workloads, RW1 to RW5.

Test λ CPU Range RAM Range VM Number Server Number (CPU, RAM)

RW1 9.6 [1, 4] [1, 8] 10,000 8000 (24, 48)
RW2 9.6 [1, 1] [0, 3] 10,000 8000 (16, 32)
RW3 13.3 [1, 4] [1, 8] 19,200 8000 (16, 32)
RW4 30 [1, 4] [1, 8] 43,200 8000 (16, 32)
RW5 9.6 + 30 + 9.6 [1, 4] [1, 8] 27,288 8000 (16, 32)

The SLAO violated level, the number of VM migrations, and the energy consumption of all
algorithms in RW1 to RW5 are reported in Table 2. Refering to the number of migrations, no migrations
occur in ecoCloud, and ACS-VM gets the second smallest values. BFD gets the maximum number
of migrations in each case. For the energy consumption, UACS gets the minimum value in RW1 and
the second highest values in RW2–RW5, following ACS-VM. From Table 2, we can see that the SLAO
value of UACS, ecoCloud, and BFD is 0, while that of ACS-VM becomes larger with the growth of the
VM number. ACS-VM cannot deal with large-scale scenarios and many servers are in an overloaded
state for half of the active time. In RW1, UACS adopts more VM migrations to avoid server overload
and increase resource utilization. UACS uses less energy consumption than ACS-VM. This shows the
stronger ability of UACS to consolidate VMs and increase resource utilization. Although ACS-VM can
obtain a small number of VM migrations, it cannot meet the SLA requirements. In ACS-VM, a migration
is allowed only if it can reduce the active server number and the number of migrations. This selection
mechanism causes a situation in which the VMs on overloaded servers cannot be migrated and leads
to a smaller value for energy consumption but a higher SLAO violated level in RW2 to RW5. This
means that ACS-VM often finds solutions that violate the SLA requirements, which are not efficient in

Energies 2017, 10, 609 11 of 15

real cloud systems. The ecoCloud needs no migrations but displays large energy consumption in all
cases. Due to the probabilistic assignment method based on local information, ecoCloud consolidates
the VMs on more servers and causes resource waste. Meanwhile, the performance of the algorithm
greatly depends on the parameters in the probability function. For BFD, it gets the largest number of
VM migrations and the second last rank for energy consumption. Therefore, when the SLAO violated
levels, the number of VM migrations, and the energy consumption are combined, UACS performs
the best and needs a smaller number of VM migrations and consumes less energy while maintaining
QoS requirements.

4.2. Real Workload

To further evaluate the performance of UACS on real workload traces in the cloud system, three
test cases, RW6 to RW8, are conducted. We use the workload patterns from the three distinct sets MIX0,
MIX1, and MIX2 provided in [21]. In each set of MIX0, MIX1, and MIX2, there are 20 traces selected
from the 481 raw workload traces from a large European data center [21]. The demand patterns in
MIX0, MIX1, and MIX2 are illustrated in Figure 2. Most of the workload traces in MIX0 present
small variance during the execution time, while the workload traces in MIX1 show many short-term
bursts [21]. MIX3 mixes the samples in MIX0 and MIX1 simultaneously. The measured workload traces
describe the VM utilization in values of range [0, 150] on each logical CPU. In the three test cases, RW6,
RW7, and RW8, each VM selects a random demand pattern from the corresponding workload traces
set, MIX0, MIX1, and MIX2, respectively, as its time-varying resource requirement. Each server is
equipped with a single CPU with four cores with a total of 200 capacity units and a 16 GByte memory.
A VM is configured with two virtual CPU cores and a two GByte memory. In each case, the arrival rate
λ is set as 3.4 and the total VM number is 10,000. RW6, RW7, and RW8 evaluate the ability of UACS to
deal with workload traces with characteristics of normal bursts, short-term bursts, and hybrid normal
and short-term bursts, respectively.

Table 3 reports the SLAO violated levels, the number of VM migrations, and the energy
consumption caused by the UACS, BFS, ecoCloud, and ACS-VM methods on RW6, RW7, and RW8.
Similar to its performance in RW1 to RW5, ACS-VM gets fewer VM migrations and minimum power
consumption but large values for the SLAO violated level in RW6 to RW8. ACS-VM cannot deal
with the server overload cases and violates QoS requirements. This limits ACS-VM’s application to
the real cloud. ecoCloud needs the least number of VM migrations but displays the largest energy
consumption, while meeting QoS. This is because ecoCloud assigns the VMs to more servers, and many
servers operate at low utilization. This over-provisioning reduces the probability of server overload
and leads to fewer migrations. BFD needs the largest number of migrations and displays larger
energy consumption than UACS in RW7 and RW8. Compared with ACS-VM, ecoCloud, and BFD, our
proposed UACS is able to use relatively small migrations and displays low energy consumption, while
maintaining QoS requirements. UACS can deal with the large scale DVMP with different resource
demand patterns, such as normal bursts, short-term bursts, and hybrid normal and short-term bursts.

Energies 2017, 10, 609 12 of 15

Table 2. Results of UACS, ACS-VM, ecoCloud, and best-fit decreasing (BFD) on random workloads (RW), RW1 to RW5.

Metrics
Number of VM Migrations Energy Consumption (kWh) SLAO

UACS ACS-VM ecoCloud BFD UACS ACS-VM ecoCloud BFD UACS ACS-VM ecoCloud BFD

RW1 3.69 × 103 6.78 × 102 0 1.45 × 106 263.00 270.00 4433.33 286.66 0 0.0065 0 0

RW2 5.97 × 103 1.15 × 103 0 1.47 × 106 3120.00 2433.33 5283.33 5266.66 0 0.3541 0 0

RW3 1.45 × 106 1.61 × 103 0 2.84 × 106 1900.00 1816.66 8933.33 2266.66 0 0.5624 0 0

RW4 3.35 × 106 1.67 × 103 0 6.40 × 106 4266.66 3983.33 2,0166.67 5100.00 0 0.6157 0 0

RW5 1.29 × 106 1.63 × 103 0 4.04 × 106 2916.66 2550.00 12683.33 3216.66 0 0.5895 0 0

The results with boldface are the best results among the compared algorithms.

Table 3. The number of VM migrations, energy consumption, and the SLAO violated levels of UACS, ACS-VM, ecoCloud, and BFD on real workloads, RW6, RW7,
and RW8.

Metrics
Number of VM Migrations Energy Consumption (kWh) SLAO

UACS ACS-VM ecoCloud BFD UACS ACS-VM ecoCloud BFD UACS ACS-VM ecoCloud BFD

RW6 65,606 3211 470 2,622,035 12,083.33 9833.33 39,416.66 12,000.00 0 0.6693 0 0
RW7 190,615 3144 674 2,233,933 5350.00 4125.00 34,916.66 5400.00 0 0.6517 0 0
RW8 129,095 3145 1159 2,347,086 7791.66 6250.00 33,333.33 7808.33 0 0.6409 0 0

The results with boldface are the best results among the compared algorithms.

Energies 2017, 10, 609 13 of 15

Energies 2017, 10, x FOR PEER REVIEW 13 of 15

0 50 100 150 200 250
0

20

40

60

80

100

120

D
em

an
d

(a) Time
0 50 100 150 200 250

0

20

40

60

80

100

120

140

D
em

an
d

(b) Time 0 50 100 150 200 250
0

20

40

60

80

100

120

140

D
em

an
d

(c) Time
Figure 2. The resource demand patterns in (a) MIX0; (b) MIX1; and (c) MIX2.

In order to obverse the inner behavior of UACS, we take RW8 with hybrid patterns as an
example and plot the active server number and the number of migrations used during the runtime.
The results before 3000 intervals are illustrated in Figure 3. From Figure 3, we see that the number of
active servers increases at the beginning time and remains approximately stable in the middle time,
while it tends to decrease in the late stage. In the early time, new VMs arrive and there are more and
more VMs running on servers. As time passes by, the data center reaches an approximate balance
point between the resource used by the new incoming VMs and the finishing VMs, since the arrival
rate is fixed. Then the active server number changes by infinitesimal increments or decrements. Due
to the time-varying resource demand and short-term bursts, the VMs on overloaded servers are
migrated, as shown in Figure 3b. In the late stage, no new VMs come, and meanwhile more and
more VMs have finished their tasks. Then migrations occur to consolidate the VMs on underutilized
severs to increase resource utilization and reduce energy consumption. From Figure 3, UACS is able
to consolidate the VMs on fewer servers by VM migration.

0 1000 2000 3000
0

50

100

150

N
um

be
r

of
 a

ct
iv

e
se

rv
er

s

(a) Time
0 1000 2000 3000

0

20

40

60

80

100

120

140

N
um

be
r

of
 V

M
 m

ig
ra

ti
on

s

(b) Time
Figure 3. (a) Number of active servers; (b) Number of VM migrations used by UACS in RW8 during
runtime.

5. Conclusions

In this paper, we model the DVMP as a multiobjective optimization problem and present an
ACS based unified algorithm, termed UACS, for DVMP to deal with both the conditions of new
incoming VM assignments and VM migration. UACS aims to find solutions with minimum energy
consumption and VM migrations, while ensuring QoS requirements from a global perspective. In
UACS, the number of provided servers decreases as the number of generations increases. In this way,
the UACS concentrates more computation on the unexplored PF area of the multiobjective space. A
dynamic pheromone deposition method is adopted to record the historical experience. Meanwhile,
heuristic information is designed further to enhance the probability of selecting the original assigned
server to reduce the number of migrations. Experiments on large scale VM requests with random
workload and real workload traces are conducted. The resource demand patterns in different test
cases present different characteristics such as normal and short-term bursts. Compared with
heuristic, probabilistic, and other ACS based algorithms, the UACS is able to get better placements

Figure 2. The resource demand patterns in (a) MIX0; (b) MIX1; and (c) MIX2.

In order to obverse the inner behavior of UACS, we take RW8 with hybrid patterns as an example
and plot the active server number and the number of migrations used during the runtime. The results
before 3000 intervals are illustrated in Figure 3. From Figure 3, we see that the number of active servers
increases at the beginning time and remains approximately stable in the middle time, while it tends
to decrease in the late stage. In the early time, new VMs arrive and there are more and more VMs
running on servers. As time passes by, the data center reaches an approximate balance point between
the resource used by the new incoming VMs and the finishing VMs, since the arrival rate is fixed. Then
the active server number changes by infinitesimal increments or decrements. Due to the time-varying
resource demand and short-term bursts, the VMs on overloaded servers are migrated, as shown in
Figure 3b. In the late stage, no new VMs come, and meanwhile more and more VMs have finished
their tasks. Then migrations occur to consolidate the VMs on underutilized severs to increase resource
utilization and reduce energy consumption. From Figure 3, UACS is able to consolidate the VMs on
fewer servers by VM migration.

Energies 2017, 10, x FOR PEER REVIEW 13 of 15

0 50 100 150 200 250
0

20

40

60

80

100

120

D
em

an
d

(a) Time
0 50 100 150 200 250

0

20

40

60

80

100

120

140

D
em

an
d

(b) Time 0 50 100 150 200 250
0

20

40

60

80

100

120

140

D
em

an
d

(c) Time
Figure 2. The resource demand patterns in (a) MIX0; (b) MIX1; and (c) MIX2.

In order to obverse the inner behavior of UACS, we take RW8 with hybrid patterns as an
example and plot the active server number and the number of migrations used during the runtime.
The results before 3000 intervals are illustrated in Figure 3. From Figure 3, we see that the number of
active servers increases at the beginning time and remains approximately stable in the middle time,
while it tends to decrease in the late stage. In the early time, new VMs arrive and there are more and
more VMs running on servers. As time passes by, the data center reaches an approximate balance
point between the resource used by the new incoming VMs and the finishing VMs, since the arrival
rate is fixed. Then the active server number changes by infinitesimal increments or decrements. Due
to the time-varying resource demand and short-term bursts, the VMs on overloaded servers are
migrated, as shown in Figure 3b. In the late stage, no new VMs come, and meanwhile more and
more VMs have finished their tasks. Then migrations occur to consolidate the VMs on underutilized
severs to increase resource utilization and reduce energy consumption. From Figure 3, UACS is able
to consolidate the VMs on fewer servers by VM migration.

0 1000 2000 3000
0

50

100

150

N
um

be
r

of
 a

ct
iv

e
se

rv
er

s

(a) Time
0 1000 2000 3000

0

20

40

60

80

100

120

140

N
um

be
r

of
 V

M
 m

ig
ra

ti
on

s

(b) Time
Figure 3. (a) Number of active servers; (b) Number of VM migrations used by UACS in RW8 during
runtime.

5. Conclusions

In this paper, we model the DVMP as a multiobjective optimization problem and present an
ACS based unified algorithm, termed UACS, for DVMP to deal with both the conditions of new
incoming VM assignments and VM migration. UACS aims to find solutions with minimum energy
consumption and VM migrations, while ensuring QoS requirements from a global perspective. In
UACS, the number of provided servers decreases as the number of generations increases. In this way,
the UACS concentrates more computation on the unexplored PF area of the multiobjective space. A
dynamic pheromone deposition method is adopted to record the historical experience. Meanwhile,
heuristic information is designed further to enhance the probability of selecting the original assigned
server to reduce the number of migrations. Experiments on large scale VM requests with random
workload and real workload traces are conducted. The resource demand patterns in different test
cases present different characteristics such as normal and short-term bursts. Compared with
heuristic, probabilistic, and other ACS based algorithms, the UACS is able to get better placements

Figure 3. (a) Number of active servers; (b) Number of VM migrations used by UACS in RW8
during runtime.

5. Conclusions

In this paper, we model the DVMP as a multiobjective optimization problem and present
an ACS based unified algorithm, termed UACS, for DVMP to deal with both the conditions of
new incoming VM assignments and VM migration. UACS aims to find solutions with minimum
energy consumption and VM migrations, while ensuring QoS requirements from a global perspective.
In UACS, the number of provided servers decreases as the number of generations increases. In this
way, the UACS concentrates more computation on the unexplored PF area of the multiobjective space.
A dynamic pheromone deposition method is adopted to record the historical experience. Meanwhile,
heuristic information is designed further to enhance the probability of selecting the original assigned

Energies 2017, 10, 609 14 of 15

server to reduce the number of migrations. Experiments on large scale VM requests with random
workload and real workload traces are conducted. The resource demand patterns in different test
cases present different characteristics such as normal and short-term bursts. Compared with heuristic,
probabilistic, and other ACS based algorithms, the UACS is able to get better placements with a smaller
number of VM migrations and lower energy consumption, while maintaining QoS requirements.

Acknowledgments: This work was partially supported by the National Natural Science Foundations of China
(NSFC) with No. 61402545, the Natural Science Foundations of Guangdong Province for Distinguished Young
Scholars with No. 2014A030306038, the Project for Pearl River New Star in Science and Technology with
No. 201506010047, the GDUPS (2016), and the NSFC Key Program with No. 61332002.

Author Contributions: Xiao-Fang Liu conducted the experiments, performed the experiments, and wrote the
draft of this paper. The idea of this paper was proposed by Zhi-Hui Zhan, who also made contributions to helping
organize and write the paper, together with Jun Zhang.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Foster, I.; Zhao, Y.; Raicu, I.; Lu, S.Y. Cloud computing and grid computing 360-Degree compared. In Proceedings
of the IEEE Grid Computing Environments Workshop, Austin, TX, USA, 12–16 November 2008.

2. Lanza, J.; Sánchez, L.; Gutiérrez, V.; Galache, J.A.; Santana, J.R.; Sotres, P.; Muñoz, L. Smart city services
over a future internet platform based on internet of things and cloud: The smart parking case. Energies 2016,
9, 719. [CrossRef]

3. Zhan, Z.H.; Liu, X.F.; Zhang, H.; Yu, Z.; Weng, J.; Li, Y.; Gu, T.; Zhang, J. Cloudde: A heterogeneous differential
evolution algorithm and its distributed cloud version. IEEE Trans. Parallel Distrib. Syst. 2016. [CrossRef]

4. Motta, G.; Sfondrini, N.; Sacco, D. Cloud computing: An architectural and technological overview.
In Proceedings of the International Joint Conference Service Science, Shanghai, China, 24–26 May 2012.

5. Beloglazov, A.; Buyya, R. Optimal Online deterministic algorithms and adaptive heuristics for energy and
performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurr. Computat.
Pract. Exp. 2012, 24, 1397–1420. [CrossRef]

6. Callou, G.; Ferreira, J.; Maciel, P.; Tutsch, D.; Souza, R. An integrated modeling approach to evaluate and
optimize data center sustainability, dependability and cost. Energies 2014, 7, 238–277. [CrossRef]

7. Perspectives, I. Using a Total Cost of Ownership (TCO) Model for Your Data Center. Available
online: http://www.datacenterknowledge.com/archives/2013/10/01/using-a-total-cost-of-ownership-
tco-model-for-your-data-center/ (accessed on 20 February 2017).

8. Filani, D.; He, J.; Gao, S.; Rajappa, M.; Kumar, A.; Shah, P.; Nagappan, R. Dynamic data center power
management: Trends, issues, and solutions. Int. Technol. J. 2008, 12, 59–67. [CrossRef]

9. Cheng, C.C.; Lee, D.; Wang, C.H.; Lin, S.F.; Chang, H.P.; Fang, S.T. The development of cloud energy
management. Energies 2015, 8, 4357–4377. [CrossRef]

10. Chiaraviglio, L.; Cianfrani, A.; Listanti, M.; Liu, W.; Polverini, M. Lifetime-aware cloud data centers: Models
and performance evaluation. Energies 2016, 9, 470. [CrossRef]

11. Cui, X.; Mills, B.; Znati, T.; Melhem, R. Shadow replication: An energy-aware, fault-tolerant computational
model for green cloud computing. Energies 2014, 7, 5151–5176. [CrossRef]

12. Bourguiba, M.; Haddadou, K.; Korbi, I.E.; Pujolle, G. Improving network i/o virtualization for cloud
computing. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 673–681. [CrossRef]

13. Greenberg, A.; Hamilton, J.; Maltz, D.A.; Patel, P. The cost of a cloud: Research problems in data center
networks. ACM SIGCOMM Comput. Commun. Rev. 2008, 39, 68–73. [CrossRef]

14. Barroso, L.A.; Holzle, U. The case for energy-proportional computing. Computer 2007, 40, 33–37. [CrossRef]
15. Mastroianni, C.; Meo, M.; Papuzzo, G. Probabilistic consolidation of virtual machines in self-organizing

cloud data centers. IEEE Trans. Cloud Comput. 2013, 1, 215–228. [CrossRef]
16. Kandula, S.; Sengupta, S.; Greenberg, A.; Patel, P.; Chaiken, R. The nature of data center traffic: Measurements

& analysis. In Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement, Chicago, IL,
USA, 4–6 November 2009.

17. Speitkamp, B.; Bichler, M. A mathematical programming approach for server consolidation problems in
virtualized data centers. IEEE Trans. Serv. Comput. 2010, 3, 266–278. [CrossRef]

http://dx.doi.org/10.3390/en9090719
http://dx.doi.org/10.1109/TPDS.2016.2597826
http://dx.doi.org/10.1002/cpe.1867
http://dx.doi.org/10.3390/en7010238
http://www.datacenterknowledge.com/archives/2013/10/01/using-a-total-cost-of-ownership-tco-model-for-your-data-center/
http://www.datacenterknowledge.com/archives/2013/10/01/using-a-total-cost-of-ownership-tco-model-for-your-data-center/
http://dx.doi.org/10.1535/itj.1201.06
http://dx.doi.org/10.3390/en8054357
http://dx.doi.org/10.3390/en9060470
http://dx.doi.org/10.3390/en7085151
http://dx.doi.org/10.1109/TPDS.2013.29
http://dx.doi.org/10.1145/1496091.1496103
http://dx.doi.org/10.1109/MC.2007.443
http://dx.doi.org/10.1109/TCC.2013.17
http://dx.doi.org/10.1109/TSC.2010.25

Energies 2017, 10, 609 15 of 15

18. Setzer, T.; Bichler, M. Using matrix approximation for highdimensional discrete optimization problems:
Server consolidation based on cyclic time-series data. Eur. J. Oper. Res. 2013, 227, 62–75. [CrossRef]

19. Zhang, S.; Qian, Z.Z.; Luo, Z.Y.; Wu, J.; Lu, S.L. Burstiness-aware resource reservation for server consolidation
in computing clouds. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 964–977. [CrossRef]

20. Boutaba, R.; Cheng, L.; Zhang, Q. On cloud computational models and the heterogeneity challenge. J. Internet
Serv. Appl. 2012, 3, 77–86. [CrossRef]

21. Wolke, A.; Bichler, M.; Setzer, T. Planning vs. dynamic control: Resource allocation in corporate clouds.
IEEE Trans. Cloud Comput. 2016, 4, 322–335. [CrossRef]

22. Beloglazov, A.; Abawajy, J.; Buyya, R. Energy-aware resource allocation heuristics for efficient management
of data centers for Cloud computing. Future Gener. Comput. Syst. 2012, 28, 755–768. [CrossRef]

23. Mishra, A.K.; Hellerstein, J.L.; Cirne, W.; Das, C.R. Towards characterizing cloud backend workloads:
Insights from Google compute clusters. ACM SIGMETRICS Perform. Eval. Rev. 2010, 37, 34–41. [CrossRef]

24. Islam, S.; Keung, J.; Lee, K.; Liu, A. Empirical prediction models for adaptive resource provisioning in the
cloud. Future Gener. Comput. Syst. 2012, 28, 155–162. [CrossRef]

25. Zhang, Q.; Zhani, M.F.; Boutaba, R.; Hellerstein, J.L. Dynamic heterogeneity-aware resource provisioning in
the cloud. IEEE Trans. Cloud Comput. 2014, 2, 14–28. [CrossRef]

26. Verma, M.; Gangadharan, G.R.; Narendra, N.C.; Vadlamani, R.; Inamdar, V.; Ramachandran, L.; Calheiros, R.N.;
Buyya, R. Dynamic resource demand prediction and allocation in multi-tenant service clouds. Concurr. Computat.
Pract. Exp. 2016. [CrossRef]

27. Zhan, Z.H.; Liu, X.F.; Gong, Y.J.; Zhang, J.; Chung, H.; Li, Y. Cloud computing resource scheduling and a
survey of its evolutionary approaches. ACM Comput. Surv. 2015, 47, 1–33. [CrossRef]

28. Wu, Q.; Peng, C. A least squares support vector machine optimized by cloud-based evolutionary algorithm
for wind power generation prediction. Energies 2016, 9, 585. [CrossRef]

29. Huang, M. Hybridization of chaotic quantum particle swarm optimization with SVR in electric demand
forecasting. Energies 2016, 9, 426. [CrossRef]

30. Mi, H.; Wang, H.; Yin, G.; Zhou, Y.; Shi, D.; Yuan, L. Online self-reconfiguration with performance guarantee
for energy-efficient large-scale cloud computing data centers. In Proceedings of the IEEE International
Conference on Services Computing, Miami, FL, USA, 11–15 July 2010.

31. Ashraf, A.; Porres, I. Using ant colony system to consolidate multiple web applications in a cloud
environment. In Proceedings of the 22nd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, Turin, Italy, 12–14 February 2014.

32. Farahnakian, F.; Ashraf, A.; Pahikkala, T.; Liljeberg, P.; Plosila, J.; Porres, I.; Tenhunen, H. Using ant colony
system to consolidate VMs for green cloud computing. IEEE Trans. Serv. Comput. 2015, 8, 187–198. [CrossRef]

33. Liu, X.F.; Zhan, Z.H.; Deng, J.D.; Li, Y.; Gu, T.L.; Zhang, J. An energy efficient ant colony system for virtual
machine placement in cloud computing. IEEE Trans. Evolut. Computat. 2016. [CrossRef]

34. Fan, X.B.; Weber, W.-D.; Barroso, L.A. Power provisioning for a warehouse-sized computer. ACM SIGARCH
Comput. Archit. News 2007, 35, 13–23. [CrossRef]

35. Dorigo, M.; Gambardella, L.M. Ant colony system: A cooperative learning approach to the traveling salesman
problem. IEEE Trans. Evolut. Comput. 1997, 1, 53–66. [CrossRef]

36. Deb, K.; Mohan, M.; Mishra, S. Evaluating the ε-domination based multi-objective evolutionary algorithm
for a quick computation of Pareto-optimal solutions. Evolut. Comput. 2005, 13, 501–525. [CrossRef] [PubMed]

37. Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans.
Evolut. Computat. 2007, 11, 712–731. [CrossRef]

38. Zhan, Z.H.; Li, J.; Cao, J.; Zhang, J.; Chung, H.; Shi, Y.H. Multiple populations for multiple objectives:
A coevolutionary technique for solving multiobjective optimization problems. IEEE Trans. Cybern. 2013, 43,
445–463. [CrossRef] [PubMed]

39. Yue, M. A simple proof of the inequality FFD (L) ≤ 11/9 OPT (L) + 1, for all L for the FFD bin-packing
algorithm. Acta Math. Appl. Sin. 1991, 7, 321–331. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ejor.2012.12.005
http://dx.doi.org/10.1109/TPDS.2015.2425403
http://dx.doi.org/10.1007/s13174-011-0054-7
http://dx.doi.org/10.1109/TCC.2014.2360399
http://dx.doi.org/10.1016/j.future.2011.04.017
http://dx.doi.org/10.1145/1773394.1773400
http://dx.doi.org/10.1016/j.future.2011.05.027
http://dx.doi.org/10.1109/TCC.2014.2306427
http://dx.doi.org/10.1002/cpe.3767
http://dx.doi.org/10.1145/2788397
http://dx.doi.org/10.3390/en9080585
http://dx.doi.org/10.3390/en9060426
http://dx.doi.org/10.1109/TSC.2014.2382555
http://dx.doi.org/10.1109/TEVC.2016.2623803
http://dx.doi.org/10.1145/1273440.1250665
http://dx.doi.org/10.1109/4235.585892
http://dx.doi.org/10.1162/106365605774666895
http://www.ncbi.nlm.nih.gov/pubmed/16297281
http://dx.doi.org/10.1109/TEVC.2007.892759
http://dx.doi.org/10.1109/TSMCB.2012.2209115
http://www.ncbi.nlm.nih.gov/pubmed/22907971
http://dx.doi.org/10.1007/BF02009683
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Model
	DVMP Problem
	Performance Metric
	SLA Violation
	Number of Migrations
	Energy Consumption

	ACS

	Method
	VMs Set for Assignment
	Dynamic Pheromone Deposition
	UACS
	Solution Construction
	Solution Preservation
	Pheromone Update

	Results
	Random Workload
	Real Workload

	Conclusions

