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Abstract: This paper proposes a novel bacteria foraging reinforcement learning with knowledge
transfer method for risk-based economic dispatch, in which the economic dispatch is integrated with
risk assessment theory to represent the uncertainties of active power demand and contingencies
during power system operations. Moreover, a multi-agent collaboration is employed to accelerate the
convergence of knowledge matrix, which is decomposed into several lower dimension sub-matrices
via a knowledge extension, thus the curse of dimension can be effectively avoided. Besides, the
convergence rate of bacteria foraging reinforcement learning is increased dramatically through a
knowledge transfer after obtaining the optimal knowledge matrices of source tasks in pre-learning.
The performance of bacteria foraging reinforcement learning has been thoroughly evaluated on
IEEE RTS-79 system. Simulation results demonstrate that it can outperform conventional artificial
intelligence algorithms in terms of global convergence and convergence rate.

Keywords: bacteria foraging reinforcement learning; risk-based economic dispatch; knowledge
matrix; knowledge transfer

1. Introduction

In recent years, the interconnection of regional power grids and high voltage, long-distance and
bulk capacity transmission [1] have become new trends of power systems integrated with large-scale
renewable energy sources such as wind and solar energy [2–5], which however may result in severe
challenges to the secure and stable operation of power grids. In order to obtain an appropriate trade-off
between system security and economical operation, risk assessment theory has been introduced into
automatic generation control (AGC) [6] so as to improve the economic dispatch (EC) in the presence of
various operation risks [7].

The security constrained optimal power flow (SCOPF) is an extension of conversional optimal
power flow (OPF). The operation constraints of assumed contingencies are employed to enhance the
EC security [8,9]. With the development of SCOPF theory, the 1990s, several studies have discussed
challenges and future trends of SCOPF [10,11]. With the development of SCOPF theory, the ‘N−1’
deterministic security regulations have been widely adopted as a well-known benchmark of SCOPF
nowadays. However, such method is inadequate to quantitatively analyse the operation risks, which
may sometimes obtain an over-conservative result. To remedy this flaw, the probabilistic risks based
OPF and relevant algorithms were developed in [12,13]. Meanwhile, some researchers investigated the
application of binding contingencies identification and post-contingency model approximation, such
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that the size of SCOPF can be considerably reduced [14]. In addition, [15] proposed a novel risk-based
security-constrained EC, in which a risk index was adopted to accurately describe the overall power
system security level. However, as the mathematical models presented in the work mentioned above
are based on direct current power flow calculation, which normally ignores the influence of node
voltage deviation. Actually, the assessment of the operation risk is inadequate for real power system.
In addition, the actual active power demand is constantly fluctuating. Accordingly, generation control
should be adjusted with changes of load level [16] in real time. Nevertheless, these existing studies
focused only on single load level, which could not satisfy stricter requirement of practical operation.

To deal with the aforementioned issues, this paper introduces an advanced risk index considering
the risk of both line overload and node voltage deviation under normal and fault conditions, which
is based on nonlinear power flow calculations. The two objectives of risk-based economic dispatch
(RBED), that is, fuel costs of generators and operation risk index, are both calculated in the presence
of inner connections under different time scenarios during a day. As the fluctuation of load level is
considered, 96 scenarios are uniformly selected in a day (24 h) to evaluate the risk based dispatch, with
an interval of 15 min between two consecutive scenarios.

Generally, RBED is a complex mixed nonlinear programming problem. Conventional optimization
algorithms, such as nonlinear programming [17], gradient decent method [18], interior point
method [19], and the Newton method [20], may be easily trapped in a local optimum. Besides,
an accurate system model and appropriate feasible initial solutions are needed to achieve a good
application effect, based on which software (Gurobi [21] and CPLEX [22]) is not flexible enough and
inapplicable for some complex problems. Hence, their application is relatively difficult and usually
consumes a long period of time due to the large number of constrains under multiple operation
conditions in RBED.

So far, an enormous variety of artificial intelligence (AI) algorithms, including genetic algorithm
(GA) [23], quantum genetic algorithm (QGA) [24], artificial bee colony (ABC) [25], particle swarm
optimization (PSO) [26] and bacteria foraging optimization (BFO) [27,28] have been successfully
applied for an optimal power system operation due to their elegant merits of global convergence,
model free feature, and applicability to discrete nonlinear problems. In particular, an optimization task
can be tackled by variables, objective functions and the number of unsatisfied constraints. However,
they usually tend to cost a long optimization period for each new task as no prior knowledge is
exploited. Since there are 96 sub-tasks that need to be executed in RBED, it will consume plenty of
time. It is assumed that either the scale of system is large or a large number of faults occur, so that the
time limit of RBED is very difficult to meet.

Recently, transfer learning [29,30] has become a very powerful tool to accelerate the optimization
based on machine learning. It is inspired from the fact that many practical engineering issues are
related to historical ones which often share plenty of similar features in essence. Therefore, the
optimization of a new task can be dramatically accelerated by appropriately exploiting the similarities
from the experience (prior knowledge) of historical tasks (also called source tasks). Transfer learning
has been widely applied in various problems, such as reactive power optimization [31], decentralized
optimal carbon-energy combined-flow [32], cross-domain activity recognition [33], and pedestrian
detection [34], etc. Q-learning algorithm, as one of the most widely used reinforcement learning, can
be adopted for transfer learning. However, It merely employs a single agent to update the Q-value
matrix, which leads to a relatively low convergence rate and sometimes even cause the curse of
dimension in complex problems. Furthermore, a large number of iterations may be required due to the
time-consuming trial-and-error mechanism of Q-learning.

In order to resolve the above disadvantages, this paper proposes a novel bacteria foraging
reinforcement learning (BFRL) associated with knowledge transfer to handle RBED, which is developed
from the BFO and Q-learning algorithm [35]. A Q-value matrix is chosen as the knowledge matrix.
The learning mode of BFO is introduced in BFRL to achieve a multi-agent collaboration, which can
considerably accelerate the knowledge matrix update and reduce the iteration number. Then, the
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knowledge extension is employed to dramatically reduce the dimension of knowledge matrix, such
that the curse of dimension can be effectively avoided. Through pre-learning, the knowledge matrices
save the optimal prior knowledge from source tasks at first, on which the initial knowledge matrices
of new tasks are developed thereafter. As a consequence, RBRD can be rapidly resolved by properly
exploiting the similarity between source tasks and new tasks. Hence, BFRL is adequate to satisfy the
fast calculation of RBED in practice, whose global convergence and the stability of new tasks can also
be guaranteed through the knowledge transfer from source tasks. At last, BFRL is applied for RBED
of 96 scenarios on RTS-79 system, which achieves better performance compared with that of some
typical algorithms.

The following are the main motivations and innovations of this paper:

• The conventional economic dispatch usually just focuses on the fuel costs of generators. In contrast,
the proposed RBED is implemented to obtain a proper trade-off between economical operation
and system security, which can simultaneously reduce the fuel costs and the operation risk of
power systems.

• Compared to the conventional method which merely considers the line overload in the SCOPF [9],
the risks of both line overload and node voltage deviation are evaluated quantitatively based on
the nonlinear power flow calculation by the proposed approach. In addition, it is resolved under
various load scenarios thus being applicable to the load changes in practice.

• The conventional optimization algorithms might be easily trapped at a local optimum due to their
dependence on an accurate system model and the feasible initial solutions. In contrast, no accurate
system model is required by BFRL, such that it can be easily implemented for a much broader
range of practical issues, e.g., nonlinear objective functions and different complex constraints.

• The knowledge learning of BFO and the trial-and-error of Q-learning can effectively cooperate in
BFRL. Particularly, the knowledge matrix can significantly reduce the blindness of the random
search via the cooperating bacteria. In turn, the update efficiency of knowledge matrix can be
improved greatly via the multi-agent (i.e., the bacteria) collaboration. Besides, the dimension
of knowledge matrix can also be reduced by knowledge extension. These merits accelerate the
learning process hence being more feasible in practice.

• The existing AI algorithms are usually incapable of knowledge storage or knowledge transfer,
which may easily lead to a high computation burden as significant iterations and population
size are needed to obtain a high-quality optimal solution. This would be unable to satisfy the
requirement of RBED period (less than 15 min). In contrast, BFRL employs the Q-value matrix
as the knowledge matrix to save the optimal knowledge in pre-learning, and then the prior
knowledge obtained from the similar source tasks can be fully exploited for the new tasks.
Therefore the convergence of BFEL can be dramatically accelerated and cost less than 15 min for
practical implementation.

• The simulation results verify the excellent performance of BFRL, especially on the convergence
rate, which can reach 9 to 20 times faster than that of other AI algorithms, while a high-quality
optimal solution and a high convergence stability can also be guaranteed.

2. Mathematical Model of RBED

2.1. Operation Risk Assessment

The operation risk assessment of power systems means a comprehensive evaluation with the
possibility and severity of contingencies [36]. The risk index IR can be calculated as follows:

IR(Xf) = ∑
i

Pr(Ei)Sev(Ei) (1)
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The current condition Xf represents the current operating condition of a power system, which is
associated with the operation risk Equations (2)–(8), thus it can be encoded with the output power of
each generator PG, each node voltage Ui, the power flow of each transmission line Ti, the load demand
of each node PDi, and the topology of power grid; Ei represents the ith contingency; Pr(Ei) and Sev(Ei)
are the probability and severity of Ei, respectively.

According to the statistical data, the failure rate of alternating current (AC) transmission line i at a
certain time interval ∆t follows the Poisson distribution, thus its cumulative failure rate Pr(EFi) can be
described as:

Pr(EFi) = 1− exp(−λi∆t) (2)

where EFi and λi denote the fault and failure rate of the ith transmission line, respectively.
Assuming there are m transmission lines in a power system with a single fault (the fault of the ith

line) occuring at time t, the probability of this fault Pr(ES_Fi) is calculated by [37]:

Pr(ES_Fi) = Pr(EFi) ∏
j∈SUN,j 6=i

(1− Pr(EF_ j)) (3)

where ES_Fi represents a single line fault in system; SUN is the set of all the normal operational
transmission lines.

The outage of a transmission line may results in a sudden line overload or a severe node voltage
deviation in a power system, whose effect can be usually described by a linear function. However,
a linear risk index may not be capable of effectively distinguishing between a minor fault and a severe
fault. As a consequence, a nonlinear utility function is employed so as to fully describe different faults.

The overload of the ith faulty line is defined as:

ωLi =

{
Li − L0, Li > L0

0, Li
≤L0

(4)

where ωLi is the overload of the ith faulty line; Li is the ratio of actual transmission power to
transmission power constraint of the ith line; L0 is the threshold and set to 0.9. Specifically, if Li
is less than L0, the risk of the i-th line overload is set to zero.

The severity of the i-th line overload Sev(ωLi) can be described by:

Sev(ωLi) =
exp[a(ωLi) + b]− 1

c
(5)

where a, b and c are all positive constants. Meanwhile, the first-order derivative and
second-order derivative of Sev are also positive, which means the severity of the overload line
increases monotonously.

Similarly, the voltage deviation of the ith node is defined by:

ωVi =


Uimin −Ui, 0 < Ui < Uimin
0, Uimin ≤ Ui ≤ Uimax
Ui −Uimax, Ui > Uimax

(6)

where ωVi represents the voltage deviation of the ith node ; Ui is the voltage amplitude of the ith node,
while Uimax and Uimin are its upper and lower bounds, respectively.

The severity of the i-th node voltage deviation Sev(ωVi) is written by:

Sev(ωVi) =
exp[a(ωVi) + b]− 1

c
(7)
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Hence, the global operation risk index IR of power system is developed by combining the risk of
line overload and the risk of node voltage deviation, which yields:

IR = µ1 IR L + µ2 IR V (8)

where IRL and IRV are the total risk index of line overload and node voltage deviation, respectively;
Moreover, µ1 and µ2 are the corresponding weight coefficients, with µ1 + µ2 = 1.

2.2. Multi-Objective Risk Economic Dispatch

The aim of RBED is to considerably reduce the fuel costs of generators and the operation risk
of power systems together with all the security constraints being satisfied. To simplify the problem,
the RBED constraints are replaced by outer penalty functions. With this method, the likelihood of
infeasibility can be minimized. In future study, barrier method will be employed to guarantee a
feasible solution. Since the outer penalty function CV can be optimized throughout the n-dimensional
real space, an initial solution outside the feasible field is acceptable, which can effectively reduce the
difficulty of finding a feasible initial solution. The economic objective and the security objective are
integrated as a single objective function through the linear weight method, as follows:

min f (x) = µ3FC(x)/z1 + µ4 IR(x)/z2 + MCV(x) (9)

Subject to [38]: 

PGi − PDi = Ui ∑
j∈i

Uj(Gij cos θij + Bij sin θij)

QGi −QDi = Ui ∑
j∈i

Uj(Gij sin θij − Bij cos θij)

PGimin ≤ PGi ≤ PGimax, i ∈ SG

QGimin ≤ QGi ≤ QGimax, i ∈ SG

Uimin ≤ Ui ≤ Uimax, i ∈ SD

|Ti|≤ Timax, i ∈ SL

(10)

where FC is the fuel costs of generators; CV represents the value of total constraint violations obtained
under normal operation; M is the penalty factor; µ3 and µ4 are the weight coefficients, with µ3 ∈ [0, 1],
µ4 ∈ [0, 1], and µ3 + µ4 = 1; state vector variable x = [U, θ, PG, QG, T]T represents the node voltage
amplitude, node voltage phase angle, active and reactive power of generator, the apparent power of
line, respectively; z1 and z2 are the normalization references; PDi and QDi are the active and reactive
power of the ith load, respectively; θij is the voltage phase angle difference between the the ith and the
jth node, Gij and Bij are the conductance and susceptance of line i–j, respectively; PGimax and PGimin
are the upper and lower bounds of the generator active power while QGimax and QGimax are the upper
and lower bounds of the generator reactive power, respectively; Timax denotes the power limit of the
ith line; SG, SD and SL are the set of generators, load buses, and lines, respectively.

The fuel costs can be chosen as:

FC = ∑
i∈SG

(ζ0i + βiζ1i + γiζ
2
2i) (11)

where ζ0i, ζ1i and ζ2i are the coefficients of fuel costs, respectively.
The value of total constraint violations can be defined as:

CV =
Nv
∑

j=1
max(0, gj(x))

= max(0, PGs − PGsmax, PGsmin − PGs) + ∑
i∈SG

max(0, QGi −QGimax, QGimin −QGi)

+ ∑
i∈SD

max(0, Ui −Uimax, Uimin −Ui) + ∑
i∈SL

max(0, |Ti|−Timax)

(12)
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where PGs is the generator active power on the slack bus; Nv is the number of variables.
It can be found that the integrated objective function f is the linear sum of two objective function

(i.e., fuel costs FC and global operation risk index IR) with the linear weights, and total constraint
violations CV with the penalty factor M. Hence, the quality of an obtained optimal solutions is
determined by the integrated objective function f, instead of the fuel costs FC or the global operation
risk index IR solely. In general, a smaller fuel costs FC will not always lead to a smaller f due to
an inevitable conflict between fuel costs FC and the global operation risk index IR. In other words,
a smaller FC may even results in a larger f.

3. BFRL with Knowledge Transfer

3.1. Standard BFO Algorithm

Standard BFO algorithm is inspired by the foraging behaviour of bacteria which normally has
three typical modes: chemotactic mode, dispersal mode and reproduction mode [28].

Normally, the local searching of BFO is enhanced through the chemotactic mode, which can be
described as:

ψi(j + 1, k, l) = ψi(j, k, l) + Ci
k

∆i√
(∆i)

T
∆i

(13)

where ψi(j, k, l) represents the position of the ith bacteria during the lth dispersal, the kth reproduction
and the jth chemotactic; Ci

k is the step of swimming of the ith bacterium at the kth iteration; and ∆ is a
unit vector in the direction of swimming, respectively.

Here the nonlinear decreasing inertia step Ci
k is introduced to replace the fixed step in standard

BFO so as to balance the global and local search, which is written as:

Ci
k = Ci

start − (Ci
start − Ci

end
)[

2k
Itermax

− (
k

Itermax
)

2
] (14)

where Ci
start and Ci

end
are the initial and the final steps, respectively; Itermax is the maximum

iteration number.
In the reproduction mode, the bacteria are ranked according to the energy intensity firstly. Millions

of years of struggle in harsh environment has driven bacteria to gradually evolve an optimal survival
pattern for the overall benefits of the whole species: the superiors (those have the highest energy
intensity) are eligible to freely and rapidly reproduce while the inferiors (those have the lowest energy
intensity) are forced to inevitably die out. Assuming the number of employed bacteria in standard
BFO to be NP, the number of bacteria to be eliminated is NP/2. Then the ones with the energy intensity
ranking the second half of all bacteria are replaced by the other half bacteria.

In this paper, the reproduction mode is improved by introducing a crossover to spread the
diversity of bacteria. The new bacteria to replace the eliminated ones are generated as:

ψi+NP/2(j, k, l) = r1ψi(j, k, l) + (1− r1)ψ
i+NP/2(j, k, l) (15)

where i ∈ [1, NP/2]; and r1 ∈ [0, 1] is a random number, respectively.
The global convergence is improved via the dispersal mode, which occurs at a given probability

Pr_ed. When the dispersal probability is satisfied, the positions of the bacteria will change randomly.

3.2. Knowledge Matrix

Q-learning is one of the most famous and widely used reinforcement learning techniques, which
contains three key elements including state s, action a, and reward R. The state-action value function Q
is the knowledge matrix of all the state-action pairs, i.e., Q(s, a). The agent of Q-learning can update
the knowledge matrix by feedback reward R from taking an action a to the environment in the current
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state s. Each element of the matrix represents the knowledge of the corresponding state-action pair,
which is used to estimate the discounted sum of future rewards started from the current state and
action policy. Note that the text ‘Q’ represents the name of Q-learning while the symbol ‘Q’ denotes
the knowledge matrix.

Since the knowledge matrix saves the optimization policy, it can be treated as the brain of the
agent. The knowledge matrix in Q-learning algorithm is updated by a single agent through the
trial-and-error. The agent tries an action a and obtains a reward R from the environment in state s.
Thus the corresponding knowledge value of the state-action pair Q(s, a) can be updated. Then in a
certain state s, the agent will prefer to choose the action related to a large knowledge element Q(s, a).
Hence, the knowledge matrix will gradually converge.

To accelerate the update of the knowledge matrix, the bacteria are employed as multiple agents
of BFRL. The bacteria (i.e., agents) in different modes can change their positions (i.e., select actions a)
according to Equations (13)–(15), (18) and (19) and acquire the energy (i.e., get rewards R) from the
solution space (i.e., the environment).

As shown in Figure 1, a bacterium can obtain an action policy under a given state from the
knowledge matrix and update its prior knowledge by the feedback of reward, which helps to boost
the accumulative energy intensity of bacteria during foraging. The bacteria can obtain higher energy
intensity from the red area of the figure.
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Basically, the knowledge matrix of Q-learning is a lookup table with the size of |Spa|×|A|, where
Spa is the state space and A is the action space. If Q-learning is used for solving RBED, the actions,
namely the value of controlled variables, are independent from each other [38]. Assuming there are
k variables and Ni available actions in each space, then the size of action space |A| is calculated by
N1 × N2 × . . . × Nk−1 × Nk. It is obvious that the curse of dimension may be emerged if the action
space is too large.

As illustrated in Figure 2, BFRL employs a knowledge extension in order to considerably reduce
the dimension of the original knowledge matrix Q. Q is divided into several knowledge sub-matrices
Qi, which are one-to-one correspondence with the variables. Furthermore, the elements of neighboring
sub-matrices are defined as related knowledge, which means the action space of Qi, i.e., the range
of the ith variable, is the same as the state space of Qi+1. In other words, the value of the (I + 1)th
controlled variable cannot be selected until the ith variable has been determined. Note that the original
high-dimension knowledge matrix is decomposed into multiple low-dimension sub-matrices through
extension chains between related knowledge.

The Knowledge matrix is merely updated by a single agent in Q-learning. As a result, only
one element can be updated in each cycle, which leads to a relatively slow convergence. In contrast,
the multi-agent collaboration is adopted in BFRL, where the bacteria share the same knowledge
sub-matrices. Consequently, multiple elements can be updated in a single iteration, which would
significantly accelerate the learning rate. The knowledge sub-matrix Qi is updated as follows [39]:

ρ
ij
k = R(sij

k , sij
k+1, aij

k ) + γmax
ai∈Ai

Qi
k(s

ij
k+1, a)−Qi

k(s
ij
k , aij

k ) (16)

Qi
k+1(s

ij
k , aij

k ) = Qi
k(s

ij
k , ak) + αρ

ij
k (17)
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where i denotes the ith knowledge sub-matrix and j denotes the jth bacteria; ρ
ij
k is the update component

of Qi; R(sij
k , sij

k+1, aij
k ) is the reward of a transition from state sij

k to state sij
k+1under a selected action aij

k
in the kth iteration; α and γ are the learning factor and discount factor, respectively.
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3.3. Knowledge Learning

The search pattern of the BFO is completely random, which usually leads to a blindness and
inefficiency of problem solving. Different from the random exploration of BFO, BFRL can search the
solution space according to the knowledge matrix and update the knowledge matrix using the received
reward, such that a more informative and meaningful exploration can be realized.

As illustrated in Figure 3, there are bacteria in either chemotactic mode or dispersal mode at the
beginning of each iteration. In a given iteration, the mode of each bacterium is assigned in a certain
percentage. Then the learning of bacteria in two modes is conducted in different ways, while each
bacterium receives a reward and updates the knowledge matrix accordingly. Furthermore, all the
bacteria move to the reproduction mode, which means the end of each iteration. As described in
Section 3.1, the bacteria are either reproduced or died out according to their obtained reward ranking.

In the next iteration, the modes of bacteria are reassigned. The bacteria with higher reward are
assigned to the chemotactic mode while others are assigned to the dispersal mode.
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In BFRL, the knowledge learning of bacteria in dispersal mode is guided by the knowledge
matrix, which is different from that of standard BFO. For a given state, a larger knowledge
element means a higher reward value obtained under the corresponding action. In other words,
the information belonging to superiors has been saved with the update of the knowledge matrix.
Furthermore, a roulette wheel selection is used based on the state-action probability matrix Oi when
the dispersal probability Pr_ed is satisfied. Otherwise, the action with the largest knowledge element
argmax

ai∈Ai

Qi
k+1(s

ij
k+1, ai) is selected. For a controlled variable, an action of each bacterium is selected

as follows:

aij
k+1 =

 argmax
ai∈Ai

Qi
k+1(s

ij
k+1, ai), r2 ≥ Pr_ed

aS, otherwise
(18)

where r2 ∈ [0, 1] is a random number; as denotes a random global action determined by the distribution
of state-action probability matrix Oi, which is updated by:

ei(si, ai) = 1
Qi(si ,ai)−β max

a′∈Ai
Qi(si ,a′)

Oi(si, ai) = ei(si ,ai)

∑
a′∈Ai

ei(si ,a′)

(19)

where β is the divergence factor to magnify the divergence of Qi and ei is the introduced transition
matrix in the calculation.

3.4. Knowledge Transfer

Assuming there are multiple similar tasks to complete for BFRL, the efficiency of new tasks can
be improved greatly via knowledge transfer.

As shown in Figure 4, knowledge transfer can accelerate the learning of new tasks based on the
existing ones. If the state space and the action space remain constant, the optimal knowledge matrices
of the source tasks can be treated as the initial knowledge matrices of the target tasks, which are called
the prior knowledge [31]. The source tasks need to be executed during the pre-learning to obtain the
optimal knowledge matrices, from which the prior knowledge is exploited for the relevant new tasks.
Then the initial knowledge matrices of source tasks QS will be transferred to the prior knowledge
matrices of new tasks QN in transfer learning.Energies 2017, 10, 638 10 of 24 
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Here, the similarities among different tasks are contained in the prior knowledge matrices,
together with some unrelated ones. As a result, a malignant negative transfer may sometimes emerge.
To handle this, the extraction of closely relevant knowledge and the identification of similarities among
different tasks are emphasized during the transfer learning of BFRL.

3.5. Convergence Characteristics

Firstly, it is important to note that the conventional Q-learning can converge to the optimal Q-value
matrix Q* as all the actions are sufficiently explored in each state space, while the global optimum can
be determined by the optimal Q-value matrix Q*, in which the detailed proof can be found in [40].
Moreover, the learning mode of BFRL is the same as that of Q-learning, while two main improvements
of BFRL compared with Q-learning can be summarized as: (1) knowledge transfer and (2) exploration
and exploitation based on bacteria foraging mechanism. Specifically, the first one only changes the
initial Q-value matrix, thus it can approximate the optimal Q-value matrix for a current optimization
task. Besides, the second one only accelerates the update efficiency of Q-value matrix. Therefore,
BFRL will only accelerate the convergence compared with Q-learning, while the convergence can be
completely guaranteed as all the actions are sufficiently explored in each state space.

4. BFRL with Transfer Learning for RBED

4.1. BFRL Structure

The RBED is different from the conventional AC optimal power flow. To obtain the objective
function, the risk index of a power system should be calculated at first, so the AC power flow
calculations under normal condition and all the fault conditions need to be executed by AI algorithms.
When Nf faults are included in the contingency, the number of power flow calculation in RBED will be
(Nf + 1) times higher than that of the conventional AC optimal power flow. Therefore, RBED requires
much longer time. Assuming there are Ned dispersals, Nre reproductions and Nc chemotactic in BFO
for RBED, as well as a maximum swimming number Ns, the total times of power flow calculation
becomes Ned × Nre × Nc × Ns × (Nf + 1); this leads to an extremely slow calculation. In contrast, the
optimization efficiency can be dramatically improved due to the removal of nested cycles in BFRL.

4.2. Design of State and Action

The generator active power on PV nodes is selected as the controlled variable. The action space
A(APG1, APG2, . . . , APGNq) is consistent with the controlled variable space, namely the positions of the
bacteria, where Nq is the number of controlled variables. Besides, the action space of the former one is
the state space of the latter one. The knowledge sub-matrices corresponding to the state-action pair of
the variables are denoted as QPG1, QPG2, . . . , QPGNq, respectively.

4.3. Design of Reward Function

The reward function R is designed as:

R =
1

ω1(FC/z1) + ω2(IR/z2) + MCV
(20)

where it shows that the fuel costs of different scenarios range from $21,135 to $39,402 while the risk
index varies between 2.42 × 10−5 p.u.~5.2 × 10−5 p.u. by trial-and-error, so z1 and z2 are set to 104

($) and 10−5, respectively. Additionally, (FC/z1) ∈ [2.1, 3.9] and (IR/z2) ∈ [2.4, 5.2] are the intervals.
In general, the penalty factor M should be appropriately chosen: If it is too small, the minimal point of
the penalty function is apart from the optimal solution and results in a low efficiency; if it is too large,
the penalty function minimization would be very slow [41]. Since CV is large enough compared to that
of the normalized fuel costs and risk index, M is chosen to be 1.
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4.4. Knowledge Transfer

The core task of learning efficiency improvement is to extract the similarities between the source
tasks and the new tasks. The optimization of RBED is mainly determined by the power flow of power
systems. In practice, it is closely dependent on the active power demand as the topology and the
operation conditions are relatively steady in a short time. Thus, the active power deviation is defined
as the similarity between the source tasks and the new tasks. The active power demand is divided into
multiple load intervals as follows:

[PDs1, PDs2), [PDs2, PDs3), . . . , [PDsi−1, PDsi), . . . , [PDsn−1, PDsn) (21)

where [PDsi-1, PDsi) is a half-open load interval; PDsi represents the power demand of the ith load
intervals in the source task, with PDs1 < PDs2 < PDsi < PDsn-1 < PDsn. Moreover, the closely related
knowledge of source tasks should be exploited in priority for a new task in order to enhance the
transfer learning effectiveness.

Assuming the power demand of a new task x is represented by PDx, with PDi < PDx < PDk, the
similarities between the new task and two source tasks can be calculated as:

η1 =
PDx−PDj
PDk−PDj

η2 = PDk−PDx
PDk−PDj

(22)

where η1 and η2 are the similarities coefficients, with η1 + η2 = 1.
The knowledge matrix of the new task x can be obtained by a linear transfer, which yields:

Qi
x = η1Qi

j + η2Qi
k (23)

where Qi
x, Qi

j and Qi
k denote the knowledge sub-matrices of the ith variable in source task x, source

task j and new task k, respectively.
The overall knowledge transfer can be summarized as follows:

Step 1 Select several scenarios as the source tasks from the daily load curve at a fixed time interval.
Step 2 Execute the pre-learning and save the knowledge in the knowledge matrices of the source tasks.
Step 3 Calculate the similarities between the new tasks and the closest source tasks based on the active

power deviation.
Step 4 Obtain the initial knowledge matrix of the source tasks.

4.5. Execution Procedure of BFRL for RBED

The execution procedure of BFRL for RBED is shown in Figure 5.

4.6. Parameters Setting

In BFRL, the crucial parameters include the population size NP, dispersal probability Pr_ed,
learning factor α, discount factor γ and Itermax [42]. Basically, these parameters should be carefully set
by the following guidelines:

• A larger population size NP may increase the probability of approaching the global optimum with
longer time, here NP ≥ 1.

• The dispersal probability Pr_ed determines the trade-off between exploration and exploitation.
A larger Pr_ed means the roulette wheel selection is preferred, with 0 < Pr_ed < 1.

• The learning factor α influences the learning rate. A larger α tends to accelerate the learning rate
while the algorithm may however reach a pre-convergence.



Energies 2017, 10, 638 12 of 24

• The discount factor γ discounts the future rewards of the knowledge matrix. A smaller discount
factor γ means the current reward is more important.

• Itermax is the maximum number of the iterations, which determines the quality of optimal solutions
and the calculation time. In this paper, Itermax is selected from some given values such as 50,
100, 150, 200 and 250. Itermax is designed to balance the quality of optimal solutions and the
calculation time via trial-and-error. Generally, a larger Itermax will result in a higher quality of
optimal solutions while it will consume more time. According to the result of trial-and-error, it
can be found that the objective function obtained by BFRL can achieve a stable minimum value or
fluctuate in a very small range when the number of iterations is larger than 150. So the Itermax is
set to 150 as it is large enough to ensure stable optimal solutions and shorten the calculation time.

Through extensive trial-and-error, the optimal parameters are listed in Table 1.
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Table 1. Optimal BFRL parameters obtained through trial-and-error.

Parameters Range
Learning Procedure

Source Task New Task

NP NP > 0 200 64
Pr_ed 0 < Pr_ed < 1 0.5 0.02

α 0 < α < 1 0.1 0.99
γ 0 < γ < 1 0.9 0.99

Itermax 50, 100, 150, 200, 250 150 50

5. Case Studies

The simulation is undertaken on an AMAX server with an Intel Xeon E5-2670 CPU at 2.3 GHz with
64 GB of RAM. The power flow calculation is based on the Matpower 6.0 toolbox in MATLAB R2014a.
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The performance of BFRL for RBED has been evaluated on IEEE RTS-79 system [43] compared with
that of other algorithms, e.g., GA [23], QGA [24], ABC [25], PSO [26], BFO [27,28] and Q-learning [40].
For each algorithm, there are both feasible and infeasible solutions to the proposed RBED problem.
If an algorithm finds infeasible solutions, the power flow calculation may not converge or the controlled
variables may violate the constraints. Then CV is greater than 0 and its fitness function become larger
than that of others, so that an individual is forced to find another solution and the previous infeasible
solution can be eliminated. If an algorithm finds feasible solutions, then CV becomes 0 and the fitness
function is smaller, which leads others to approach it. When all the algorithms complete the default
maximum number of iteration, the optimal one can guarantee the smallest fitness function as well as
the convergence of the power flow with all the operation constraints being satisfied. Therefore, for
each AI algorithm, their final convergence will be a feasible solution as long as the population size and
the maximum number of iterations are set to be sufficiently large.

In this paper, the main parameters of each algorithm have been determined via trial-and-error.
Therefore, the simulation results obtained by these algorithms can achieved a proper trade-off between
the quality of optimal solutions and the calculation time. To shorten the execution time of fitting
the parameters effectively, the uniform design is adopted [44]. For example, there are four crucial
parameters which may have a great influence on the performance of GA in different optimization tasks.
Assume that the value of each parameter is divided into 10 discrete levels, e.g., the mutation probability
can be quantized into 10 discrete levels as [0.05, 0.1, . . . , 0.5], then 10 × 10 × 10 × 10 = 104 experiments
should be executed to fit all the parameters, which will result in an extremely high computational
burden. In contrast, only 10 experiments are needed via the uniform design. The main parameters of
other algorithms have been listed in Table 2.

Table 2. The main parameters setting of each algorithm.

Algorithm Parameter Value

Q-learning
Learning factor 0.8

Exploration weighting factor 0.9
Discount factor 0.1

GA

Population size 200
Generations 100

Mutation probability 0.1
Crossover probability 0.8

PSO

Population size 200
Maximum generations 150

Weight coefficients c1/c2 0.75/0.75
Minimum velocity −5
Maximum velocity 5

Inertia factors ωstart/ωend 0.9/0.4

QGA
Population size 150

Maximum generations 150
Rotation angle 0.1π

BFO

Population size 60
Number of chemotactic steps 20
Limit of the length of a swim 6

The number of reproduction steps 4
The number of dispersal events 2

Dispersal probability 0.2

ABC

Population size 200
Colony size 50

Employed bees 30
Onlookers 30

Scouts 20
Limit 6
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5.1. Simulation Scheme

The detailed simulation scheme can be illustrated in Table 3.

Table 3. The detailed simulation scheme of the proposed technique.

Number of Step Detailed Simulation Scheme

Step 1:
Calculate the fault probability of each line in RTS-79 system according to
Equations (1)–(3). Then five ‘N−1’ line faults and two ‘N−2’ line faults are selected
as the contingencies.

Step 2: Choose a typical load curve and divide it into 96 optimization tasks.

Step 3: Determine the source tasks via trail-and-error, which are usually chosen to be as
small as possible to ensure the effectiveness of knowledge transfer.

Step 4: Select the output active power of generators as the controlled variable, and then
determine the action space A of BFRL.

Step 5:
Determine the parameters used in the pre-learning of BFRL via trail-and-error and
evaluate the pre-learning, then the optimal knowledge matrices obtained under the
selected 21 source tasks will be saved.

Step 6: Develop the initial knowledge matrices of the new tasks from the prior optimal
knowledge matrices according to Equation (23) and select the optimal parameters.

Step 7: Choose the optimal parameters of other AI algorithms for RBED via trial-and-error.

Step 8:
Implement each algorithm for RBED in 10 runs with 96 new tasks to compare their
performance, including computation time, convergence time, quality of obtained
optimal solution, and convergence stability.

Step 9: Analyse and conclude the simulation results.

5.2. Simulation Model

The IEEE RTS-79 is a typical benchmark with a base capacity of 100 MVA, including 24 buses,
34 transmission lines/transformers and 32 generators, the configuration of which is illustrated in
Figure 6 [45]. Here, bus 21 is chosen as the slack bus as it has the largest capacity. Furthermore, the
generator active power of other buses is chosen as the controlled variables. The fuel costs coefficients
of RTS-79 system can be found in [46].Energies 2017, 10, 638 15 of 24 
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The daily load curve almost represents the trend of each day in a period of time (e.g., a month
or a season). Based on this typical daily load curve, the operators will make an optimal operating
schedule of the power system. And the typical daily load curve in Figure 7 is modelled from an actual
province grid of southern China. As illustrated by Figure 7, a typical daily load curve can be divided
into 96 scenarios with 15 min for each. In order to evaluate the adaptability of BFRL under different
load levels, several case studies are carried out in all scenarios, which lead to 96 tasks.
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The contingencies are listed in Table 4, which includes five ‘N−1’ transmission line faults and
two ‘N−2’ transmission line faults most likely to occur with related outage mode. The probability of
each fault can be calculated according to Equation (3).

Table 4. The contingencies used in the studied power system.

Fault Type Fault Line Number Probability of Fault

‘N−1’ fault

2 1.4549 × 10−5

5 1.3693 × 10−5

16 1.4834 × 10−5

17 1.3978 × 10−5

26 1.5405 × 10−5

‘N−2’ fault
13, 15 1.3026 × 10−10

29, 30 1.1756 × 10−10

5.3. The Pre-Learning

Before the online learning of BFRL, several appropriate scenarios need to be chosen as source
tasks in the pre-learning, on which the initial knowledge matrices of new tasks can be based. Figure 7
demonstrates that the active power demand in 96 scenarios is distributed between 1685 MW to
2850 MW, while 21 scenarios are sampled with the same capacity of 55 MW, ranked from low to high
as 16, 21, 24, 5, 26, 2, 1, 31, 32, 94, 56, 51, 36, 88, 40, 42, 68, 70, 80, 79 and 77, respectively.

In addition, the convergence of BFRL obtained under scenario 1 is presented in Figure 8, which
is compared with that of BFO. In around 270 s, BFRL can almost find the minimal fitness function.
In contrast, BFO needs about 768.8 s. The convergence of BFRL is nearly 2.8 times faster than that of
BFO with a better optimal solution. Moreover, it needs to claim that the searching efficiency of BFRL is
not important in the pre-learning process, thus a large population size and a huge number of iterations
are adopted to ensure its global convergence. However, the searching rate of BFO is still slower than
that of BFRL due to the nested cycles. Besides, the random search in BFO is relatively blind. To handle
this obstacle, the Pr_ed-greedy rule and multi-mode exploration are integrated into BFRL. As a result,
the optimal objective function of BFRL is 33% smaller than that of BFO.
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5.4. Transfer Learning

The optimal action policies of source tasks are obtained through pre-learning and saved in the
knowledge matrices, which will be transferred to be the initial knowledge matrices of new tasks
according to their similarities. For example, the power demand of scenario 4 is 1887 MW while
scenario 5 and 26 are the two closest, whose power demands are 1858 MW and 1916 MW, respectively.
Then the initial knowledge matrix of scenario 4 can be developed from the linear weighed sum of the
optimal matrices of scenario 5 and 26.

The convergence time of each algorithm of the 4th new task are given in Figure 9 and Table 5.
In Tables 5–7, the best convergence results of all the algorithms are bolded. Note that the convergence
time of BFRL is only 46 s thanks to the knowledge transfer, which is about 5.6 to 10% of that of other
algorithms. Furthermore, compared to the convergence time in pre-learning, the rate of BFRL is
increased by nearly 10 times, which verifies the efficiency of transfer learning. Since the time period of
RBED for each scenario optimization is about 15 min, even if more faults are considered, the BFRL are
still fast enough to meet such time limits. Moreover, the reinforcement learning needs to undergo the
whole Markov process before convergence. As illustrated in Figure 10, the fuel costs of generators grow
with the power demand as the generators should increase the output to balance such load increases.
On the other hand, the line overload and node voltage deviation are more severe with a higher load
level. Compared with Figure 7, the variations of fuel costs and risk index are consistent with the daily
load curve. This demonstrates that the prior knowledge is effectively exploited.Energies 2017, 10, 638 17 of 24 
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The daily optimal objective function of RTS-79 system obtained by each algorithm is illustrated
by Figure 11. The curve of objective function by BFRL is just slightly higher than that of GA while
lower than that of other algorithms, which verifies the superior global convergence ability of BFRL.
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Figure 11. Convergence results of objective function of 96 scenarios obtained by each algorithm.

In general, AI algorithms are random and uncertain in finding an optimal solution, i.e., the
obtained optimal solution may vary in different runs. To further compare the optimization performance,
each AI algorithm is implemented in 10 runs. In each run, the optimization processes are evaluated
under 96 scenarios. So for each algorithm, the total number of runs is equal to 10 times ×
96 scenarios = 960, which is considered to be proper to evaluate the convergence stability of each
algorithm [32]. Furthermore, the significance of our simulation results has been proven for performance
comparisons, including calculation time, convergence time, quality of obtained optimal solution,
and the distribution statistical results of obtained objective function (i.e., the convergence stability).
In Table 6, the calculation time of each algorithm is the total execution time to solve 96 new tasks while
the convergence time is the average optimization time of a single load scenario, which can clearly
describe the optimization efficiency of the algorithm. The fuel costs of generators, risk index, and the
optimal objective function are the sum of 96 new tasks, which are the statistical data on the obtained
optimal solutions. Note that the quality of an obtained optimal solution is only determined by the
integrated objective function, instead of the fuel costs or the global operation risk index. Although
QGA achieves a less fuel costs FC than that of BFRL, QGA has a larger integrated objective function f
due to a much larger global operation risk index IR than that of BFRL. Hence, BFRL outperforms QGA
as it obtains a higher quality optimal solution with a smaller f, which is shown obviously in Figure 12.



Energies 2017, 10, 638 18 of 24

Energies 2017, 10, 638 18 of 24 

stability). In Table 6, the calculation time of each algorithm is the total execution time to solve 96 
new tasks while the convergence time is the average optimization time of a single load scenario, 
which can clearly describe the optimization efficiency of the algorithm. The fuel costs of generators, 
risk index, and the optimal objective function are the sum of 96 new tasks, which are the statistical 
data on the obtained optimal solutions. Note that the quality of an obtained optimal solution is only 
determined by the integrated objective function, instead of the fuel costs or the global operation risk 
index. Although QGA achieves a less fuel costs FC than that of BFRL, QGA has a larger integrated 
objective function f due to a much larger global operation risk index IR than that of BFRL. Hence, 
BFRL outperforms QGA as it obtains a higher quality optimal solution with a smaller f, which is 
shown obviously in Figure 12. 

Table 6. Average optimization results of 96 scenarios obtained by each algorithm in 10 runs. 

Algorithm Calculation Time 
(s) 

Convergence Time 
(s) 

Fuel Costs 
($) 

Risk Index 
(p.u.) 

Objective Function 
(p.u.) 

Q-learning The algorithm fails to converge due to curse of dimensionality. 
GA 45,590.41 474.90 2,832,148.91 4.346 × 10−3 1041.36 
PSO 73,122.14 761.69 2,865,308.35 4.273 × 10−3 1086.82 
QGA 47,462.28 494.40 2,835,208.40 4.338 × 10−3 1147.77 
BFO 100,409.9 1045.93 2,877,187.63 4.283 × 10−3 1277.52 
ABC 49,824.74 519.01 2,864,487.85 4.305 × 10−3 1200.89 
BFRL 4904.30 51.08 2,839,588.33 4.279 × 10−3 1066.52 

 
Figure 12. The histogram of optimization results obtained by different algorithms. 

Table 7 gives the statistical data of the convergence stability of each algorithm obtained in 10 
runs. The data in the first two columns of the table are the worst and the best objective functions 
obtained by each algorithm in 10 runs. Variance is the expectation of the squared deviation of 
objective functions from their mean value, which measures how far the results in 10 runs are spread 
out from the mean value. Furthermore, standard deviation is the arithmetic square root of the 
variance. The ratio of the standard deviation to the mean value of objective functions is the relative 
standard deviation (RSD), which is used to indicate the precision of the simulation results. 
  

Figure 12. The histogram of optimization results obtained by different algorithms.

Table 6. Average optimization results of 96 scenarios obtained by each algorithm in 10 runs.

Algorithm Calculation
Time (s)

Convergence
Time (s)

Fuel
Costs ($)

Risk Index
(p.u.)

Objective
Function (p.u.)

Q-learning The algorithm fails to converge due to curse of dimensionality.

GA 45,590.41 474.90 2,832,148.91 4.346 × 10−3 1041.36
PSO 73,122.14 761.69 2,865,308.35 4.273 × 10−3 1086.82
QGA 47,462.28 494.40 2,835,208.40 4.338 × 10−3 1147.77
BFO 100,409.9 1045.93 2,877,187.63 4.283 × 10−3 1277.52
ABC 49,824.74 519.01 2,864,487.85 4.305 × 10−3 1200.89
BFRL 4904.30 51.08 2,839,588.33 4.279 × 10−3 1066.52

Table 7 gives the statistical data of the convergence stability of each algorithm obtained in 10 runs.
The data in the first two columns of the table are the worst and the best objective functions obtained by
each algorithm in 10 runs. Variance is the expectation of the squared deviation of objective functions
from their mean value, which measures how far the results in 10 runs are spread out from the mean
value. Furthermore, standard deviation is the arithmetic square root of the variance. The ratio of the
standard deviation to the mean value of objective functions is the relative standard deviation (RSD),
which is used to indicate the precision of the simulation results.

Table 7. Convergence performances of objective function of 96 scenarios obtained by each algorithm in
10 runs.

Algorithm Worst Best Variance Standard Deviation RSD

Q-learning The algorithm fails to converge due to curse of dimensionality.

GA 1027.24 1052.51 70.00 8.36 8.031 × 10−3

PSO 1057.90 1103.27 168.13 12.396 1.196 × 10−2

QGA 1137.83 1163.64 54.43 7.38 6.098 × 10−3

BFO 1267.58 1280.03 77.48 8.80 6.884 × 10−3

ABC 1187.72 1212.23 48.47 6.96 5.740 × 10−3

BFRL 1054.07 1074.97 44.92 6.70 6.285 × 10−3
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It’s obvious that the variance of BFRL is the smallest among all. Particularly, the relative standard
deviation of BFRL is only 52.5% of that of PSO. Although the RSD of ABC and QGA are smaller than
that of others, their optimal solutions are not satisfactory.

Figures 13 and 14 are the distribution boxplots of fuel costs of generators and risk index,
respectively. From top to bottom, the five horizontals are the maximum, upper quartile, median,
lower quartile and minimum of convergence result obtained in 10 runs. One can readily find that the
length of BFRL is the shortest, which means its variation is the smallest. Besides, its median is also
located at a relatively low position, which verifies that BFRL has strong global convergence ability
with stable convergence.
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5.5. Efficiency and Effectiveness of BFRL

From the above simulation results, it can be concluded that the comprehensive performance of
BFRL is the best among all the algorithms, which includes the optimization rate, the quality of obtained
optimal solution and the convergence stability.

Compared to other algorithms, BFRL can save more than 11 h in solving 96 new tasks of RBED
during a day in total. Moreover, it tends to exploit the prior knowledge when initializing the knowledge
matrix for a new task, i.e., the initial knowledge matrix of new task can be effectively developed
from the optimal knowledge matrices of the related source task with the highest similarity, thus the
knowledge matrix can converge in just a few iterations (less than 50 s). Moreover, BFRL has improved
its efficiency by ten times through knowledge transfer.

The obtained integrated objective function f of BFRL is the second smallest among all the
algorithms, which is only larger than that of GA. This is due to the following promising features:

• Deep local search: To approximate a high-quality local optimum with a smaller integrated
objective function f, a chemotactic mode is adopted to search new solutions around the current
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optimal solution, while a reproduction mode is employed to eliminate the bacteria with the
low-quality local optimums.

• Wide global search: To increase the probability of obtaining a global optimum, several bacteria
will be assigned for a random search in the action space with the dispersal mode.

• Proper balance between local search and global search: Each bacterium will implement a new
action based on the common knowledge matrices Equations (18) and (19), a greedy action (i.e.,
a local search) will be selected if the random number is larger than the dispersal probability;
otherwise a non-greedy action (i.e., a global search) will be chosen. As a consequence, a proper
trade-off between local search and global search can be achieved.

For the convergence stability, other heuristic algorithms are incapable of knowledge transfer thus
they may easily result in a low convergence stability, i.e., a significantly different optimum obtained
in different runs. In contrast, BFRL can extract the optimal knowledge matrices from the sources
tasks, thus the blind random search can be effectively avoided by utilizing the approximate optimal
knowledge matrices, so that a convergence stability with a high-quality optimum can be realized.

6. Conclusions

In this paper, a novel model-free BFRL associated with transfer learning is proposed for RBED,
which can be applied for discontinuous convex or nonconvex problems with multiple constraints.
Besides, it can transform the informative information of source tasks into the state-action pair value
function to accelerate the online optimization of a new task. Moreover, BFRL has a relatively simple
structure and can converge with higher quality solutions in a short period of time. The main
contributions are summarized as follows:

• The bacteria are regarded as multi-agent to accelerate the update of knowledge matrix in BFRL,
while the high dimension of knowledge matrix can be considerably reduced by knowledge
extension, such that the curse of dimension can be avoided;

• The active power deviation is defined as the similarity between source tasks and new tasks, and
the online learning is accelerated significantly through transfer learning so that an online dynamic
RBED can be achieved. Moreover, BFRL is adequate to handle large-scale problems;

• The multi-objective RBED is transformed into a single-objective problem via linear weighed
method, and future research will investigate multi-objective algorithms associated with transfer
learning for RBED. Moreover, this paper assumes the active power deviation is the only difference
between source tasks and new tasks, which reduces the difficulty of transfer learning. In fact, the
power gird topology, unit commitment and the fault type may vary dramatically, therefore how
to extract these similarities is worth studying.

• RBED is based on the static ED while the dynamic multi-period coupled constraints are not
considered. Hence, ongoing studies will also focus on the extension from single-scenario static
optimization to dynamic multi-scenario optimization.
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Abbreviations

Nomenclature
Variables
Xf current condition
IR risk index
Ei ith contingency
Pr(Ei) probability of Ei
Sev(Ei) severity of Ei
EFi fault of the ith transmission line
ES_Fi single fault in system
Li ratio of actual transmission power to transmission power constraint of the ith line
ωLi overload faulty of the ith line
ωVi voltage deviation of the ith node
Ui voltage amplitude of the ith node
IRL total risk index of line overload
IRV total risk index of node voltage deviation
FC fuel costs of generators
CV value of total constraint violations
PDi/QDi active and reactive power of load i
U node voltage amplitude
θ node voltage phase angle
PG/QG active and reactive power of generator
θij voltage phase angle difference
|Ti| apparent power of the ith line
PGs generator active power on the slack bus
Q(s,a) element of knowledge matrix
s state
a action
Q knowledge matrix
Qi i-th knowledge sub-matrices
r1 random number
ρ

ij
k update component of the Q-value matrix

ψi(j, k, l) position of the ith bacteria
R reward of a transition of state under a selected action
∆ unit vector in the direction of swimming
Ci

k step of swimming
Oi state-action probability matrix
r2 random number
as random global action
PDsi power demand of the ith load intervals
ei transition matrix
Q* optimal knowledge matrix
Sets
SG set of generators
SD set of load buses
SL set of lines
Spa state space
A action space
SUN set of all the normal operational transmission lines
Parameters
∆t certain time interval
λi failure rate of the ith transmission line
L0 threshold of the ratio
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M penalty factor
a/b/c positive constants used in the nonlinear utility function
µ1 weight coefficient of line overload risk index
µ2 weight coefficient of node voltage deviation risk index
µ3 weight coefficient of the fuel costs of generators
µ4 weight coefficient of the value of total constraint violations
z1/z2 normalization references
Gij/Bij conductance and susceptance of line i–j
PGimax/PGimin upper and lower bounds of the generator active power
QGimax/QGimin upper and lower bounds of the generator reactive power
Timax power limit of the ith line
ζ0i/ζ1i/ζ2i coefficients of fuel costs
β divergence factor to magnify the divergence of Qi

α learning factor
γ discount factor
Ci

start
initial steps

Ci
end

final steps
Itermax maximum iteration number
Pr_ed dispersal probability
Nv number of variables
Nq number of controlled variables
Np number of employed bacteria
Nc number of chemotactic
Nf number of faults in the contingency
Ned number of dispersals
Nre number of reproductions
Ns number of swimming
Abbreviations
BFRL bacteria foraging reinforcement learning
RBED risk-based economic dispatch
AI artificial intelligence
SCOPF security constrained optimal power flow
BFO bacteria foraging optimization
OPF optimal power flow
GA genetic algorithm
QGA quantum genetic algorithm
ABC artificial bee colony
PSO particle swarm optimization
AC active current
RSD relative standard deviation
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