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Abstract: This work is focused on the state of charge (SOC) estimation of a lithium-ion battery based
on a nonlinear observer. First, the second-order resistor-capacitor (RC) model of the battery pack is
introduced by utilizing the physical behavior of the battery. Then, for the nonlinear function of the
RC model, a one-sided Lipschitz condition is proposed to ensure that the nonlinear function can play
a positive role in the observer design. After that, a nonlinear observer design criterion is presented
based on the H∞ method, which is formulated as linear matrix inequalities (LMIs). Compared with
existing nonlinear observer-based SOC estimation methods, the proposed observer design criterion
does not depend on any estimates of the unknown variables. Consequently, the convergence of the
proposed nonlinear observer is guaranteed for any operating conditions. Finally, both the static and
dynamic experimental cases are given to show the efficiency of the proposed nonlinear observer by
comparing with the classic extended Kalman filter (EKF).

Keywords: lithium-ion battery; state of charge estimation; nonlinear observer; H∞ method; linear
matrix inequality

1. Introduction

In response to environmental degradation and the energy crisis, the development of electric
vehicles (EVs) has been greatly encouraged [1]. The state of charge (SOC) of the battery used in EVs,
which is similar to the fuel gauge used in conventional vehicles, is vital for the power distribution
strategy of EVs and protecting the battery from dangers, such as the over-discharging, over-charging,
fire and explosion [2,3]. Moreover, the accurate SOC can improve the mileage per charge and
prolong the battery’s useful life. However, the SOC cannot be measured directly by on-board sensors.
Therefore, the SOC estimation is a problem of considerable importance in both theory and application
in EVs [4].

To estimate the SOC, a classic method is the ampere-hour counting method that is an open-loop
algorithm and permits the calculation of changes in the SOC. Due to the accumulation of measurement
errors and the inaccurate initial SOC, the ampere-hour counting method cannot be utilized directly
to estimate the SOC. Accordingly, various kinds of model-based SOC estimation algorithms
are proposed [4] that are usually established by combining the ampere-hour counting and the
battery model.

In the devoted literature, model-based SOC estimation algorithms can be split into two main
categories. One is the filter-based approach. The other is the observer-based method. The most
widely-used filter technique is the various Kalman filters (KF) [5]. For instant, the ordinary KF is
used to deal with simple and linear battery models [6]. Notice that the nonlinearity is the inherent
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characteristic of the battery. Then, the extended KF (EKF) is widely employed to handle nonlinear
battery models [3,7–12]. In [13,14], a dual EKF was utilized to identify the battery model and
estimate the SOC simultaneously. To overcome the drawback of the ordinary and extended KF
requiring prior knowledge of model and measurement noise covariances, the adaptive KF is applied
to improve the convergence and robustness [2,15]. Furthermore, the EKF linearizes battery model
nonlinearities, which is not very accurate. Accordingly, the unscented KF is employed to achieve the
better consideration of model nonlinearities [16–18]. It is worth noting that the KFs need to assume the
model and measurement noises to be Gaussian. However, the model and measurement noises usually
are non-Gaussian, which will cause estimate bias and render KF non-optimal. Therefore, various
observer-based SOC estimate approaches, such as the Luenberger observer [19,20], H∞ observer [21,22],
nonlinear observer [23–26], proportional-integral observer [27,28] and sliding model observer [29–31],
are proposed, which do not demand knowledge on noise distributions. In [19–21], the observer with
constant gain was employed to deal with the nonlinear battery model, which is slightly weak in
tracking the nonlinear dynamic process. As such, the observer with dynamic gain is proposed to adapt
the nonlinear dynamics [23–26]. Considering that the state correction is proportional to the terminal
voltage observe error in the classic observer [19–21], the proportional-integral observer is presented to
improve the state estimate performance [27,28]. Moreover, due to the robustness in dealing with the
battery model with uncertainties, the sliding model observer is also frequently applied to estimate the
SOC [29–31]. Finally, in order to optimize the suppression ability of the observer to the measurement
noise and modeling error, the H∞ observer was introduced in [21,22].

The purpose of this paper is to design a nonlinear observer to estimate the SOC of a battery pack
by utilizing the H∞ method, where the battery pack is modeled as the second-order resistor-capacitor
(RC) model. Compared to the existing literature, the main contributions of this work lie as follows:

(1) The H∞ method is employed to design a nonlinear observer with dynamic gain for the nonlinear
second-order RC model, which is a powerful tool to restrict the effect of the non-Gaussian
model and measurement noises on state estimation [32]. This implies that the proposed
H∞-based nonlinear observer can achieve faster convergence and better robustness than the
classic EKF [3,8,9]. In addition, for the existing H∞ observer-based SOC estimation methods, the
observer’s gain in the work [21] is constant and difficult to calculate to adapt the nonlinear battery
model. The H∞ observer in [22] is also constant and used to deal with the linear battery model.
On the contrary, the H∞ method in this paper is employed to design the observer with dynamic
gain for the nonlinear battery model, which is not a trivial work.

(2) The proposed nonlinear observer design criterion is represented as the form of the linear
matrix inequality (LMI). The LMI can be formulated as a convex optimization problem that
is amenable to computer solution, such as the LMI MATLAB Toolbox [33]. Furthermore, the
given LMI does not rely on any estimates of the unknown variables. On the contrary, the
gain in the existing nonlinear observer criteria was determined by the upper bounds of
uncertainties and/or measurement noises that may be unquantifiable in practical applications
[26,30]. In [23,24], the approximate error of the nonlinear function was induced into the
convergence analysis. Accordingly, these unknown upper bounds and approximate error make
the nonlinear observer in [23,24,26,30] require manual debugging carefully in order to adapt to
various operating conditions.

The remainder of this paper is organized as follows. In Section 2, the second-order RC equivalent
circuit model of the battery pack is introduced. Section 3 includes experiments and identification of
model parameters by the physical behavior of the battery. In Section 4, the nonlinear observer design
for SOC estimation is presented. Finally, experimental validations of the SOC estimation are discussed
in Section 5.
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2. Battery Modeling

To accurately estimate the SOC of the battery packs in electrical vehicles, an accurate battery
model is indispensable. Furthermore, for SOC estimation, the battery model should satisfy two
essential requirements: (1) it can well capture the dynamic behaviors of the battery; (2) it should have
a simple structure to easily establish the battery state-space equations and consume less computation
of microcontrollers. As such, the second-order RC equivalent circuit model is employed here, and its
schematic diagram is shown in Figure 1 [23,30].

Figure 1. The schematic diagram of the second-order RCmodel.

In Figure 1, the notation UOC denotes the open-circuit voltage (OCV) related to SOC; IT is the
operating current, which is positive in the discharge process and negative in the charge process;
UT indicates the terminal voltage; and R0 is Ohmic resistance. The notations R1 and C1 are
the electrochemical polarization resistance and capacitance, respectively, and R2 and C2 are the
concentration polarization resistance and capacitance, respectively. In addition, the voltages U1 and U2

denote the voltage of the electrochemical capacitors C1 and concentration polarization capacitors C2.
Now, let us establish the battery model. Based on the well-known Kirchhoff voltage laws, we have:
State equation: 

U̇1 = − 1
R1C1

U1 +
1

C1
IT

U̇2 = − 1
R2C2

U2 +
1

C2
IT

˙SOC = − 1
Qn

IT

(1)

Output equation:

UT = UOC(SOC)− R0 IT −U1 −U2 (2)

where Qn is the nominal capacity of the battery.

3. Experiments and Identification of Model Parameters

In this section, the unknown parameters R0, R1, R2, C1, C2 and nonlinear function UOC(SOC) in
battery Equations (1) and (2) are identified by experiments [23,30]. First, let us introduce our test bench.

3.1. Test Bench

The established test bench shown in Figure 2 is utilized to test the characteristics of the
battery, identify the parameters of the battery and verify the effectiveness of the proposed nonlinear
observer-based SOC estimation method. The battery type used in the experiments is US18650GR-G7
manufactured by Sony Corporation, Tokyo Japan. Its nominal voltage is 3.7 V, and the nominal
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capacity is 2.4 Ah. Moreover, the test object is a battery pack with ten batteries connected in parallel.
The standard current and voltage are measured by the the battery testing system BTS-4000 produced
by NEWARE Electronic Co., Ltd., Shenzhen, China which are seen to have no measurement noise and
used as the references of the terminal voltage and SOC. Meanwhile, a home-made current and voltage
measurement device is also applied. The current and voltage measured by the home-made device have
non-neglectable measurement noise due to the low cost and inaccurate current and voltage sensors,
which is used to simulate the real measurement environment. It is worth noting that both the standard
and home-made measurement data will be utilized to verify the effectiveness of the proposed SOC
estimation methods. In Figure 2, the block diagram of the test bench is illustrated.

Figure 2. Block diagram of the test bench.

3.2. Parameters and Nonlinear Function Identification

The principle of parameters identification depends on the physical behavior of the battery. In order
to obtain accurate parameters, a typical discharging current profile is employed, and the corresponding
terminal voltage profile is shown in Figure 3, where the battery stays on static before the experiment
time t ≤ ta, is discharged with 24 A between t ∈ [ta, tc] and is in the relaxation process after t ≥ tc.

Figure 3. Discharging process with 24 A current, where ta = 380.3 s, tb = ta + 0.1 s, tc = 560.4 s,
td = tc + 0.1 s, and te = 1000 s, where tx denotes the time at the point x.
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(1) Identify parameter R0: For the second-order RC model shown in the Figure 1, once the
discharging/charging current is executed or stopped, the terminal voltage will drop or rise
immediately. Notice that the voltages U1 and U2 of the capacitors C1 and C2 would not be
suddenly changed at the moment of starting discharging/charging. Then, the ohmic resistance
R0 could be identified from variations of the terminal voltage at the moment of starting
discharging/charging. As a consequence, the ohmic resistance R0 can be calculated by:

R0 =
|VT(tb)−VT(ta)|+ |VT(td)−VT(tc)|

2|IT |
(3)

(2) Identify parameters R1, R2, C1 and C2: The identification of the parameters R1, R2, C1 and C2 is
divided into two steps. The fist step is to identify the time constants τ1 , R1C1 and τ2 , R2C2.
Based on the identified time constants, the detailed identification of the R1, R2, C1 and C2 is
introduced at another step. In addition, the response of the first-order RC circuit with the resistant
R, capacitance C and constant current I is critical for the identification, which is given by:

U(t) = U(t0)e−
t−t0

τ + IR(1− e−
t−t0

τ ) (4)

where τ = RC and t0 is the initial time.

Step 1. Identify the time constants τ1 and τ2 during the relaxation process c− d− e: Note that the
current equals zero during the relaxation process. Then, according to Equation (4), the voltages
U1 and U2 can be calculated by:

U1(t) = U1(tc)e
− t−tc

τ1 (5)

U2(t) = U2(tc)e
− t−tc

τ2 (6)

respectively. From the output Equation (2), we have:

UT(t) = UOC(SOC)−U1(tc)e
− t−tc

τ1 −U2(tc)e
− t−tc

τ2

which is rewritten as:

UT(t) = α1 − α2e−
t−tc
β1 − α3e−

t−tc
β2 (7)

where α1, α2, α3, β1, β2 are the unknown coefficients and will be identified later. Obviously, we see
α1 = UT(∞) that is measured at the end of the relaxation process, i.e., the point e. By using the
MATLAB function “Custom Equation” in the Curve Fitting Toolbox, the optimal coefficients
α2, α3, β1, β2 can be obtained. Therefore, the time constants τ1, τ2 and the voltages U1(tc), U2(tc)

are identified.

Step 2: Identify parameters R1, C1, R2 and C2 during the discharging process a − b − c: Note
that the point a is the end of the previous relaxation process. Then, we have U1(ta) = 0 and
U2(ta) = 0. It follows from Equation (4) that:

U1(t) = IT R1(1− e−
t−ta

τ1 ) (8)

U2(t) = IT R2(1− e−
t−ta

τ2 ) (9)
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Hence, the resistances R1, R2 are determined by the following equations:

R1 = U1(tc)

IT

(
1−e

− tc−ta
τ1

) (10)

R2 = U2(tc)

IT

(
1−e

− tc−ta
τ2

) (11)

where τ1, τ2, U1(tc) and U2(tc) have been calculated at the above Step 1.
Since τ1 = R1C1, τ2 = R2C2, we can get C1 = τ1

R1
, C2 = τ2

R2
. Therefore, the parameter identification

is completed and shown in Table 1.

Table 1. Identification result of the parameters.

R0 R1 R2 C1 C2

10.822 mΩ 3.103 mΩ 2.611 mΩ 8.4379 kF 91.401 kF

(3) Identify the nonlinear function UOC(SOC): The curve fitting method is used to identify the
nonlinear function UOC(SOC). Here, relatively accurate discharging experiments are carried out
to reduce the fitting error of the curve fitting method, in which the discharging current pulse is set
to be 24 A. The lasting time of the discharging current pulse is 72 s, which is utilized to achieve the
2% decline of SOC. Moreover, the battery is rest for 40 min after a discharging period to ensure the
end of the relaxation process. In order to accurately fit the measurement data, the seventh-order
polynomial is employed, which is given by:

UOC(SOC) = −36.93SOC7 + 142.4SOC6 − 214.8SOC5 + 158SOC4

−56.25SOC3 + 7.9SOC2 + 0.4SOC + 3.44
(12)

Finally, the validity of the above polynomial is shown in Figure 4.

Figure 4. Measured data and fitted curve of open-circuit voltage (OCV) vs. SOC.

3.3. Model Verification

A typical Hybrid Pulse Power Characteristic (HPPC) test is adopted to prove the validity of battery
Equations (1) and (2) with identified parameters in Table 1 and nonlinear Function (12). The test current
is displayed in Figure 5, where the initial SOC is set to be 90%.
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Figure 5. Current profile of the Hybrid Pulse Power Characteristic (HPPC) test for the model verification.

By calculating the output of battery Equations (1) and (2) with the parameters in Table 1,
the modeling accuracy is shown in the following Figures 6 and 7 and Table 2.

Figure 6. Terminal voltage of the model and the experiment.
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Figure 7. Model error curve.

Table 2. Modeling errors with respect to UT .

Index Maximum Mean Variance Error Rate

Value 0.5562 V 0.0101 V 0.000706 V2 0.2733%

It is shown in Figure 6 that the identified model is almost coincident to the experimental data.
Moreover, the model error in Figure 7 and Table 2 demonstrates the effectiveness of the identified
model. From Table 2, we see that the parameters identification results and the identified second-order
RC model are reasonable enough. Notice that the model parameters are identified from the first
discharging process, i.e., the SOC range [80%, 90%]. Then, the model error of the first process is
minimum among all eight processes. The second to the seventh processes denote the SOC range
[20%, 80%]. In this range, the battery dynamics is similar, so these modeling errors are similar.
The battery dynamics of the final process, i.e., the range [10%, 20%], is much different from the range
[20%, 90%]. Therefore, the model error is greatly increased at the final discharging process.

Remark 1. The parameters (R0/R1/C1/R2/C2) are identified as constants, which is not true because of
the effect of temperature and aging. However, due to the computation and the cost of the on-board battery
management system considerations, the parameters need to be approximated as constants. Hence, one viable
option is to update the parameters regularly by using off-line identification methods. Using the updated
parameters, the proposed SOC estimation approach for constant parameters can ensure the accuracy of the
SOC estimation.

4. Nonlinear Observer Design for SOC Estimation

The battery Equations (1) and (2) can be rewritten as the following nonlinear system:{
ẋxx = Axxx + Bu, xxx(0) = xxx0

y = h(xxx) + Cxxx− R0u
(13)
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where xxx = [U1, U2, SOC]T , y = UT , u = IT , h(xxx) = UOC(SOC), xxx0 is the initial state and:

A =

 −
1
τ1

0 0
0 − 1

τ2
0

0 0 0

 , B =


1

C1
1

C2

− 1
Qn

 , CT =

 −1
−1
0


Since the battery charge-discharge process involves complicated physical and chemical reactions,

the battery Equation (13) are further rewritten as:{
ẋxx = Axxx + Bu + ωx, xxx(0) = xxx0

y = h(xxx) + Cxxx− R0u + ωy
(14)

where ωx denotes the state disturbance that is the combination of the modeling error and measurement
noise of the current and ωy is the output disturbance that is the combination of the measurement noises
of the current and terminal voltage. Notice that for the observer-based SOC estimate, the disturbances
ωx and ωy are only assumed to be bounded, that is ‖ωx‖ < ∞ and ‖ωy‖ < ∞.

Let x̂xx and ˆSOC be the estimates of the state xxx and SOC, respectively, and h̃ , h(xxx)− h(x̂xx). Note
that SOC ∈ [0, 1] and UOC(SOC) is a monotonically increasing function. Then, we have:

βmin ≤ U̇OC(SOC) ≤ βmax (15)

with βmin, βmax > 0. Furthermore, from the SOC-OCV curve Equation (12), we have that the tested
battery satisfies the above Equation (15) with:

βmin = 0.2079, βmax = 1.4119 (16)

To design the nonlinear observer of the above System Equation (14), the property of the nonlinear
function h(xxx) should be discussed firstly.

Property 1. There exists matrix Q, such that the nonlinear functions h(xxx) satisfies the following one-sided
Lipschitz condition:

−x̃xxT
[

∂h
∂xxx
|xxx=x̂xx

]T
h̃ ≤ −x̃xxTQx̃xx (17)

for any xxx, x̂xx with SOC, ˆSOC ∈ [0, 1], where:

Q =

 0 0 0
0 0 0
0 0 β2

min

 (18)

Proof. By utilizing the mean value theorem, we have:

h̃ = h(xxx)− h(x̂xx) =
∂h
∂xxx
|xxx=ζ(xxx− x̂xx) (19)

where ζζζ , [ζζζU1
, ζζζU2

, ζζζSOC]
T ∈ [xxx, x̂xx] Note that:

∂h
∂xxx

=

[
∂h(xxx)
∂U1

,
∂h(xxx)
∂U2

,
∂h(xxx)
∂SOC

]
=
[
0, 0, U̇OC(SOC)

]
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Then, we have:

−x̃xxT
[

∂h
∂xxx |xxx=x̂xx

]T
h̃ = −x̃xxT

[
0 0 U̇OC( ˆSOC)

]T
h̃

= −U̇OC( ˆSOC) · ˜SOC · h̃
≤ −βmin · ˜SOC · h̃
= −βmin

(
x̃xxT [0, 0, 1]T

) ([
0, 0, U̇OC(ζζζSOC)

]
x̃xx
)

≤ −x̃xxT

 0 0 0
0 0 0
0 0 β2

min

 x̃xx

(20)

This implies that Condition Equation (17) with Equation (18) holds. The proof is completed.

Remark 2. Condition Equation (17) is one-sided Lipschitz condition Equation [34] with respect to
[

∂h
∂xxx |xxx=x̂xx

]T
h̃,

which plays an important role in the observer design. Compared with the classic Lipschitz condition (e.g.,
h̃Th̃ ≤ βx̂xxTx̂xx, β > 0), the one-sided Lipschitz Condition Equation (17) can make the nonlinear function h(xxx)
contribute to the observer design due to the positive semi-definite matrix Q. Note that (A, C) is not observable.
Thus, the nonlinear function h(xxx) must play a positive role for the observer design. This is the main reason to
establish the one-sided Lipschitz Condition Equation (17).

Next, let us design the nonlinear observer as follows: ˙̂xxx = Ax̂xx + Bu + L
[

∂h
∂xxx

]T

xxx=x̂xx
(y− ŷ), x̂xx(0) = x̂xx0

ŷ = h(x̂xx) + Cx̂xx− R0u
(21)

where ŷ is the estimate of the real terminal voltage y, L is the matrix that will be designed later, but the

vector L
[

∂h
∂xxx

]T

xxx=x̂xx
is the actual observer gain that is dynamic. It follows that the error dynamics is

given by:

˙̃xxx =

(
A− L

[
∂h
∂xxx

]T

xxx=x̂xx
C
)

x̃xx− L
[

∂h
∂xxx

]T

xxx=x̂xx
h̃ + (E− L

[
∂h
∂xxx

]T

xxx=x̂xx
F)ωωω (22)

where x̃xx = xxx − x̂xx is the estimate error of the state, ωωω =

[
ωx

ωy

]
the synthetic disturbance,

E = [I0, 0], F = [0, 1] and I0 denotes the appropriate dimensional identity matrix.
Now, let us establish the following nonlinear observer design criterion with an H∞ performance,

which is the main contribution of this paper.

Theorem 1. For given positive scalars ε < 2β2
min and γ, if there exist matrix P = PT > 0 and vector S,

such that the following LMIs: 
Π =

[
Π11 PE− R1SF
∗ −γ2 I0

]
< 0

R2S < βmax

R2S > βmin

(23)
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where Π11 = PA + ATP − R1SC − CTSTRT
1 + εI0 − 2Q, R1 =

 0 0 0
0 0 0
0 0 1

, R2 =

 0
0
1


T

, then the

battery Equation (14) and the nonlinear observer Equation (21) L = P−1 satisfy the H∞ performance with the
given attenuation γ > 0, that is:

∫ Γ

t=0
‖x̃xx(t)‖2dt < λmax(P)‖x̃xx(0)‖2 +

γ2

ε

∫ Γ

0
‖ωωω(t)‖2dt

for any Γ > 0.

Proof. Let the candidate of the Lyapunov function be:

V(x̃xx) = x̃xxTPx̃xx (24)

and the observer gain L = P−1. Then, the derivative of V(x̃xx) along the trajectories of the error
System Equation (22) yields:

V̇(x̃xx) = 2x̃xxT

[
(PA−

[
∂h
∂xxx

]T

xxx=x̂xx
C)x̃xx−

[
∂h
∂xxx

]T

xxx=x̂xx
h̃ + (PE−

[
∂h
∂xxx

]T

xxx=x̂xx
F)ωωω

]

Note that
[

∂h
∂xxx

]T

xxx=x̂xx
= [0, 0, U̇OC( ˆSOC)], βmin ≤ U̇OC(SOC) ≤ βmax and the one-sided Lipschitz

Condition Equation (17). Then, the derivative V̇(x̃xx) can be rewritten as:

V̇(x̃xx) = 2x̃xxT [(PA− R1SC−Q)x̃xx + (PE− R1SF)ωωω] (25)

where S , [s1, s2, s3]
T is a vector satisfying βmin ≤ R2S = s3 ≤ βmax.

To establish the H∞ performance, we introduce the performance index:

J(t) = V̇(x̃xx) + εx̃xxTx̃xx− γ2ωωωTωωω (26)

where ε < 2β2
min is used to guarantee that the matrix Π11 could be negative definite. It follows that:

J(t) =

[
x̃xx
ωωω

]T

Π

[
x̃xx
ωωω

]
(27)

where Π is defined by Equation (23). Hence, we see that:

Π < 0, R2S < βmax, R2S > βmin (28)

can ensure J(t) < 0. Note that
∫ Γ

0 V̇(x̃xx)dt = V(Γ)−V(0) ≥ −V(0) ≥ −λmax(P)‖x̃xx(0)‖2. Therefore,

we have
∫ Γ

0 x̃xxTx̃xxdt ≤ λmax(P)
ε ‖x̃xx(0)‖2 + γ2

ε

∫ Γ
0 ωωωTωωωdt for any Γ > 0. The proof is completed.

Remark 3. The nonlinear observer design criterion Equation (23) is represented as the form of LMIs that is
easily solved by the LMI MATLAB Toolbox [33]. Here, employing the vector S is critical to use the LMI to

deal with the nonlinear function
[

∂h
∂xxx

]T

xxx=x̂xx
. Notice that the disturbance ωωω includes the measurement noise and

the modeling error. The upper bound of disturbance ωωω is different and difficult to be accurately estimated for
different operation conditions with various static and dynamic charging/discharging currents. However, the
existing works usually utilized the upper bound of the disturbance ωωω to calculate the observer gain to ensure
the convergence [23,24,26,30]. Hence, the observer designed in [23,24,26,30] may not be the optimal one to
estimate the SOC. Oppositely, the proposed nonlinear observer by calculating the LMIs Equation (23) does
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not depend on the estimation of the disturbance ωωω, which makes the calculated observer suitable for various
operating conditions.

5. Experimental Validations of the SOC Estimation

By utilizing the feasp function in LMI MATLAB Toolbox to solve the observer design criterion
Equation (23), the matrix L in Equation (21) is calculated by:

L =

 2.53× 10−5 7.56× 108 2.56× 10−5

7.56× 10−8 0.00023 0.0023
2.56× 10−5 0.0023 0.536

 (29)

In this section, the efficiency of the proposed nonlinear observer Equation (21) with gain
Equation (29) will be verified by both the static and dynamic experimental operating conditions.
Furthermore, in order to show the advantages of the proposed nonlinear observer design criterion,
the classic EKF is also employed. It should be noted that in the following figures, the lines named as
“Reference” are directly obtained by the standard measurement data, and the other lines are calculated
by the home-made measurement data.

5.1. Static Experimental Validation

In this experiment, the discharging current is set to constant 24 A in the battery testing system.
The proposed method is compared with the widely-used EKF method in terms of the terminal voltage
estimation ŷ and its errors in Figures 8 and 9. Meanwhile, SOC estimation ˆSOC and its errors are
shown in Figures 10 and 11, respectively. Moreover, the error distribution is shown in Figure 12.

Figure 8. Terminal voltage profiles of the static case.
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Figure 9. Terminal voltage estimation error profiles of the static case.

Figure 10. SOC profiles of the static case.

Figure 11. SOC estimation error profiles of the static case.
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Figure 12. SOC estimation error distribution of the static case.

5.2. Dynamic Experimental Validation

To evaluate the performance of the proposed SOC estimation method against EKF further,
a dynamic current profile is applied in Figure 13. The difference between the dynamic experiment
and the static experiment is that discharging current changes rapidly every one or two minutes.
The measurement and estimations of terminal voltage and its errors are shown in Figures 14 and 15.
The measurement and estimations of SOC and its errors are also shown in Figures 16 and 17.
A comparison of the mean SOC estimation error between the EKF method and the proposed observer
method can be seen in Table 3.

Figure 13. Current profile of the dynamic case.
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Figure 14. Terminal voltage of the dynamic case.

Figure 15. Terminal voltage estimation error profiles of the dynamic case.

Figure 16. SOC profiles the dynamic case.
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Figure 17. SOC estimation error profiles of the dynamic case.

Table 3. Comparison of mean SOC estimation error between the EKF method and the proposed
observer method.

Experiment Static Experiment Dynamic Experiment

EKF 4.71% 4.86%
Proposed observer 3.96% 3.36%

It is shown in Figures 8, 9, 14 and 15 that the terminal voltage estimation of the proposed nonlinear
observer is much better than that of the EKF. To some extent, this is the main reason why the SOC
estimation of the the proposed nonlinear observer is better than that of the EKF, which is demonstrated
in Figures 11, 12, 17, 18 and Table 3. It is noteworthy that compared with the dynamic case, the proposed
nonlinear observer is not much better than the EKF for the static case. Compared with the EKF, the
main advantage of the nonlinear observer is the ability to quickly adjust the state estimate when facing
the dramatic change in the output. For the static case, the change of the measurement output is slow,
which implies that the advantage of the nonlinear observer is not well stimulated.

Figure 18. SOC estimation error distribution of the dynamic case.
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5.3. SOC Estimation Results and Evaluation

The following results can be derived from the above two experiments:

1. From Figures 8, 9, 14 and 15, we come to the conclusion that the terminal voltage estimation error
of the proposed observer is much smaller than that of the EKF. It is shown in Figure 16 that the
SOC estimation profile of the EKF is smoother than that of the proposed observer. The main
reason for the above two situations is that the observer-based method pays more attention to the
accuracy of the output estimation than the filter-based method.

2. It is shown in Figures 10, 11, 16 and 17 that the convergence rate of the proposed observer is
much faster than that of the EKF. The error distributions shown in Figures 12 and 18 indicate that
the percentage bar of small SOC estimation error of the proposed observer is higher than that
of the EKF. In addition, the mean SOC estimation errors in Table 3 clearly demonstrate that the
proposed observer outperforms the EKF in both the static and dynamic experiments.

3. The H∞ performance of the proposed nonlinear observer is the main reason why the proposed
observer is superior to the EKF. Notice that the modeling error rather than the measurement
noises is the main factor affecting the SOC estimation [4]. Furthermore, the modeling error is
non-Gaussian. Thus, by using the H∞ method to restrict the effect of the modeling error on the
state estimation, the SOC estimation of the H∞ observer is better than that of EKF.

Considering the above analysis, we can see that the proposed observer SOC estimation method
is effective and has higher accuracy than the EKF method. The proposed method can be performed
online and can estimate terminal voltage and SOC accurately and reliably. Meanwhile, the proposed
method exhibits satisfying performance, especially considering the simplicity and feasibility of the
battery model in real applications.

6. Conclusions

In this paper, a nonlinear observer with time-varying gain algorithm is presented to accurately
estimate the SOC of the lithium-ion batteries in electric vehicles. The commonly-used second-order
RC model is applied to simulate the nonlinear behaviors of the lithium-ion battery. The OCV-SOC
relationship is fitted using the seventh-order polynomial, and the other RC parameters of the battery
model are determined by the physical behavior of the battery. The principle of the nonlinear observer
algorithm for battery SOC estimation is to introduce the H∞ performance to reduce the effect of
the non-Gaussian system and measurement noises, which cannot be well filtered by EKF. Both the
static and dynamic experiments are applied to assess the performance of the proposed method by
comparing with the traditional EKF algorithms. Experimental results indicate that the proposed
observer algorithm is helpful to improve the SOC estimation accuracy.

Notably, the parameters (R0/R1/C1/R2/C2) are assumed to be constants, which may affect the
practicability of the proposed approach due to the temperature and aging. To improve the SOC
estimation accuracy, ongoing research is towards the iterative learning-based off-line identification
method that could accurately identify the parameters related to the temperature and SOC.
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