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Abstract: An analytical model is developed based on linear potential flow theory and matching
eigenfunction expansion technique to investigate the hydrodynamics of a two-dimensional floating
structure. This structure is an integration system consisting of a breakwater and an oscillating
buoy wave energy converter (WEC). It is constrained to heave motion, and linear power take-off
(PTO) damping is used to calculate the absorbed power. The proposed model is verified against
the published results. The proposed integrated structure is compared with the fixed structure and
free heave-motion structure, respectively. The hydrodynamic properties of the integrated structure
with the optimal PTO damping i.e., the transmission coefficient, reflection coefficient, capture width
ratio (CWR), and heave response amplitude operator (RAO), are investigated. The effect of the
PTO damping on the performance of the integrated system is also evaluated. Results indicate that
with the proper adjustment of the PTO damping, the proposed integrated system can produce
power efficiently. Meanwhile, the function of coastal protection can be compared with that of the
fixed structure.
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1. Introduction

As environmental concerns gain importance, more studies are being conducted on energy
extraction from renewable energy resources. Ocean wave energy is a huge, largely untapped renewable
energy resource, with the potential to attract researchers and engineers [1]. To date, a wide range of
wave energy converters (WECs) has been developed [2]. However, the high construction cost still
significantly impedes the industrial application of wave energy utilization [3]. Thus, an increasing
number of developers have focused on reducing construction costs. Meanwhile, the greenness of the
seaport has accordingly drawn considerable attention. Renewable energy utilization is regarded as
one of the representative factors in evaluating the greenness of a seaport [4,5]. Combining the wave
energy converter with the existing breakwater structures can simultaneously achieve wave energy
utilization and wave attenuation. Cost-sharing between them can naturally lead to cost reduction.
The benefits obtained from the integration of breakwaters and WECs over the isolated WECs can be
seen in Mustapa et al. [6].

The breakwater–WEC integration includes two categories: fixed bottom-mounted structures
and floating structures. Integrated systems, such as overtopping [7,8], oscillating water column-type
(OWC type) [9,10] and piston-type WEC-breakwater integration [11], belong to the former category
(for detailed descriptions see [6]). It is well understood that the floating breakwaters are favorable
for their relatively low costs [12]. Recently, many attempts associated with integrations of WECs and
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floating breakwaters (including truncated surface-piecing breakwaters) have been made. He et al. [13]
integrated OWC-type devices into slack-moored floating breakwaters with pneumatic chambers.
Experimental results showed that functions of coastal protection and the wave energy utilization
can be satisfied simultaneously for the proposed concept. Mendoza et al. [14] investigated the shore
protection function provided by WEC farms and found that the multi-purpose use of WECs can
be achieved. Chen et al. [15] numerically investigated the hydrodynamic performance of floating
horizontal cylinders as both WECs and floating breakwaters; results indicated that a configuration
with small cylinders in groups may achieve the two functions simultaneously. Martinelli et al. [16]
experimentally investigated the performance of a hybrid structure consisting of an “active” floating
breakwater and a WEC (named ShoWED); results showed that the hybrid structure can successfully
generate both electrical energy and coastal protection. Ning et al. [17] proposed a novel integrated
system of a vertical pile-restrained floating breakwater that operates under the principle of an
oscillating buoy WEC. The integrated system has a simple structural configuration. The experimental
study showed that acceptable wave attenuation performance and energy-conversion efficiency can be
obtained if the appropriate structure dimensions and power take-off (PTO) damping force are obtained.
It is understood that the floating breakwaters are often used in areas characterized by low wave energy.
Thus, the high performance of the device in energy conversion can determine the engineering interest.

Prompted by [17], the current study aims at theoretically revealing the relationship among
the reflection coefficient, transmission coefficient, and capture width ratio (CWR) of the WEC-type
breakwater. The hydrodynamics of the integrated system with the optimal PTO damping, fixed
breakwater, and free heave-motion breakwater are also compared. In addition, the effect of the PTO
damping on the hydrodynamic performance of the integrated device is evaluated. The present study
is conducted based on potential flow theory and the assumption of breakwater undergoing heave
motion with small response amplitude. The matching eigenfunction expansion method is used to
solve diffraction and radiation problems. The exciting force and hydrodynamic coefficients in heave
mode are computed based on [18]. The reflection coefficient Kr, transmission coefficient Kt, response
amplitude operator (RAO) ξ in heave mode, and CWR η can then be derived. Note that the equation
of Kr

2 + Kt
2 + η = 1 is satisfied based on the rule of energy conservation.

This study is organized as follows: Section 2 describes the formulas. Section 3 gives the
dimensional analysis. Section 4 presents the validation, results, and discussions. Section 5 provides
the conclusions.

2. Formulas

As shown in Figure 1, a pontoon-type structure (i.e., breakwater) with a width of B = 2a and a draft
d1 is situated in the water with a uniform depth h1. Similar to the description in [18], a 2-dimensional
Cartesian coordinate (o-xz) system is employed, and the center of origin is located at the cross-point of
the still water plane and medial axis of the breakwater. Correspondingly, the mass term and stiffness
term of the breakwater in heave mode can be expressed as M (=2ρad1) and K (=2ρga), where ρ denotes
the density of water, and g represents the gravitational acceleration. The structure is subjected to
a train of regular waves traveling in the positive x-direction. A is the incident wave amplitude, which
is the maximum distance of a water particle from its equilibrium position during a period, and L is
the wavelength, which is the distance that the wave travels during a wave period. The structure is
assumed to respond only in heave mode.
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Figure 1. Sketch of the floating structure with the power take-off (PTO) system (the structure 
restrained with the vertical pile moves in heave and the PTO system is used to capture wave energy, 
detailed description see [17]). 
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Ω3. The fluid motion in the whole domain can be described by the velocity potential: 

( ) ( ) i, , R e , tx z t x ez ωφ − = Φ   (1) 

where t denotes time, i = √−1, ω represents the angular frequency, Re [ ] denotes the real part of a 
complex expression and Φ is a complex spatial velocity potential, which satisfies Laplace’s equation: 

2 2

2 2
0

x z
∂ Φ ∂ Φ+ =
∂ ∂

 (2) 

With heave motion being the only concern, the velocity potential Φ can be expressed as: 

I D RΦ = Φ + Φ + Φ  (3) 

where ΦI is the incident velocity potential, ΦD denotes the diffraction potential, and ΦR represents the 
radiation potential due to heave motion. 

The spatial velocity potential for the incident waves can be written as: 

[ ]1
I

1

cosh ( )i

cosh( )ω
+

Φ = − ikxk z hgA e
kh

 (4) 

where k is the wavenumber, which satisfies the dispersion relation ω2 = gk tanh (kh1). 
Correspondingly, the wavelength L = 2π/k. 

For the wave diffraction problem, the governing equation is Laplace’s equation, and its 
boundary conditions for the diffracted spatial potential can be written as follows: 

2
D

D 0 ( 0, )
ω∂Φ

− Φ = = >
∂

z x a
z g

 (5) 

D
10 ( )

∂Φ
= = −

∂
z h

z
 (6) 

D I
1( , )

∂Φ ∂Φ
= − = − ≤

∂ ∂
z d x a

z z
 (7) 

D I
1( 0, )

∂Φ ∂Φ
= − − < < = ±

∂ ∂
d z x a

x x
 (8) 

D outgoing; finitevalue,Φ →∞x  (9) 

For the radiation problem, the body is forced to heave with the amplitude AR and the angular 
frequency ω; thus, the radiation potential ΦR can be written as: 

Figure 1. Sketch of the floating structure with the power take-off (PTO) system (the structure restrained
with the vertical pile moves in heave and the PTO system is used to capture wave energy, detailed
description see [17]).

As indicated in Figure 1, the fluid domain is divided into three subdomains—i.e., Ω1, Ω2, and Ω3.
The fluid motion in the whole domain can be described by the velocity potential:

φ(x, z, t) = Re
[
Φ(x, z)e−iωt

]
(1)

where t denotes time, i =
√
−1, ω represents the angular frequency, Re [ ] denotes the real part of

a complex expression and Φ is a complex spatial velocity potential, which satisfies Laplace’s equation:

∂2Φ
∂x2 +

∂2Φ
∂z2 = 0 (2)

With heave motion being the only concern, the velocity potential Φ can be expressed as:

Φ = ΦI + ΦD + ΦR (3)

where ΦI is the incident velocity potential, ΦD denotes the diffraction potential, and ΦR represents the
radiation potential due to heave motion.

The spatial velocity potential for the incident waves can be written as:

ΦI = −
igA
ω

cosh[k(z + h1)]

cosh(kh1)
eikx (4)

where k is the wavenumber, which satisfies the dispersion relation ω2 = gk tanh (kh1). Correspondingly,
the wavelength L = 2π/k.

For the wave diffraction problem, the governing equation is Laplace’s equation, and its boundary
conditions for the diffracted spatial potential can be written as follows:

∂ΦD

∂z
− ω2

g
ΦD = 0 (z = 0, x > |a|) (5)

∂ΦD

∂z
= 0 (z = −h1) (6)

∂ΦD

∂z
= −∂ΦI

∂z
(z = −d1, |x| ≤ a) (7)

∂ΦD

∂x
= −∂ΦI

∂x
(−d1 < z < 0, x = ±a) (8)

ΦDoutgoing; finite value, |x| → ∞ (9)
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For the radiation problem, the body is forced to heave with the amplitude AR and the angular
frequency ω; thus, the radiation potential ΦR can be written as:

ΦR = −iωAR ϕR(x, z) (10)

For the complex spatial velocity potential ϕR, the governing equation is Laplace equation, and its
boundary conditions can be written as follows:

∂ϕR

∂z
− ω2

g
ϕR = 0 (z = 0, x > |a|) (11)

∂ϕR

∂z
= 0 (z = −h1) (12)

∂ϕR

∂z
= 1 (z = −d1, |x| ≤ a) (13)

∂ϕR

∂x
= 0 (−d1 < z < 0, x = ±a) (14)

ϕR outgoing; finite value, |x| → ∞ (15)

The frequency-dependent expressions of the diffraction potential and the radiation potential can
be obtained from [18]. The vertical exciting force Fz, added mass µ, and radiation damping coefficient
λ in heave mode can then be computed using the following expressions, respectively:

Fz = ρiω
∫

S0

(ΦI + ΦD)ds (16)

µ = ρ
∫

S0

Re[ϕR]nzds (17)

λ = ρ
∫

S0

Im[ϕR]nzds (18)

where S0 is the bottom area of the structure, Re and Im denote the real and imaginary parts of a
complex number, and nz is the unit normal vector along the positive z-axis. The detailed expressions
of Fz, µ, and λ can be found in [18].

On the basis of the motion equation in the frequency domain, the heave response amplitude ζ can
be expressed as:

ζ =
Fz

−ω2(M + µ)− iω(λ + λPTO) + K
(19)

where λPTO denotes the PTO damping. For λPTO = 0 and λPTO = ∞, free heave-motion and
fixed types, can be defined respectively. The optimal PTO damping can be defined as λoptimal =√
(K/ω−ω(M + µ))2 + λ2 according to [19]. Correspondingly, the heave RAO is defined as ξ = ζ/A.

The incident wave power can be theoretically calculated as:

Pincident =
1
4

ρgA2ω

k

(
1 +

2h1k
sinh2h1k

)
(20)

The absorbed power of the device with the PTO damping λPTO can be written as (see [19]):

Pcapture =
1
2

λPTOω2 |Fz|2

(K−ω2(M + µ))
2 + (ω(λPTO + λ))2 (21)

The CWR η is an important indicator to evaluate the hydrodynamic efficiency of WECs and can
be calculated as η = Pcapture/Pincident.
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As indicators of breakwater performance, the reflection coefficient Kr and transmission coefficient
Kt can be written as:

Kt =

∣∣∣∣ ΦI + ΦD − iωζϕR

ΦI

∣∣∣∣
x=+∞

∣∣∣∣ (22)

Kr =

∣∣∣∣ ΦD − iωζϕR

ΦI

∣∣∣∣
x=−∞

∣∣∣∣ (23)

3. Dimensional Analysis

The dimensional parameters include wavenumber k, water density ρ, gravitational acceleration
g, water depth h1, incident wave amplitude A, breadth B, draft d1, PTO damping λPTO and heave
response amplitude in heave ζ. The objective parameter includes the outputted power Pcapture,
reflected wave amplitude Ar and transmitted wave amplitude At. The incident wave amplitude, water
depth, water density and gravitational acceleration are fixed parameters in this analysis. Pref denotes
an arbitrary reference power level and λref an arbitrary reference damping level. According to the
Buckingham's theorem [20], the dimensionless variables can be determined (details see Table 1). Here,
the incident wave power (i.e., Pincident) was chosen as Pref and the optimal PTO damping λoptimal as
λref [21]. Thus, the dimensionless outputted power can be expressed as the CWR η (=Pcapture/Pincident).
The reflected wave and the transmitted wave are dimensionalized by the incident wave amplitude
A. Correspondingly, the dimensionless reflected wave and transmitted wave can be expressed as the
reflection coefficient Kr (=Ar/A) and the transmission coefficient Kt (=At/A). Then, we can write the
CWR, reflection coefficient and transmission coefficient as function of the dimensionless wavenumber
kh1, relative breadth B/h1, relative draft d1/h1 and relative PTO damping λPTO/λoptimal.

η = f
(

B/h1, d1/h1, kh1, λPTO/λoptimal

)
Kr = f

(
B/h1, d1/h1, kh1, λPTO/λoptimal

)
Kt = f

(
B/h1, d1/h1, kh1, λPTO/λoptimal

) (24)

Table 1. Outline of dimensional analysis.

Dimensional Variables Physical Unit Nondimensional Variables

Water density, ρ kg·m−3 -
Gravitational acceleration, g m·s−2 -

Water depth, h1 m -
Incident wave amplitude, A m -

Wavenumber, k m–1 π1 = kh1
Breadth, B m π2 = B/h1
Draft, d1 m π3 = d1/h1

PTO damping, λPTO kg·s−1 π4 = λPTO/λref
Response amplitude in heave, ζ m π5 = ζ/A

Outputted power, Pcapture kg·m2·s−3 πa = Pcapture/Pref
Reflected wave amplitude, Ar m πb = Ar/A

Transmitted wave amplitude, At, m πc = At/A

4. Results and Discussion

4.1. Validation

First, the correctness of the present formulation for the reflection coefficient Kr and transmission
coefficient Kt is considered. Figure 2 shows the variations of Kr and Kt with the dimensionless
wavenumber kh1 obtained by the present analytical model and the corresponding numerical results [22].
The geometrical parameters are a = h1, d1 = 0.5h1, and h1 =1 m; λPTO = 10000 λoptimal is used to solve
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for the motion equation in the present study, in order to have the pontoon fixed as in [22]. The incident
wave amplitude is A = 0.1 m. The maximum difference between the present and reference results for
the reflection and transmission coefficients are 5% and 2.5%, respectively. As shown, a good agreement
can be achieved.
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Figure 2. Comparison of transmission coefficient Kr and reflection coefficient Kt obtained by the present
approach with the results of [22].

The accuracy of the heave RAO ξ is then verified against the numerical results obtained by
Isaacson et al. [23] for B = 3d1 and d1 = 0.2h1. Since the breakwater is constrained to heave motion,
but no PTO damping was considered in [23], the value chosen for the PTO damping λPTO is 0 in the
present study. Figure 3 shows the comparison of the heave RAO obtained using the present approach
with the results obtained in [23].The maximum difference between the present and reference results
for the heave RAO is 4.5%. It can be seen that a good agreement can be obtained.
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Lastly, the CWR η is verified by using the relation of Kt
2 + Kr

2 + η = 1 [24]. The detailed validation
is described in Figure 4. As shown, the aforementioned condition is accurately satisfied.
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4.2. Comparison of the Different Breakwater Systems

From the standpoint of the WEC, the optimal PTO damping is often used to assess the
performance of the devices. In the Sections 4.2–4.4 the relationships between the reflection coefficient
Kr, transmission coefficient Kt, and CWR η for the proposed integrated device with the optimal
PTO damping λoptimal are critical in determining the frequency region in which the acceptable wave
attenuation performance and the efficient wave energy conversion can be obtained.

To illustrate the features of the integrated system with the optimal PTO damping, the
hydrodynamic performance corresponding to the breakwater with the optimal PTO damping (case 1),
free heave-motion breakwater (case 2), and fixed breakwater (case 3) are compared. The geometrical
parameters are d1 = 2.5 m, B = 8 m, and h1 = 10 m (i.e., B/h1 = 0.8 and d1/h1 = 0.25). The incident
wave amplitude is A = 1.0 m. Figures 4–6 present a comparison of the three cases with respect to the
reflection coefficient Kr, transmission coefficient Kt, and heave RAO ξ, respectively.

As shown in Figure 5, the reflection coefficient of fixed breakwater is larger than those of the
others. Figure 6 shows that the transmission coefficient of the breakwater with the optimal PTO
damping is near to that of the fixed breakwater; they are markedly smaller than that of the free
heave-motion breakwater. The heave RAO of the fixed breakwater is null; thus, it is not plotted
in Figure 7. As intuitively expected, the heave RAO of the PTO damping-controlled breakwater is
markedly smaller than that of the free heave-motion breakwater, which may be beneficial to improve
the stability of the breakwater. By introducing the PTO damping, the breakwater performance can be
improved significantly and the heave RAO can be reduced.

Figure 4 shows the variations of Kt, Kr, η, and Kt
2 + Kr

2 + η with the dimensionless wavenumber
kh1 for the breakwater with the optimal PTO damping. The curve of η exhibits a parabolic trend
and reaches the maximum (i.e., ηmax = 50%) at resonance. Interestingly, there exists a cross-point
for the three curves at which η is 50%, and both Kr and Kt are 0.5. This observation indicates that
25% of the incident wave energy is reflected toward the left, 25% is transmitted toward the right,
and the remaining 50% is absorbed. This is a consequence of wave energy theory (see [19] (p. 198)).
The condition Kt < 0.5 shall be satisfied for a qualified breakwater [25]. Therefore, the ideal frequency
region with a lower threshold corresponding to the natural frequency is of interest for the integrated
system with the optimal PTO damping. Since the study is conducted under the context of small
amplitude assumption within linear potential theory neglecting viscous and nonlinear effects, the
heave RAO of the device may not be totally in accordance with the corresponding experimental results.
From the literature, it can be seen that the whole variation trends of the hydrodynamic coefficients
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corresponding to analytical and experimental results are similar [23]. Thus, the analytical results may
have directive significance for the practical engineering.
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Figure 5. Variations of the reflection coefficient Kr with the dimensionless wavenumber kh1 for cases 1–3.
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4.3. Effect of the Relative Breadth B/h1

The breadth and the draft of the pontoon are important parameters to design such a system.
In Sections 4.3 and 4.4, the effects of the dimensionless breadth (i.e., relative breadth B/h1) and
dimensionless draft (i.e., relative draft d1/h1) on the hydrodynamic properties of the system are
conducted, respectively. Figures 8–11 show the variations of the reflection coefficient Kr, transmission
coefficient Kt, CWR η and heave RAO ξ with the dimensionless wavenumber kh1 for different relative
breadths B/h1 (=0.2, 0.5, 0.8, 1.1 and 1.4). The other geometrical parameters are d1 = 2.5 m and h1 = 10 m
(i.e., d1/h1 = 0.25). The incident wave amplitude A is 1.0 m. Optimal damping is used in this subsection.
From Figures 8 and 9, it can be seen that, for the pontoon-type floating breakwater, the wider the
breadth of the breakwater, the more effective is the wave barrier [17,25]. For the CWR, the maximum
CWR does not vary with the relative draft. The maximum heave RAO obviously increases with the
decreasing of the relative breadth. The dimensionless wavenumber kh1 corresponding to the maximum
heave RAO (or the CWR) decreases with the increasing of the relative breadth. It is due to the fact that
the natural frequencies of the pontoon decrease with the increasing of the relative breadth.

Energies 2017, 10, 712 9 of 16 

 

conducted, respectively. Figures 8–11 show the variations of the reflection coefficient Kr, transmission 
coefficient Kt, CWR η and heave RAO ξ with the dimensionless wavenumber kh1 for different relative 
breadths B/h1 (=0.2, 0.5, 0.8, 1.1 and 1.4). The other geometrical parameters are d1 = 2.5 m and h1 = 10 m 
(i.e., d1/h1 = 0.25). The incident wave amplitude A is 1.0 m. Optimal damping is used in this subsection. 
From Figures 8 and 9, it can be seen that, for the pontoon-type floating breakwater, the wider the 
breadth of the breakwater, the more effective is the wave barrier [17,25]. For the CWR, the maximum 
CWR does not vary with the relative draft. The maximum heave RAO obviously increases with the 
decreasing of the relative breadth. The dimensionless wavenumber kh1 corresponding to the 
maximum heave RAO (or the CWR) decreases with the increasing of the relative breadth. It is due to 
the fact that the natural frequencies of the pontoon decrease with the increasing of the relative breadth. 

 

Figure 8. Variations of the reflection coefficient Kr with the dimensionless wavenumber kh1 for cases of 
relative draft d1/h1 = 0.25 and PTO damping λPTO = λoptimal (λoptimal refers to the optimal PTO 
damping). 

 

Figure 9. Variations of the transmission coefficient Kt with the dimensionless wavenumber kh1 for 
cases of d1/h1 = 0.25 and λPTO = λoptimal. 

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

re
fl

ec
ti

on
 c

oe
ff

ic
ie

nt
 K

r

dimensionless wavenumber kh
1

 B/h
1
 = 0.2

 B/h
1
 = 0.5

 B/h
1
 = 0.8

 B/h
1
 = 1.1

 B/h
1
 = 1.4

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

dimensionless wavenumber kh
1

 B/h
1
 = 0.2

 B/h
1
 = 0.5

 B/h
1
 = 0.8

 B/h
1
 = 1.1

 B/h
1
 = 1.4

tr
an

sm
is

si
on

 c
oe

ff
ic

ie
nt

 K
t

Figure 8. Variations of the reflection coefficient Kr with the dimensionless wavenumber kh1 for
cases of relative draft d1/h1 = 0.25 and PTO damping λPTO = λoptimal (λoptimal refers to the optimal
PTO damping).
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Figure 9. Variations of the transmission coefficient Kt with the dimensionless wavenumber kh1 for
cases of d1/h1 = 0.25 and λPTO = λoptimal.
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Figure 10. Variations of the CWR η with the dimensionless wavenumber kh1 for cases of d1/h1 = 0.25
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Figure 11. Variations of the heave RAO ξ with the dimensionless wavenumber kh1 for cases of
d1/h1 = 0.25 and λPTO = λoptimal.

4.4. Effect of the Relative Draft d1/h1

Figures 12–15 show the variations of the reflection coefficient Kr, transmission coefficient Kt, CWR
η and heave RAO ξ with the dimensionless wavenumber kh1 for different relative drafts d1/h1 = 0.05,
0.15, 0.25, 0.35 and 0.45. The other geometrical parameters are B = 8 m and h1 = 10 m (i.e., B/h1 = 0.8).
The incident wave amplitude A is 1.0 m. From Figures 12 and 13, it can be seen that, the deeper the
draft of the breakwater, the more effective is the wave barrier. For the CWR, the effective frequency
bandwidth (η > 20%) narrows with an increase in the draft. However, the maximum CWR does not
vary with the relative draft. The maximum heave RAO increases with the increasing of the relative
draft. Note that, since the natural frequencies of the pontoon decreases with the increasing of relative
draft, the kh1 corresponding to the maximum CWR and heave RAO decreases accordingly.
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Figure 12. Variations of the reflection coefficient Kr with the dimensionless wavenumber kh1 for cases
of relative breadth B/h1 = 0.8 and λPTO = λoptimal.
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Figure 13. Variations of the transmission coefficient Kt with the dimensionless wavenumber kh1 for
cases of B/h1 = 0.8 and λPTO = λoptimal.
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Figure 14. Variations of the CWR η with the dimensionless wavenumber kh1 for cases of B/h1 = 0.8 and
λPTO = λoptimal.



Energies 2017, 10, 712 12 of 16Energies 2017, 10, 712 12 of 16 

 

 

Figure 15. Variations of the heave RAO ξ with the dimensionless wavenumber kh1 for cases of B/h1 = 
0.8 and λPTO = λoptimal. 

4.5. Effect of the PTO Damping 

The integrated system with the optimal PTO damping, which may lead to the optimization of 
the CWR, is investigated in Sections 4.2–4.4. Given that both the wave attenuation performance and 
wave energy extraction efficiency shall be considered simultaneously for the integrated system, the 
effect of the PTO damping on the reflection coefficient Kr, transmission coefficient Kt, and CWR η are 
considered. The geometrical parameters are d1 = 2.5 m, B = 8 m and h1 = 10 m (i.e., d1/h1 = 0.25, B/h1 = 
0.8). The incident wave amplitude A is 1.0 m. The values selected for the tested PTO dampings are 
λPTO = 0.8λoptimal, 1.0λoptimal, 1.5λoptimal, 2.0λoptimal, 5.0λoptimal, and λPTO = 10000λoptimal (i.e., the case of the 
fixed breakwater). 

Figure 16 shows the variations of the reflection coefficient Kr with the dimensionless 
wavenumber kh1. As observed, the reflection coefficient increases with an increase in the PTO 
damping. Figures 17 and 18 show the variations of the transmission coefficient and heave RAO 
against kh1. With an increase in the PTO damping, the heave RAO decreases (referring to Figure 18); 
the transmission coefficient increases in the lower frequencies and, differently, the trend of 
decreasing firstly and then increasing was found in the middle frequency region (i.e., 1.3 < kh1 < 2.7). 
These findings indicate that the wave attenuation performance can be superior to the fixed 
breakwater by proper adjustment of the PTO damping. Figure 19 shows the variations of the CWR η 
with kh1. Since the natural frequency ωnat of the pontoon in heave mode can be expressed as ωnat 

=ට ௄ெାఓ, changes in the PTO damping do not affect the natural frequency of the system [26]. Thus, the 

locations (i.e., kh1) of the CWR peak value are similar for the different cases. With an increase in the 
PTO damping, the CWR first increases and then decreases. Notably, the CWR corresponding to the 
PTO damping of λPTO = 1.5λoptimal (or λPTO = 2λoptimal) is only slightly inferior to the case with the optimal 
PTO damping in the range of 1.3 < kh1 < 2.7; under this condition, the transmission coefficient of the 
former is superior to the latter. Specifically, considering the conditions Kt < 0.5 and η > 20%, the 
available frequency region is 1.925 < kh1 < 3.075 when λPTO = 1λoptimal; 1.723 < kh1 < 3.02 when λPTO = 
1.5λoptimal, and 1.625 < kh1 < 2.92 when λPTO = 2λoptimal. That is, the effective frequency bandwidth is 
broadened when λPTO = 1.5–2λoptimal. 

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

dimensionless wavenumber kh
1

he
av

e 
R

A
O

 ξ

 d
1
/h

1
 = 0.05

 d
1
/h

1
 = 0.15

 d
1
/h

1
 = 0.25

 d
1
/h

1
 = 0.35

 d
1
/h

1
 = 0.45

Figure 15. Variations of the heave RAO ξ with the dimensionless wavenumber kh1 for cases of B/h1 = 0.8
and λPTO = λoptimal.

4.5. Effect of the PTO Damping

The integrated system with the optimal PTO damping, which may lead to the optimization of
the CWR, is investigated in Sections 4.2–4.4. Given that both the wave attenuation performance and
wave energy extraction efficiency shall be considered simultaneously for the integrated system, the
effect of the PTO damping on the reflection coefficient Kr, transmission coefficient Kt, and CWR η

are considered. The geometrical parameters are d1 = 2.5 m, B = 8 m and h1 = 10 m (i.e., d1/h1 = 0.25,
B/h1 = 0.8). The incident wave amplitude A is 1.0 m. The values selected for the tested PTO dampings
are λPTO = 0.8λoptimal, 1.0λoptimal, 1.5λoptimal, 2.0λoptimal, 5.0λoptimal, and λPTO = 10000λoptimal (i.e.,
the case of the fixed breakwater).

Figure 16 shows the variations of the reflection coefficient Kr with the dimensionless wavenumber
kh1. As observed, the reflection coefficient increases with an increase in the PTO damping. Figures 17
and 18 show the variations of the transmission coefficient and heave RAO against kh1. With an increase
in the PTO damping, the heave RAO decreases (referring to Figure 18); the transmission coefficient
increases in the lower frequencies and, differently, the trend of decreasing firstly and then increasing
was found in the middle frequency region (i.e., 1.3 < kh1 < 2.7). These findings indicate that the wave
attenuation performance can be superior to the fixed breakwater by proper adjustment of the PTO
damping. Figure 19 shows the variations of the CWR η with kh1. Since the natural frequency ωnat

of the pontoon in heave mode can be expressed as ωnat =
√

K
M+µ , changes in the PTO damping do

not affect the natural frequency of the system [26]. Thus, the locations (i.e., kh1) of the CWR peak
value are similar for the different cases. With an increase in the PTO damping, the CWR first increases
and then decreases. Notably, the CWR corresponding to the PTO damping of λPTO = 1.5λoptimal
(or λPTO = 2λoptimal) is only slightly inferior to the case with the optimal PTO damping in the range
of 1.3 < kh1 < 2.7; under this condition, the transmission coefficient of the former is superior to
the latter. Specifically, considering the conditions Kt < 0.5 and η > 20%, the available frequency
region is 1.925 < kh1 < 3.075 when λPTO = 1λoptimal; 1.723 < kh1 < 3.02 when λPTO = 1.5λoptimal, and
1.625 < kh1 < 2.92 when λPTO = 2λoptimal. That is, the effective frequency bandwidth is broadened
when λPTO = 1.5–2λoptimal.
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Figure 17. Variations of the transmission coefficient Kt with the dimensionless wavenumber kh1 for
cases of d1/h1 = 0.25 and B/h1 = 0.8.
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Figure 18. Variations of the heave RAO ξ with the dimensionless wavenumber kh1 for cases of
d1/h1 = 0.25 and B/h1 = 0.8.
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Figure 19. Variations of the CWR η with the dimensionless wavenumber kh1 for cases of d1/h1 = 0.25
and B/h1 = 0.8.

5. Conclusions

The hydrodynamic properties of a WEC-type floating breakwater system is investigated
theoretically based on linear potential flow theory. The breakwater is constrained in heave motion.
The linear PTO damping is used to calculate the absorbed power. The hydrodynamic properties of the
breakwater with the optimal PTO damping, fixed breakwater, and free heave-motion breakwater are
compared. The effect of the PTO damping on the performance of the integrated system is particularly
evaluated in this study.

The following conclusions can be drawn from this study:

(1) Compared with that of the free heave-motion breakwater, the wave attenuation performance of
the breakwater is improved for the proposed integrated system.

(2) For the system with the optimal PTO damping, the low threshold of the practical frequency
region corresponds to the natural frequency.

(3) With a decrease in the heave RAO of the breakwater, the transmission coefficient increases in
the lower-frequency region, although a decreasing trend is initially observed, followed by an
increasing trend in the middle-frequency region.

(4) Due to the changing of the natural frequency, the effect of the relative breadth B/h1 and relative
draft d1/h1 of the pontoon affect the performance of the system significantly. This shall be paid
attention while such a system is designed.

(5) The breakwater with the PTO damping of λPTO = 1.5–2λoptimal may give a broader frequency
bandwidth with Kt < 0.5 and η > 20%. Fortunately, the transmission coefficient corresponding to
the case with λPTO = 2λoptimal is slightly superior to that of the fixed breakwater.

(6) The proposed system is theoretically proved to produce power effectively and, at the same time,
the function of coastal protection can be comparable to that of the fixed breakwater.

From the point of engineering application, the proposed scheme is more applicable for the
pile-restrained floating breakwater, for which the pontoon moves in heave motion under the control of
the vertical pile [17,23]. Heave-type floating bodies are often used to capture wave energy [24]. Thus,
the effects of the non-heave motions are not considered. This preliminary investigation is performed
under frame of linear potential theory in frequency domain. The linear damping is adopted to calculate
the produced power and conduct the parametric study. In practice, the nonlinear PTO damping (such
as Coulomb damping) is often used for the hydraulic PTO system [27]. Despite this, the theoretical
results predict the potential application. We can design the breakwater system based on the sea state
(such as dominating wave length L) at the deployment site. It is well understood that the disadvantage



Energies 2017, 10, 712 15 of 16

of the pontoon type breakwater is the bad breakwater performance in long waves [23]. In the future
research, we will focus on how to improve the wave attenuation performance of the proposed system.
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