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Abstract: This article presents a self-balanced multistage DC-DC step-up converter for photovoltaic
applications. The proposed converter topology is designed for unidirectional power transfer and
provides a doable solution for photovoltaic applications where voltage is required to be stepped up
without magnetic components (transformer-less and inductor-less). The output voltage obtained from
renewable sources will be low and must be stepped up by using a DC-DC converter for photovoltaic
applications. 2 K diodes and 2 K capacitors along with two semiconductor control switch are used in
the K-stage proposed converter to obtain an output voltage which is (K + 1) times the input voltage.
The conspicuous features of proposed topology are: (i) magnetic component free (transformer-less
and inductor-less); (ii) continuous input current; (iii) low voltage rating semiconductor devices
and capacitors; (iv) modularity; (v) easy to add a higher number of levels to increase voltage gain;
(vi) only two control switches with alternating operation and simple control. The proposed converter
is compared with recently described existing transformer-less and inductor-less power converters in
term of voltage gain, number of devices and cost. The application of the proposed circuit is discussed
in detail. The proposed converter has been designed with a rated power of 60 W, input voltage is
24 V, output voltage is 100 V and switching frequency is 100 kHz. The performance of the converter
is verified through experimental and simulation results.

Keywords: DC-DC converter; self-biased; magnetic component free; multistage; step-up;
photovoltaic application

1. Introduction

Renewable energy resources are becoming popular and trendy with the increase in demand
and cost of energy. The proper utilization of energy resources is one of the most important issues of
the present century. There are various renewable energy resources, including solar, tidal, wind, bio,
nuclear and geothermal, with zero pollution emissions. Solar energy is a free, inexhaustible source
of energy and is increasingly competitive with other energy sources. This energy is utilized with the
help of arrays, consisting of a number of solar panels, connected in series [1–3]. In the past, various
PV system methods or structures were adopted to minimize the cost to efficiency ratio. In [4–8],
a Photovoltaic Central Inverter Structure (PV-CIS) is employed to feed photovoltaic energy to the
electric grid. In PV-CIS PV lines are arranged in parallel and connected to one central inverter as
shown in Figure 1. The drawback of CIS are: (i) a large number of panels are required which increases
the cost of system; (ii) more number of DC cables with high-voltage rating are needed; (iii) losses in
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the line; (iv) loss of power due to module mismatch; (v) common Maximum Power Point Tracking
(MPPT) is used; (vi) system reliability depends on the single inverter.
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connected PV panels as shown in Figure 2. All the PV lines are connected to separate inverters via a 
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Figure 2. Photovoltaic String Inverter Structure (PV-SIS) for transfer of PV energy to the electric grid. 

In [4–8], Photovoltaic AC Module Structure (PV-ACMS) is discussed to fed photovoltaic energy 
to the electric grid and it provides a viable solution to overcome the drawbacks of PV-CIS and 
PV-SIS. In PV-ACMS a single photovoltaic panel is connected to the electric grid via an inverter as 
shown in Figure 3a. The drawbacks of PV-ACMS are: (i) it requires several module inverters which 

Figure 1. Photovoltaic Central Inverter Structure (PV-CIS) for transfer of PV energy to an electric grid.

In [4–8], a Photovoltaic String Inverter structure (PV-SIS) is employed to feed photovoltaic energy
to the electric grid. In PV-SIS, several PV lines are used, which are made up of several series- connected
PV panels as shown in Figure 2. All the PV lines are connected to separate inverters via a DC-DC
converter and the inverter outputs are connected in parallel and feed into the electric grid. The
drawbacks of the PV-SIS system are: (i) it requires a large number of panels to design a several PV line;
(ii) a large number of converters are required to feed the grid; (iii) the cost is high due to the separate
MPPT and complex control circuitry is required to synchronize all the inverters.
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Figure 2. Photovoltaic String Inverter Structure (PV-SIS) for transfer of PV energy to the electric grid.

In [4–8], Photovoltaic AC Module Structure (PV-ACMS) is discussed to fed photovoltaic energy
to the electric grid and it provides a viable solution to overcome the drawbacks of PV-CIS and PV-SIS.
In PV-ACMS a single photovoltaic panel is connected to the electric grid via an inverter as shown in
Figure 3a. The drawbacks of PV-ACMS are: (i) it requires several module inverters which increase the
cost of the system; (ii) separate MPPT is needed for each panel; (iii) the overall efficiency is low. In [4–8],
Photovoltaic Multi-String Inverter Structure (PV-MSIS) is discussed to overcome the drawback of
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PV-CIS, PV-SIS and PV-SIS structures. In PV-MSIS several PV panels are connected to a single inverter
connected via several DC-DC converters as shown in Figure 3b. This structure combines the features
of PV-SIS and PV-ACMS. The drawback of the PV-MSIS concept is: (i) it required several DC-DC
converters to transfer energy to the inverter; (ii) high cost due to the greater number of converters and
separate MPPT.
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the voltage conversion of the converter [16], so the traditional converters cannot be used where the 
required conversion ratio is four or more [16]. Furthermore, to achieve a high conversion ratio by 
using large duty cycle compromises the utilization of high frequency for Pulse Width Modulation 
(PWM) because of semiconductor control devices’ inherent switching delay. Unluckily, a large 
reactive network follows the limited switching frequency which is employed to protect from the 
ripple condition of voltage and current [17]. The traditional buck-boost converter is not reliable due 
to its discontinuous input current, which results in low utilization of the input source [13,15]. By 
increasing the switching frequency of the converter, the problem of leakage resistance for certain 
values of ripple can be overcome. The finite switching time in a normal power device limits the 
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Structure (PV-MSIS) for transfer of PV energy to the electric grid.

The output obtained from a photovoltaic cell/array is usually low, so before feeding this voltage
to the inverter for practical application purposes, it must be stepped up using a conventional DC-DC
boost converter [1–15]. With the increase in the duty-cycle of switch and leakage resistance of inductors,
the performance of the converter degrades. Due to these practical problems, conventional DC-DC
converters are unable to provide doable solutions for step-up voltage applications [15]. In theory, when
a duty cycle approaches 100%, an infinite voltage conversion ratio is achieved with a conventional
boost converter, but in practice, the inductor leakage resistance of the inductor limits the voltage
conversion of the converter [16], so the traditional converters cannot be used where the required
conversion ratio is four or more [16]. Furthermore, to achieve a high conversion ratio by using large
duty cycle compromises the utilization of high frequency for Pulse Width Modulation (PWM) because
of semiconductor control devices’ inherent switching delay. Unluckily, a large reactive network follows
the limited switching frequency which is employed to protect from the ripple condition of voltage and
current [17]. The traditional buck-boost converter is not reliable due to its discontinuous input current,
which results in low utilization of the input source [13,15]. By increasing the switching frequency of
the converter, the problem of leakage resistance for certain values of ripple can be overcome. The finite
switching time in a normal power device limits the switching frequency if the duty ratio is either too
high or too small, so in order to abolish the above problems and simultaneously acquire essential high
voltage, isolated converters can be engaged. Many isolated and non-isolated converter topologies
have proposed over time, which make use of inductors, coupled inductors and transformers [16–27].
The high voltage stress occurring due to the transformer leakage inductance leads to switching losses
and electromagnetic interference (EMI) problems, resulting in the reduced efficiency of conventional
converters. Hard switching converters are inconvenient to use for high voltage applications due
to their circuit complexity, higher voltage stress across the switch and the increased cost of the
converter. Hence, for isolated topologies the size, weight and losses of power transformers are
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limiting factors. Recently, various combinations of coupled inductors, voltage multipliers or switched
capacitor multipliers [23–35] along with a switched inductor (SI), switched capacitor (SC), voltage lift
switched inductor (VLSI) and modified VLSI principles were used to accomplish the necessity [15,26].
Figure 4a–c shows the recent SI, VLSI and modified VLSI inductive networks. For acquiring a high
boost ratio, a cascaded approach is introduced. To design a Cascaded Boost Converter (CBC), a number
of inductors are essential, which is the most complex part. In addition, losses and increased current
ripple prove to be a barrier to achieve a high conversion ratio and better efficiency [36–38]. With an
objective of acquiring a high voltage gain just by using a single switch, the Quadratic Boost Converter
(QBC) was proposed, though, in a QBC, higher voltage rating switches are required with higher
RDS-ON, as voltage stress raised across the switch is equal to the output voltage [39–41]. Multilevel
converters provide a suitable solution for power conversion because of the low voltage stress across
each device [42]. High voltage is achieved by multilevel DC-DC converters using capacitors and
diode circuitry at the output end and the output voltage level can be increased without actually
disturbing the actual circuit. By varying the number of output levels and duty cycle, the voltage
gain of multilevel converters can be varied [43,44]. For conventional multilevel converters, designing
magnetic components like inductors is a complex task, which also induces electromagnetic emission
noise. Other than these issues the presence of inductors and transformers in the power circuit degrades
the integration capability and increases the cost, weight and size of the converters. Switched Capacitor
(SC) power circuits provide good integration ability due to their small volume and weight, since
magnetic components like transformers and inductors is not needed to design a SC converter [33].
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In this article, a new magnetic component-free (transformer-less and inductor-less) DC-DC
converter is proposed to overcome the drawbacks of PV-CIS, PV-SIS, PV-ACMS, PV-MSIS and the
above discussed converter topology. The proposed converter provides a viable solution for existing
photovoltaic application systems where voltage must be stepped up without magnetic components
before transferring energy to a multilevel-inverter. The single proposed converter is sufficient to
transfer energy to a multilevel inverter as shown in Figure 5.

The proposed photovoltaic system (PV System) consists of PV modules, the proposed DC-DC
converter, battery and the multilevel inverter (MLI) which converts the battery/proposed DC-DC
converter voltage to AC voltage to power AC loads/feed in the electric grid. Some amount of power
is lost during the conversion of photovoltaic energy to electric energy. The PV device maximum
output power (product of voltage and current) is described by the Maximum Power Point (MPP) and
it is also depends on the environmental conditions (generally on temperature and light conditions).
A Maximum Power Point Tracker is compulsory to ensure the maximum power output (Pmax) of a
solar PV device. The Maximum Power Point Tracker can be used to adjust its input voltage to utilize
the maximum photovoltaic output power and then transform this power to supply the varying voltage
requirements. When the PV voltage is increased the current will ultimately decrease, and when the PV
current is increased the voltage will ultimately decrease. Depending on parameters like irradiance and
temperature the MPP of the I-V curve of a PV module changes dynamically. Therefore, the MPP needs
to be located by a tracking algorithm as it is not known beforehand.
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Figure 5. Proposed multistage self-balanced and magnetic component-free DC-DC converter in a
photovoltaic system for the transfer of photovoltaic energy to a DC load, grid or motor.

To achieve the maximum power transfer from the PV module to the load it is necessary to match
the load resistance RL to the best possible output resistance of the PV module RPV (Rmpp = Vmpp/Impp).
Characteristic power-voltage and current-voltage graphs or curves are shown in Figure 6a.
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Figure 6. (a) Power- voltage or current- voltage graphs of a photovoltaic system; (b) MPPT when
∆P = 0 and ∆V = 0; (c) MPPT when ∆P < 0 and ∆V < 0; (d) MPPT when ∆P > 0 and ∆V > 0; (e) MPPT
when ∆P > 0 and ∆V < 0; (f) MPPT when ∆P < 0 and ∆V > 0.
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The output power of PV module will be zero when the photovoltaic current (IPV) is equal to the
short circuit current (ISC) or the photovoltaic voltage (VPV) is equal to the open circuit voltage (VOC).
Thus, it is possible to track the maximum power point (MPP) of a photovoltaic cell by regulating the
operating voltage of VPV. In [45] Maximum Power Point Tracking is discussed for a reconfigurable
switched-capacitor converter and in [46] a perturbation and observation (P&O) algorithm is discussed
for DC-DC converters connected to photovoltaic generators. The concept to control power of a
multistage magnetic component-free DC-DC converter is explained in Figure 6b–f. Thus, to regulate
the operating voltage VPV, the ON time of the capacitor and number of stages (if the structure is
reconfigurable) are two controlled parameters in the proposed system, therefore it forces the MPPT
charge controller to extract the maximum power PV module to operate at a voltage close to the
maximum power point which causes it to draw the maximum available power from the PV module.

The proposed converter is also suitable for the DC link application in DC-AC systems where
capacitor voltage balancing is the main challenge. The proposed converter also provides a viable
solution for low power applications, since inductors and transformers are not required to design the
proposed converter.

2. Recent Transformer-Less and Inductor-Less DC-DC Converters

In this section recent transformer-less and inductor-less DC-DC converter power circuit topologies
and their drawbacks are discussed in detail. Various multilevel DC-DC converters and switched
capacitor topologies without inductor were recently addressed in the literature.

2.1. Series-Parallel Switched Capacitor (SC) Converter

In [47–49], a series-parallel switched capacitor (SPSC or series-parallel SC) converter using only
control switching elements and capacitors was proposed. In Figure 7a three-level series-parallel SC
converter is depicted. The operation of this topology is simple and divided into only two modes (two
switching states only). All the switches are controlled in such a way that all the capacitors are charged
in series and discharged in parallel. The conversion ratio of an N-level series-parallel SC converter
is 1/N (in step-down mode) and N times (in step-up mode). More than 90% efficiency is reported in
the literature.
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However the series-parallel SC converter has following drawbacks:

1. Difficult to change the switching state of the converter due to the several switching elements.
2. Unequal voltage across switches, thus power switches of various ratings are required.
3. Series-parallel SC is bidirectional, but it is not possible to control the power flow. It depends on

the voltages at the input and output DC buses.
4. If switching is not properly controlled, it may instigate a charge unbalance situation among the

converter capacitors.
5. Non-modularity, since a large number of switches, gate drivers and diodes are required and the

number of devices increases with the number of levels. Due to this a series parallel converter is
large in size and has high cost.

2.2. Flying Capacitor Multilevel DC-DC Converter (FCMDC)

In [49–51], flying capacitor multilevel DC-DC converter (FCMDC) is proposed. Figure 7b depicts
the power circuit of a three–level FCMDC. The conversion ratio of an N-level FCNDC is 1/N (in
step-down mode) and N times (in step-up mode). FCMDC is a bidirectional converter with efficiency
higher than 95%. The voltage stress of switches is also equal and thus requires same rating of the
switching devices. Nevertheless FCMDC has the following drawbacks:

1. A large number of transistors and capacitors is required (2N the number of switches and N
number of capacitors are required to design an N-level FCMDC), hence this converter is large in
size and also has a high cost.

2. Difficult to extend the power circuit to increase the number of stages to change the output
conversion ratio since the converter does not have a modular structure.

3. A complicated switching scheme is required to operate the converter.
4. FCMDC is inefficient at high switching frequency when the ON time is comparable to the rise

and fall time of the switches since; to transfer energy from the input source to the capacitors a
very small time frame is allowed.

5. Utilization of components is less. It is not possible to control the power circuit if any of the
switches fails.

2.3. Magnetic-Less Multilevel DC-DC Converter (MMDC)

In [52], a magnetic-less multilevel DC-DC converter (MMDC) is proposed by connecting two
transistor and one capacitor switching cells (modular block) in a mesh pattern. Figure 8 depicts the
power circuitry of the three-level MMDC. The conversion ratio of an N-Level MMDCC is 1/N (in
step-down mode) and N times (in step-up mode). The voltage stress of each transistor of the switching
cells is the same and equal to Vin and also it is independent of the duty cycle and conversion ratio of
the converter. However, the following are the drawbacks of the MMDC:

1. A very large number of switching devices and capacitors are required to design an MMDC
N (N + 1) switches, N (N + 1) diodes and 0.5N (N + 1) capacitors are required to design the
N-Level MMDCC.

2. It is difficult to manage direction of power flow of the converter due to the greater number of
transistors present in the conducting path.

3. The power flow of the converter is also depends on the voltages at the input and output DC
buses, thus it is not a good option for the applications where the source voltage may vary.
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2.4. Fibonacci DC-DC Converter

In [53], a Fibonacci DC-DC converter is proposed using capacitors and switching device circuitry.
The voltage conversion ratio of the converter follows the well-known Fibonacci series. Figure 9 depicts
the power circuitry of the three stage-Fibonacci converter. High voltage is achieved but it still requires
a large number of switching devices and capacitors. The following are the drawbacks of the Fibonacci
DC-DC converter:

1. A large number of control switches are required to design the converter (3N + 1 number of control
switches are required to design an N-stage converter)

2. The Fibonacci DC-DC converter follows the Fibonacci series and thus it is not possible to achieve
voltage conversion ratios like 2, 4 . . . (which are not present in the Fibonacci converter)

3. It is not capable of transferring power in both directions.
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2.5. Modified Step-Up DC-DC Converter (Switch Mode DC-DC Converter)

In [54], a modified step-up DC-DC converter (switch mode DC-DC converter) is proposed which
has continuous input current capability. Figure 10 depicts the switch mode DC-DC converter. Its power
circuitry is divided into two parallel parts. A detailed study about the mode of operation and capacitor
state is given in Table 1. The operation of the proposed converter is simple and the conversion ratio of
the converter is adjusted by varying the duty cycle. In addition, the continuous input current from low
voltage input sources reduces the EMI problem.
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2.6. Switched Capacitor DC-DC Converter 

In [55], a new switched capacitor DC-DC converter with low ripple input current is proposed. 
Figure 11 depicts the power circuit of the converter. The low ripple and continuous input current 
help to reduce EMI of the circuit. However this circuit has no provision to increase the voltage 
conversion ratio. 

 

Figure 11. Switched Capacitor DC-DC Converter. 

2.7. Multilevel Modular Capacitor Clamped DC-DC Converter (MMCCC) 

Figure 10. Modified Step-up DC-DC Converter (Switch Mode DC-DC Converter).

Table 1. Mode of operation and state of capacitors of Modified Step-up DC-DC Converter.

Operation
Mode

Switches State Capacitors of Left
Part (Section-I)

Capacitors of Right
Part (Section-II)S1 S2 S3 S4 S5 S6 S7 S8

Mode-I OFF ON OFF ON ON OFF ON OFF Charging Discharging
Mode-II OFF OFF OFF OFF ON OFF ON OFF No action Discharging
Mode-III ON OFF ON OFF OFF ON OFF ON Discharging Charging
Mode-III ON OFF ON OFF OFF OFF OFF OFF Discharging No Action

However this converter has the following drawbacks:

1. A large number of switching devices is required.
2. It introduces high switching losses and thus the efficiency of the converter is less.
3. Moreover, there is no extension of the circuit to increase the voltage conversion ratio.
4. This converter is not suitable for high power high voltage applications due to the lower voltage

conversion ratio.

2.6. Switched Capacitor DC-DC Converter

In [55], a new switched capacitor DC-DC converter with low ripple input current is proposed.
Figure 11 depicts the power circuit of the converter. The low ripple and continuous input current
help to reduce EMI of the circuit. However this circuit has no provision to increase the voltage
conversion ratio.
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2.7. Multilevel Modular Capacitor Clamped DC-DC Converter (MMCCC)

In [56], a multilevel modular capacitor clamped DC-DC converter (MMCCC) is proposed.
Figure 12 depicts the power circuit of the MMCCC for five levels. The following are the drawbacks of
the MMCCC:

1. Using this topology a high voltage conversion ratio is achieved, but it requires a large number of
switching devices and capacitors.

2. The voltage stress across switches of the converter is high. For an N level MMCCC the voltage
stress of N-2 switching devices is equal to 2Vin and the remaining switches have Vin voltage stress.
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3. Proposed Self-Balanced and Magnetic Component-Free Multistage DC-DC Converter

3.1. Mode of Operation

The power circuit of the proposed self balanced and magnetic component-free (transformer-less
and inductor-less) multistage DC-DC converter for K stages is depicted in Figure 13. The conspicuous
features of the proposed topology are: (i) it is magnetic components free; (ii) continuous input current;
(iii) low voltage rating semiconductor devices and capacitors; (iv) modularity; (v) easy to add a higher
number of levels to increase the voltage; (vi) only two control switches are used with alternating
operation; and (vii) simple control. The proposed DC-DC converter topology is free from magnetic
components like inductors and it is designed for unidirectional power transfer applications. The
proposed topology provides an output voltage higher than the input voltage without any magnetic
components. The operation at high frequency permits a reduction in the size of capacitors thus enabling
a reduced size of the circuit without external components. In this topology the number of control
switches does not depend on the number of levels. The required number of diodes and capacitors
depends on the number of output levels. Two diodes and two capacitors are required to increase the
level of the proposed converter by one. Thus, to design a 4-stage proposed step-up DC-DC converter
topology, two control switches, eight uncontrolled (power diodes) and eight capacitors are required.
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To explain the operation modes of the proposed magnetic component-free K-stages converter
circuit the following is considered. The mode of operation of the converter is divided into two modes:
Mode 1 when switch Sb and Sa act as a short circuit (turned ON) and open circuit (turned OFF)
respectively, and Mode 2 when switch Sa and Sb act as a short circuit (turned ON) and open circuit
(turned OFF), respectively. Hence, switch Sa and switch Sb are complementary in operation. The
proposed topology has simple control and is operated at a fixed duty cycle of 0.5 to provide voltage
to photovoltaic devices. A complex gate driver is also not required to drive the switch; instead an
oscillator is sufficient to provide a gated signal.

In Mode 1 (Figure 14), switch Sb is turned ON and switch Sa is turned OFF, capacitor C12 is
charged by input voltage through diode D11 and switch Sb when the voltage across capacitor C12 is
smaller than the input voltage. When the voltage across capacitors C12 + C22 is smaller than the voltage
VC11 + Vin, then the energy stored in the capacitor C11 is transferred to capacitor C22 through D21 and
switch Sb. Similarly capacitor C(k-1)1 transfers its energy to CK2 when the voltage across capacitors C12

+ C22 + . . . + CK2 is smaller than voltage Vin + VC11 + CC21 + . . . + VC(K-1)1 through diode DK1. In this
mode the output voltage is equal to the input voltage (Vin) + VC11+VC21 + . . . + VCK1.
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In Mode 2 (Figure 15), control switch Sa is turned ON and switch Sb is turned OFF, when the
voltage across capacitor C11 is smaller than capacitor C12, then capacitor C11 is charged by capacitor
C12 through diode D12 and switch Sa. When the voltage across capacitor C11 + C21 is smaller than the
voltage across capacitor C12 + C22, then capacitor C22 transfers its energy to capacitor C21 through
diode D22 and switch Sa. Similarly capacitor CK2 transfers its energy to capacitor CK1 through DK2

when the voltage across capacitor C11 + C21+ . . . + Ck1 is smaller than the voltage C12 + C22 + CK2. In
this mode the output voltage is equal to the input voltage (Vin) + VC12 + VC22 + . . . + VCK2.
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3.2. Voltage Gain Analysis of a Multistage Converter without Diode and Switches Loss

When the voltage drop across diodes and switches are not considered, all capacitors are subjected
to the same voltage Vin. The voltage conversion ratio or voltage gain is equal to the (K + 1) i.e., number
of stages +1 and also depends on number of capacitors. Figure 16a,b depict the graphs of the required
number of devices/components versus the number of stages in 2-dimensional and in 3-dimensional
view, respectively. From Figure 16a,b it is observed that the number of devices/components linearly
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increases as the number of stages is increased. Thus, with each stage increase two more diodes and
capacitors are needed. It is also observed that the number of diodes is equal to the number of capacitors.

VC11 = VC12 = VC21 = VC22 = VCK2 = Vin (1)

Vo = (K + 1) × Vin (2)

Vo =
KC + 2

2
× Vin (3)

Vo =
KD + 2

2
× Vin (4)

KC = KD = 0.5 K (5)

where, KC and KD number of capacitor and diode used to design the proposed circuit. The graph
of voltage gain versus number of stages is shown in Figure 17a. It is observed that the proposed
converter with K stages provides a K + 1 voltage conversion ratio. The graph of the number of stage
devices/components versus voltage gain is shown in Figure 17b. It is observed that the number of
devices/components linearly increases as the voltage gain requirement is increased. Thus, two diodes
and two capacitors need to be connected to increase voltage gain by a factor of 1. It is also observed
that 2 K diodes and 2 K capacitors are required to attain a voltage gain K + 1.
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The graph of voltage gain (Vo/Vin), number of stages (K) and duty cycle (D) is shown in Figure 17c.
It is observed that two capacitors and two diodes are required to design one stage of the proposed
converter. The graph of output voltage for stages 1 to 9 by considering an input voltage of 25 V is
shown in Figure 17d. It is observed that the output voltage is increased as the number of stages
increases, and each stage contributes a voltage equal to the input voltage (25 V) to an output voltage of
the proposed converter.

3.3. Voltage Gain Analysis of the Multistage Converter with Diode and Switches Loss

The voltage drop across power diodes and switches is ignored in medium and high power
applications, but in low power applications it is considered. The analysis of the circuit is done with
consideration of the voltage drop across diodes and switches. For simplicity, the voltage drop across
diodes and switches is assumed to be equal to Vd.

VC11 = VC12 −VD12 −VSa (6)

VC11 = Vin − 4Vd (7)

VC12 = Vin − 2Vd (8)

VC21 = VC12 + VC22 −VC11 −VD22 −VSa = Vin − 4Vd (9)

VC22 = Vin + VC11 −VC12 −VD21 −VSb = Vin − 4Vd (10)

VCK1 = Vin − 4Vd (11)

VCK2 = Vin − 4Vd (12)

It is investigated that the voltage across each capacitor is equal to Vin − 4Vd except for the voltage
across capacitor C12. The voltage across capacitor C12 is equal to Vin − 2Vd. Thus, the proposed
topology is self-balanced and magnetic component-free. The output voltage of the converter is limited
by the devices’ forward voltage and number of devices.

The graph of the proposed converter output voltage versus number of stages with a practical
diode (Vd = 1) and ideal diode is shown in Figure 18a. The graph of the proposed converter output
voltage versus number of diodes or capacitors with a practical diode (Vd = 1) and an ideal diode is
shown in Figure 18b. From Figure 18a,b it is observed that the difference between the ideal and practical
output voltage increases as the number of stages, diodes and capacitor requirement is increased. The
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difference between the ideal and practical output voltage depends on the number of stages of the
proposed converter and it is equal to 4KVd as given in Equation (15).

VC11 = VC21 = VC22 = VCK1 = VCK1 = Vin − 4Vd (13)

VC12 = Vin − 2Vd (14)

V0 = (K + 1)Vin − 4KVd (15)
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4. Design Calculation of the Capacitors of the Proposed Converter

To explain the designed calculation of the proposed converter a 1-stage proposed converter is
considered. The power circuit of the 1-stage proposed converter is shown in Figure 19a. The ON
state and OFF state equivalent circuit of the 1-stage proposed converter is depicted in Figure 19b,c
respectively, where RD is the forward resistance of the diode, RS is the forward resistance of the switch,
ISb is the current through the switch Sb and ISa is the current through switch Sa.
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Initially the voltage across capacitor C12 and C11 is zero. Capacitor C12 is charged through a
resistance RD and RS from a supply voltage Vin when switch Sb is closed. The voltage across C12 does
not increase to Vin instantaneously, but builds up exponentially and not linearly.

Vin = C12d(vC12)
dt (RD + RS) + vC12

d(vC12)
Vin−vC12

= dt
(RD+RS)C12

}
(16)

∫ d(vC12)
Vin−vC12

=
∫ dt

(RD+RS)C12

log(Vin −VC12) = −
t

(RD+RS)C12
+ K, K = log Vin

VC12 = Vin(1− e
−t
T ), T = (RD + RS)C12

 (17)

iC12 =
d(C12vC12)

dt
=

C12d(vC12)

dt
(18)

Vin = iC12(RD + RS) + vC12 (19)

Similarly:

iSb =
Vin

(RD + RS)
e
−t
T (20)

Capacitor C11 is charged through a resistance RD and RS from a capacitor C12 voltage when
switch Sa is closed. Thus, when switch Sa is closed capacitors C11 and C12 is charging and
discharging, respectively.

VC12 = iC11(RD + RS) + vC1

VC12 = iC12(RD + RS) + vC11

}
(21)

VC12 = C11d(vC11)
dt (RD + RS) + vC11

d(vC11)
VC12−vC11

= dt
(RD+RS)C11

}
(22)

∫ d(vC11)
VC12−vC11

=
∫ dt

(RD+RS)C11

log(VC12 −VC11) = −
t

(RD+RS)C11
+ K, K = log VC12

VC11 = VC12(1− e
−t
T ), T = (RD + RS)C11

 (23)

Similarly:

iSa =
VC12

(RD + RS)
e
−t
T (24)

In steady state and at high switching frequency, the voltage across capacitor C11 and C12 at any
instant during charging is cycled as given in Equations (25) and (26) where, VC′11

and VC′12
is the initial

voltage of capacitor C11 and C12. If the initial storage voltage of C11 and C12 is positive:

VC12 = (Vin −VC′12
)(1− e

−t
T ) + VC′12

VC11 = (VC12 −VC′11
)(1− e

−t
T ) + VC′11

}
(25)

If the initial storage voltage of C11 and C12 is negative:

VC12 = (Vin + VC′12
)(1− e

−t
T )−VC′12

VC11 = (VC12 + VC′11
)(1− e

−t
T )−VC′11

}
(26)

The time required for the capacitor C12 to attain any value of VC12 during the charging cycle is
given in Equations (27) and (28).



Energies 2017, 10, 719 16 of 28

When the initial voltage across the capacitor is positive:

t = T log(
Vin −VC′12

Vin −VC12

) = (RD + RS)C12 log(
Vin −VC′12

Vin −VC12

) (27)

When the initial voltage across the capacitor is negative:

t = T log(
Vin + VC′12

Vin −VC12

) = (RD + RS)C12 log(
Vin + VC′12

Vin −VC12

) (28)

The time required for the capacitor C11 to attain any value of VC11 during the charging cycle is
given in Equations (29) and (30).

When the initial voltage across the capacitor is positive:

t = T log(
VC12 −VC′11

VC12 −VC11

) = (RD + RS)C11 log(
VC12 −VC′11

VC12 −VC11

) (29)

When the initial voltage across the capacitor is negative:

t = T log(
VC12 + VC′11

VC12 −VC11

) = (RD + RS)C11 log(
VC12 + VC′11

VC12 −VC11

) (30)

C12 =
1

2πfsXC12
=

1

2πfs
VC12

IC12

=
IC12

2πfsVC12

C11 ==
1

2πfsXC11
=

1

2πfs
VC11

IC11

=
IC11

2πfsVC11


(31)

Voltage and current of all the capacitors are the same during the complete switching cycle. Thus
the equal rating of all capacitors is suitable to design the proposed converter whose voltage rating is
greater than the input voltage.

5. Comparison of Proposed Converter with Recent DC-DC Inductor-less Converters

In this section the proposed circuit is compared with recent transformer-less and inductor-less
DC-DC converters (discussed in Section 2 of this article) in terms of number of controlled switches,
diodes, capacitors, and voltage gain. The requirement of the number of switches to design DC-DC
converters is tabulated in Table 2.

Table 2. Number of switches required to design different DC-DC converters.

Converter
Type

Number of Levels/Stages

1 2 3 4 5 6 7 8 N

SPSC 1 4 7 10 13 16 19 22 3N − 2
FCMDC 2 4 6 8 10 12 14 16 2N
MMDC 2 6 12 20 30 42 56 72 N(N + 1)

Fibonacci 4 7 10 13 16 19 22 25 3N + 1
Switch Mode 4 8 12 16 20 24 28 32 4N

MMCCC 1 4 7 10 13 16 19 22 3N − 2
Proposed 2 2 2 2 2 2 2 2 2

It is observed that proposed converter requires less switches compared to other recent
transformer-less and inductor-less converters. It is also observed that the requirement of switches is
independent of the number of levels of the converter (only two switches are required to design the
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proposed converter). It is also observed that the requirement of the number of switches to design
and MMCCC is the same. The requirement of the number of diodes and number of capacitors to
design DC-DC converters is tabulated in Tables 3 and 4, respectively. It is observed that the proposed
converter requires less diodes compared to recently proposed transformer-less and inductor-less
DC-DC converters. The maximum number of diodes is required to design the Fibonacci converter.
To design SPSC and MMCCC the number of diodes requirement is the same. It is observed that the
proposed converter requires less capacitors compared to MMDCC and the switch mode converter.
The proposed converter also requires fewer components in total compared to the other converters.
In Table 5 voltage conversion ratio of recent inductor-less DC-DC converter is tabulated.

Table 3. Number of diodes required to design the DC-DC converters.

Converter
Type

Number of Levels

1 2 3 4 5 6 7 8 N

SPSC 1 4 7 10 13 16 19 22 3N − 2
FCMDC 2 4 6 8 10 12 14 16 2N
MMDC 2 6 12 20 30 42 56 72 N(N + 1)

Fibonacci 4 7 10 13 16 19 22 25 3N + 1
Switch Mode 4 6 8 10 12 14 16 18 2N + 2

MMCCC 1 4 7 10 13 16 19 22 3N − 2
Proposed 2 4 6 8 10 12 14 16 2N

Table 4. Number of capacitors required to design the DC-DC converters.

Converter
Type

Number of Levels

1 2 3 4 5 6 7 8 N

SPSC 1 2 3 4 5 6 7 8 N
FCMDC 1 2 3 4 5 6 7 8 N
MMDC 1 3 6 10 15 21 28 36 N(N + 1)/2

Fibonacci 1 2 3 4 5 6 7 8 N
Switch Mode 3 5 7 9 11 13 15 17 2N + 1

MMCCC 1 2 3 4 5 6 7 8 N
Proposed 2 4 6 8 10 12 14 16 2N

Table 5. Voltage conversion ratio of the DC-DC converters.

Converter
Type

Number of Levels

1 2 3 4 5 6 7 8 N

SPSC 1 2 3 4 5 6 7 8 N
FCMDC 1 2 3 4 5 6 7 8 N
MMDC 1 2 3 4 5 6 7 8 N

Fibonacci 1 3 5 8 Not feasible to design for higher levels
Switch Mode 2 3 4 5 6 7 8 9 N + 1

MMCCC 1 2 3 4 5 6 7 8 N
Proposed 2 3 4 5 6 7 8 9 N + 1

In Figure 20a–d the proposed converter is compared with DC-DC converters (discussed in
Section 2) in terms of number of switches, diodes, capacitors and voltage gain. Graphically it is also
observed that the proposed converter provides a viable solution in terms of number of components.
In Table 6 the proposed converter is compared in terms of cost. It is calculated that the proposed
converter required less cost compared to other DC-DC converters. Only two switches are required to
design an N-stage proposed converter hence it requires a simple control circuit.
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Figure 20. Comparison of the proposed converter with recent transformer-less and inductor-less
converters (Discussed in Section 2) (a) Graph of the number of switches versus number of levels/stages;
(b) graph of the number of diodes versus number of levels/stages; (c) graph of the number of
capacitors versus number of levels/stages; (d) graph of the voltage conversion ratio versus number of
levels/stages. (A: SPSC, B: FCMDC, C: MMDC, D: Fibonacci, E: switch mode, F: MMCCC, G: proposed
converter).

Table 6. Cost of the proposed and recent DC-DC converters (discussed in Section 2).

Converter Cost of the Converter

SPSC (3N − 2) (Cost of each switch + cost of each diode) + N (cost of each capacitor)
FCMDC 2N (Cost of each switch + cost of each diode) + N (cost of each capacitor)
MMDCC N(N + 1){(Cost of each switch + cost of each diode) + 0.5 (cost of each capacitor)}
Fibonacci (3N + 1) (Cost of each switch + cost of each diode) +N (cost of each capacitor)

Switch Mode 4N (Cost of each switch) + 2(N + 1)(cost of each diode) + (2N + 1) (cost of each capacitor)
MMCCC (3N − 2) (Cost of each switch + cost of each diode) + N (cost of each capacitor)
Proposed 2 (Cost of each switch) +2N (cost of each diode + cost of each capacitor)

6. Experimental and Simulation Results of the Proposed Self-Balanced and Magnetic
Component-Free Multistage DC-DC Converter

The proposed self-balanced and magnetic component-free multistage DC-DC converter simulation
and experimental results are discussed in this section. The proposed multistage converter has been
designed for four stages with rated power 60 W, switching frequency 100 kHz, output voltage is 100 V
and the supply voltage is 24 V. Switches Sa (here S1) and Sb (here S2) are operated complementarily
with a 50% duty cycle. High switching frequency is used to reduce the rating of the capacitor.
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The output voltage and current waveform with ideal components (voltage drop across the switch
and the diode is zero) is shown in Figure 21a. It is observed that the settling time for the output voltage
of the proposed converter with ideal components (forward resistance of the diode is 0) is less than 2 ms.
The effect of voltage drop across the diode is analyzed in the previous section. The output voltage and
current waveform (assuming 1 V voltage drop across the switch and diode) are shown in Figure 21b.
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It is observed that the settling time for the output voltage of the proposed converter with practical
components is approximately 4 ms due to the forward resistance of the diode and switch. Thus,
the practical waveform differs from the ideal waveform because of the time constant (RD + RS) C as
explained in Section 4. The output power waveform and switch voltage are shown in Figure 22a,b,
respectively. The output voltage and input voltage waveform with ideal components (voltage drop
across the switch and the diode is zero) are shown in Figure 22c. The output voltage and input voltage
waveform (assuming a 1 V voltage drop across the switch and diode) are shown in Figure 22d.
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Figure 22. Simulation results (a) Output power of proposed converter; (b) Gate pulses to control 
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Figure 22. Simulation results (a) Output power of proposed converter; (b) Gate pulses to control
switches of the converter and drain to source of the converter; (c) Output voltage and input voltage
waveform with ideal components; (d) Output voltage and input voltage waveform with practical
components; (e) Voltage across diode D11, D21, D31 and D41; (f) Voltage across diode D12, D22, D32

and D42.

It is observed that 120 V output voltage is achieved from a 24 V input supply. Thus, ideally
the voltage gain of the proposed converter is 5, which is equal to the number of stages +1. When
the voltage drop across the diode is considered, an output voltage of 100 V is achieved from a 24 V
supply. The voltage across the switch is equal to the input supply voltage (24 V). The voltage across all
capacitors is same, which is equal to the input supply voltage (24 V) if the voltage drop across the diode
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is not considered. The voltage across all diodes is same (24 V) when the diode is reverse- biased. The
voltage across diodes is shown in Figure 22e–f. The voltage across the capacitors is shown in Figure 23.
The proposed 4-stage self-balanced and magnetic DC-DC converter is investigated experimentally and
the result shows a good match with the simulation results. The hardware components are listed in
Table 7.
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Table 7. Hardware component details of the proposed converter.

Sr/No Components Value No. of Components

1 Switch (S1 and S2) IRF250 (0.085 ON sate resistance) 2
2 Diodes BYQ28E 8
3 Capacitors 220 µF, 50 V 8
4 Load 168 Ω, 60 W 1
5 Gate Driver IC TLP250 2

PIC18F45K20 is used to generate pulses and TLP250 is used as driver IC. The hardware prototype
of the proposed converter is shown in Figure 24.
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Pulses are generated from a PIC controller and the gate driver output is shown in Figure 25a,b,
respectively. Output voltage and input voltage waveform are shown in Figure 25c. It is observed that
100 V output is achieved from a 24 V input supply.
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The output current waveform is shown in Figure 25d and it is observed that the output current is
0.619 A. The voltage across each capacitor is shown in Figure 26a–h. It is observed that the voltage
across each capacitor is nearly the same and slightly less than the input voltage 24 V (an effect of the
diode). Voltage stress across each diode is shown in Figure 27a–h. It is observed that the voltage stress
across the diode is approximately the same and the peak voltage across the diode is slightly less than
the input voltage (24 V) (an effect of the voltage drop). The voltages of all capacitors and all diodes
differ slightly due to the forward resistance of the diode and switch. The lower stages (source side)
capacitors are charged through the path which contain less diodes whereas as the number of stages
increases the path followed for the charging of higher stage (moving towards load) capacitors contain
more diodes. Thus, practically a slight difference is observed in the voltage of the capacitors.
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7. Conclusions

The self-biased and magnetic-free multistage step-up converter is articulated and designed
for unidirectional renewable photovoltaic applications. The proposed converter is well suited for
renewable photovoltaic applications where the voltage needs to be stepped up without using magnetic
components. The proposed converter also provides a viable solution to improve the photovoltaic
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systems in term of modularity, cost and control. The proposed converter is suitable for the DC
link applications in DC-AC systems where capacitor voltage balancing is the main challenge. The
proposed converter also provides a viable solution for low power applications, since the inductor and
transformer are not required to design the proposed converter. Also Maximum Power Point Tracking
(MPPT) can be easily implemented to improve the efficiency of the converter. The voltage across
the switch is less; hence low voltage switches are used for designing high voltage converters. The
conspicuous features of the proposed topology are:

(i) Magnetic component-free (transformer-less and inductor-less)
(ii) Continuous input current
(iii) Low voltage rating semiconductor devices and capacitors
(iv) Modularity
(v) Easy to add a higher number of levels to increase the voltage
(vi) Only two control switches with alternating operation and simple control are needed.

The proposed converter has been designed with a rated power of 60 W, the input voltage is 24 V,
the output voltage is 100 V and the switching frequency is 100 kHz. High switching frequency has
been used to decrease the component size. The performance of the proposed converter is verified
through simulation and experimental results.

Author Contributions: M.S.B. and S.P. developed the proposed research concept with the complete theoretical
background study. Further hardware prototype implementation tasks are carried out the same authors. F.B. has
contributed his expertise to validate the proposal both theoretical background and hardware results obtained as
co-author. All authors involved in framing its current format of the full research paper work.
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