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Abstract: Anomaly detection plays a significant role in helping gas turbines run reliably and
economically. Considering the collective anomalous data and both sensitivity and robustness of
the anomaly detection model, a sequential symbolic anomaly detection method is proposed and
applied to the gas turbine fuel system. A structural Finite State Machine is used to evaluate posterior
probabilities of observing symbolic sequences and the most probable state sequences they may locate.
Hence an estimation-based model and a decoding-based model are used to identify anomalies in
two different ways. Experimental results indicate that both models have both ideal performance
overall, but the estimation-based model has a strong robustness ability, whereas the decoding-based
model has a strong accuracy ability, particularly in a certain range of sequence lengths. Therefore, the
proposed method can facilitate well existing symbolic dynamic analysis- based anomaly detection
methods, especially in the gas turbine domain.

Keywords: gas turbine fuel system; anomaly detection; symbolic dynamic analysis; time series

1. Introduction

Gas turbine engines, which are among the most sophisticated devices, perform an essential role
in industry. Detecting anomalies and eliminating faults during gas turbine maintenance is a great
challenge since the devices always run under variable operating conditions that can make anomalies
seem like normal. As a consequence, Engine Health Management (EHM) policies are implemented to
help gas turbines run in reliable, safe and efficient state facilitating operating economy benefits and
security levels [1,2]. In the EHM framework, many works have been devoted into anomaly detection
and fault diagnosis in gas turbine engines. Since Urban [3] first got involved in EHM research,
many techniques and methods have been subsequently proposed. Previous anomaly detection works
mainly involve two categories: model-based methods and data driven-based methods. Model-based
methods typically includes linear gas path analysis [4-6], nonlinear gas path analysis [7,8], Kalman
filters [9,10] and expert systems [11]. Data driven-based methods typically include artificial neural
networks [12,13], support vector machine [14,15], Bayesian approaches [16,17], genetic algorithms [18]
and fuzzy reasoning [19-21].

Previous studies are mainly based on simulation data or continuous observation data. Simulation
data are sometimes too simple to reflect actual operating conditions as real data usually contains many
interferences that make anomalous observations appear normal. This is particularly challenging for
anomaly detection in gas turbines that operate under sophisticated and severe conditions. There are
two possible routes for improving anomaly detection performance for gas turbines, the first one is from
the perspective of anomalous data and the second one is from the perspective of a detection model.
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On the one hand, anomalies occurring during gas turbine operation usually involve collective
anomalies. A collective anomaly is defined as a collection of related data instances that is anomalous
with respect to the entire data set [22]. Each single datapoint doesn’t seem like anomaly, but their
occurrence together may be considered as an anomaly. For example, when a combustion nozzle is
damaged, one of the exhaust temperature sensors may record a consistently lower temperature than
other sensors. Collective anomalies have been explored for sequential data [23,24]. Collective anomaly
detection has been widely applied in domains other than gas turbines, such as intrusion detection,
commercial fraud detection, medical and health detection, etc. [22] In industrial anomaly detection,
some structural damage detection methods are applied by using statistical [25], parametric statistical
modeling [26], mixture of models [27], rule-based models [28] and neural-based models [29], which
can sensitively detect highly complicated anomalies. However, in gas turbine anomaly detection, these
methods have some common shortcomings. For example, data preprocessing methods such as feature
selection and dimension reduction are highly complicated when confronting gas turbine observation
data, which greatly undermines the operating performance. Furthermore, many interferences included
in the data such as ambient conditions, normal patterns changes, even sensor observation deviations
produce extraneous information for detecting anomalies, usually concealing essential factors that may
be critically helpful for detection. For instance, a small degeneration in a gas turbine fuel system
may be masked by normal flow changes, thus hindering anomaly detection of a device’s early faults.
Thus, some studies have focused on fuel system degeneration estimation by using multi-objective
optimization approaches [30,31], which are helpful for precise anomaly detection in fuel systems.

On the other hand, detection models for gas turbines require both sensitivity and robustness
capabilities. The sensitivity ensures a higher detection rate and the robustness ensures fewer
misjudgements. The symbolic dynamic filtering (SDF) [32] method was proposed and yielded good
robustness performance in anomaly detection in comparison to other methods such as principal
component analysis (PCA), ANN and the Bayesian approach [33], as well as suitable accuracies.
Gupta et al. [34] and Sarkar et al. [35] presented SDF-based models for detecting faults of gas turbine
subsystems and used them to estimate multiple component faults. Sarkar et al. [36] proposed an
optimized feature extraction method under the SDF framework [37]. Then they applied a symbolic
dynamic analysis (SDA)-based method in fault detection in gas turbines. Next they proposed
Markov- based analysis in transient data during takeoff other than quasi-stationary steady-states
data and validated the method by simulation on the NASA Commercial Modular Aero Propulsion
System Simulation (C-MAPSS) transient test-case generator. However, current SDF-based models
usually adopt simulated data or data generated in laboratories, especially in the gas turbine
domain. The performance of these methods remains unconfirmed with real data, for instance, from
long-operating gas turbine devices that contains many flaws and defects, for which sensors may not
always be available for data acquisition.

Considering that both solutions for improving the performance of gas turbine anomaly detection
have their disadvantages, in this paper, we combine the two strategies by building a SDA-based
anomaly detection model and processing collective anomalous sequential data in order to establish
more sensitive and robust models and eliminate their intrinsic demerits. We then apply this method in
anomaly detection for gas turbine fuel systems.

In this paper, the observation data from an offshore platform gas turbine engine are first
partitioned into symbolic sequential data to construct a SDA-based model, finite state machine,
which reflects the texture of the system’s operating tendency. Then two methods, an estimation-based
model and a detection-based model, are proposed on basis of the sequential symbolic reasoning model.
One method is more robust and the other is more sensitive. The two methods can be well integrated in
different practical scenarios to eliminate irrelevant interferences for detecting anomalies. A comparison
between collective anomaly detection, symbolic anomaly detection and our method is presented in
Table 1.
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Table 1. Comparison between different current methods and ours.

Collective Anomaly Symbolic Anomaly

Detection Detection Our Method
; : Symbolic and semantic Sequential and symbolic
Strategy Sequential based analysis based analysis ntapratod analyais

e  Confronts real operating data,
guaranteeing both sensitivity

e  High robustness; and robustness:

e  Detects complicated .
e Aneasy operating

industrial anomalies;

> e  High dimension data are
Advantages . cpe s vector representation in & . o e
e  High sensitivity . converted to simple individual
anomaly detection .
symbol sequences;
. Eliminates interferences
. High dimension data ° Most are based on
needs to simulated data or
) be preprocessed experimental data, lack
Disadvantages ¢  [nterferences complexity and
remarkably credibility in
influence detection actual scenarios

This paper is organized in six sections. In Section 2, preliminary mathematical theories on
symbolic dynamic analysis are presented. Then, in Section 3 the data used in this study and symbol
partition are introduced. The finite state machine training and the two anomaly detection models are
proposed in Section 4. Experimental results and a comparison between the two models from several
perspectives are given in Section 5 and a discussion and conclusions are briefly presented in Section 6.

2. Preliminary Mathematical Theories

2.1. Discrete Markov Model

Consider a time series of states w(t) of length T, indicated by w! = {w(1),w(2),..,w(T)}.
A system can be in a same state at different times and it doesn’t need to achieve all possible states at once.
A stochastic series of states is generated through Equation (1), which is named transfer probability:

ajj = P(w;(t+1)]w;(t)) 1)

This represents a conditional probability that a system will transfer to state w; in the next time
point when it is in state w; currently. 4;; is not reletated to the time. In a Markov model diagram,
each discrete state w; is denoted as a node and the line which links two nodes is denoted as a transfer
probability. A typical Markov model diagram is represented in Figure 1.

Figure 1. Discrete Markov model.
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The system is in state w(t) at moment f currently, while the state in moment (f + 1) is a random
function which is both related to the current state and the transfer probability. Therefore, a specific time
series of states generated in probability is actually a consecutive multiply operation of each transfer
probability in this series.

2.2. Finite State Machine

Assume that at moment t, a system is in state w(f), and meanwhile the system activates
a visible symbol v(t). A specific time series would activate a specific series of visible symbols:
vl = {v(1),v(2),...,v(T)}. In this Markov model, state w(t) is invisible, but the activated visible
symbol v(t) can be observed. We define this model as a finite state machine (FSM), shown in Figure 2.
The activation probability of a FSM is defined by Equation (2):

bjr = P(vr(t)|wj(t)) )

In this equation, we can only observe the symbol v(t). In Figure 2 it can be seen that the FSM has
four invisible states linked with transfer probabilities and each of them can activate three different
visible symbols. The FSM is strictly subject to causality, which means the probability in the future
conclusively depends on the current probability.

Figure 2. Finite state machine.

2.3. Baum-Welch Algorithm

The Baum-Welch algorithm [38] is used in estimation. Transfer probabilities a;; and activation
probabilities by are from a pool of training samples. The normalized premise of 4;; and bj is that:

Yaij=1, for all i

/ ®)
Y by =1, forallj
k

We define a forward recursive equivalence in Equation (4), where a;(f) denotes the probability
in state w; at moment f which has generated ¢ symbols of the sequence v’ before. a;j is the transfer
probability from state w;(t — 1) to state wj(t) and bj; is the probability of activated symbol vy in

state wj(t):
1 t=0
%(t) = { Yiai(t —1)abj @)

We define a backward recursive equivalence in Equation (5) either, where B;(t) denotes the
probability in state w; at moment ¢t which generates symbols of the sequence vT from moment ¢ + 1 to
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T. ajj is the transfer probability from state w;(t) to state w;(t + 1) and by, is the probability of activated
symbol vy on state w;(t +1):
1 t=T
Bi(t) = { ()

Y Bj(t + 1)aijbj
the parameters 4;;, b in the above two equations remain unknown, so an expectation maximized

strategy can be used in the estimation. According to Equations (4) and (5), we define the transfer
probability y;;(#) that is from state w;(t — 1) to state wj(t) under the condition of observed symbol vy:

oi(t — D)a;ibpB(t)

Vij(t) = PoT[0) (6)

where P(vT|0) is the probability of the symbol sequence v! generated through any possible state
sequence. Expectation transfer probability through a sequence from state w;(t — 1) to state w;(t)
is YT, 7ij(t) and the total expectation transfer probability from state w;(t —1) to any state is

Y1 T vie(h).
3. Data and Symbolization

In gas turbine monitoring, all operation data observed by sensors are continuous. There is no
observation that can acquire several discrete operating conditions automatically. Thus, in this section
we focus on a symbol extraction method that can discretely represent different load condition patterns.
After symbolization, many irrelevant interferences are dismissed. In this paper, the data resource
is from a SOLAR, Titan 130 Gas Turbine. The parameters used are listed in Table 2 below and an
overview of the structure of the turbine fuel system is shown in Figure 3.

Table 2. Monitoring sensors used in symbol extraction.

Sensor No. Parameters Unit
92 Average gas exhaust temperature °C
84 Average fuel supplement temperature °C
81 Main gas supplement pressure kPa
85 Main gas valve demand %
98 Average combustion inlet temperature °C
148 Generator power kw
88 guide vane position %
82 Main gas nozzle pressure kPa
95 Main gas heat value k] /kg
96 Main gas density kg/ m>
112 Average compressor inlet temperature °C
- Compressor inlet 5 T
Overview: T Guide vane position
To gas vent {E} Combustion inlet Gas exhausting G
P enerator power
< temperature temperature
Gas vent valve
Main gas demand Main gas density
Fuel supplement temperature Main gas heat value
(Rl Rl s i Control valve position Main gas nozzel pressure

Gas fuel supply  Flow first security valve Flow second security valve  Control valve Main bumer supply

Figure 3. Overview on SOLAR gas turbine fuel system.
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Original data contain many uncertainties and ambient disturbances. For example, the average
combustion inlet temperature varies during daytime and at night, influenced by the atmospheric
temperature that fluctuates over several days. This tendency is shown in Figure 4. Besides,
the operating parameters of the gas turbine also have uncertainty, even under the same operating
pattern. Figure 5 shows the uncertainty of the average gas exhaust temperature. It suggests that both
in scenarios 1 and 2, the average gas exhaust temperature has an uncertainty boundary around the
center line. All these factors may influence the device operation and data processing. The disturbances
and uncertainties are usually extraneous and redundant, which interferes with the anomaly detection.
Therefore, one way to eliminate such interferences is data symbolization.
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Figure 4. Disturbance of ambient temperature.

IS
©
S

IS
b
=}

460 - scenario 1

scenario 2

Average gas exhaust temperature

Time points %10

Figure 5. Uncertainty of gas exhaust temperature.

Many strategies for data symbolization or discretization have been proposed and were well
discussed in previous papers [39-41]. In summary, two kinds of approaches—splitting and
merging—can be used in data symbolization. A feature can be discretized by either splitting the
interval of continuous values or by merging the adjacent intervals [36]. It is very difficult to apply
the splitting method in our study since we cannot properly preset the intervals. Therefore, a simple
merging-based strategy is adopted for data symbolization. We apply a cluster method to symbol
extractions—K means (KM) cluster method. The main reason is that in a FSM, the number of hidden
states and visible symbols are both finite and KM initially has a specific cluster boundary and expected
cluster numbers. Samples in a cluster are regarded as the same symbol. There are seven clusters that
correspond to seven different load conditions as shown in Table 3, so K is equal to 7 for the KM model.
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Table 3. Correspondence list between clusters and labels.

Cluster No. Label Symbol
#0 Flow rise in low load FRLL
#1 Steady in high load SHL
#2 Steady in low load SLL
#3 Fast changing condition FCC
#4 Flow rise in high load FRHL
#5 Flow drop in high load FDHL
#6 Flow drop in low load FDLL

The purpose of the KM method is to divide original samples into k clusters, which ensures the
high similarity of the samples in each cluster and low similarity among different clusters. The main
procedures of this method are as follows:

(1) Choose k samples in the dataset as the initial center for each cluster, and then evaluate distances
between the rest of the samples and every cluster centers. Each sample will be assigned to a
cluster to which the sample is the closest.

(2) Renew the cluster center through the nearby samples and reevaluate the distance. Repeat this
process until the cluster centers converge. Generally, distance evaluation uses the Euclidean
distance and the convergence judgement is the square error criterion, as shown in Equation (7):

k

E=Y Y |p-m @)

i=1peC;

where E is sum error of total samples, P is the position of the samples and m,; is the center of
cluster C;. Iteration terminates when E becomes stable, which is less than 1 x 107°.

Therefore, the final clusters and samples are converted from continuous variables into discrete
visible symbols. In this study, altogether 79,580 samples that are divided into seven symbols.
The sampling interval is 10 min and symbol extraction results are shown in Figure 6. The most
frequent symbols are Steady in high load (SHL) and Steady in low load (SLL). The intermediate
ones are Flow rise in low load (FRLL), Flow rise in high load (FRHL), Flow drop in low load (FDLL)
and Flow drop in high load (FDHL). The least frequent symbol is Fast changing condition (FCC).
There are 3327 samples labeled as anomalies and the distribution of the abnormal samples is shown
in Figure 7. All of the abnormal labels are derived manually from the device operation logs and
maintenance records. To simplify our modeling, we classify all kinds of anomalies or defects in
records into one class—anomaly. After symbolization, we use these symbols generated by KM cluster
method to construct a FSM to measure whether a series of symbols are on normal conditions or on an
abnormal one.

Number of samples

0 1 2 3 4 5 6
Cluster number

Figure 6. Distribution on total symbol data.
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Figure 7. Distribution of anomaly data.

4. FSM Modeling and Anomaly Detection Methods

The finite state machine, widely applied in symbolic dynamic analysis, has shown great
superiority in comparison to other techniques [30,31]. Therefore, the main tasks of establishing
a sequential symbolic model in gas turbine fuel system anomaly detection are to build a FSM to
estimate posterior probabilities of sequences and to build detection models to detect the abnormality
of sequences. Before this, however, the discrete symbols extracted in Section 3 need to be sequenced
into series, time series segments, of length T.

For FSM modeling, one aspect of this work is to determine several parameters. There are five
states defined in this model: normal state (NS), anomaly state (AS), turbine startup (ST+), turbine
shutdown (ST-) and halt state (HS). Actually, anomaly is a hidden state that is usually invisible during
operation compared to the other four states. Till now, we have defined the model structure of the
FSM which contains five states and seven visible symbols. For any moment, there are seven possible
symbols in a state that could be observed with probability bj. a;; is the probability that a state transfers
from one to another. When the operating pattern changes reflected by symbols or hidden states at a
structural level, the device might experience an anomaly that is easier to observe. This thus satisfies
the basic idea of anomaly detection, finding patterns in data that do not conform to expected behavior.

Another concern about FSM modeling is how long the time series are, which can be efficiently
involved in the transfer and activation probability estimation. Figure 8 shows that different lengths T
of segments may lead to different classification label results. A segment is defined as an anomaly only
if it contains at least one abnormal sample. This classification suggests that the time series in T = 5 and
T = 10 are significantly different.

Data sequence Time series segment Abnormal sample

| M | ! I H T=5

(€] ) (+) (+) )

I || I | 10

(O () )

Figure 8. Time series generation with different length. Mark (+) denotes the normal series and mark
(—) denotes the abnormal series.
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It is difficult to primordially define a proper T that can be applied well in parameter estimation
and anomaly detection, so another way we take is to optimize length T recursively until it has the best
performance in the anomaly detection section. We declare that in actual data preprocessing, time series
are generated by a sliding window with length T in order to ensure that the size of time series can
match the original dataset, which means the total number of time series is 79581-T.

For anomaly detection, two strategies are used: an estimation-based model and a decoding-based
model. The estimation-based model is that we use FSM to calculate the probability of a symbol
sequence. In this case, FSM is built by the training data precluding abnormal samples, so the
abnormal sequences contained in the testing data will have very low probabilities through calculation.
The decoding-based model is that we use a FSM to decode a most probable state sequence which
generates an observed symbol sequence. If the estimated state sequence contains anomaly states (AS),
the symbol sequence is judged to be an anomaly.

According to the aforementioned contents, the schematic of a FSM modeling is shown in Figure 9,
as illustrated below. First, data are sequenced into a pool of time series by an initial sliding window
with length T. Then data are divided into two parts: training data and testing data. The training data
are used to construct a FSM, to estimate transfer and activation probabilities of unknown states and
visible symbols. The testing data are used to evaluate the FSM performance. After modeling the FSM,
performance will be tested through two anomaly detection strategies—the decoding-based model
and the estimation-based model. Length T will be updated until the models and the FSM achieve the
best performance.

Data resources

Time series constructing in length T

A
Training dat
raming cata Updating T Testing data
Y
Finite State Machine
A
Visible symbols

Unknown states SHL
NS b SLL
AS ik FRHL o | Anomaly detection
ST+ > FRLL o strategies
ST- FDHL Testing
HS FDLL

FCC
a;
\_4

Figure 9. Schematic of FSM modeling procedures.

4.1. Training a FSM

The main task of training a FSM is to estimate a group of transfer probabilities 4;; and activation
probabilities b, from a pool of training samples. In this study, Baum-Welch algorithm [41] is used
in estimation. The probability 7;;(t) is deduced in Equation (6). Therefore, an estimated transfer
probability &;; is described as:

L)

i = 8
i i1 Tk vi(t) ®
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Similarly, estimation of activation probability Bjk is described as:

_ Y Yk ()
Zthl X ’le(t) ’

S

ik 9
where expectation activation probability of vy (#) on state w;(t) is YL, 7jk(t) and the total expectation
activation probability on state w;(t) is YLy 7ji(t), 1is number of symbols.

According to the analysis above a;;, bjx can be gradually approximated by &;;, b through

A

Equations (8) and (9) until convergence. The pseudocode of the estimation algorithm is shown
in Algorithm 1 below. The first a;;, bj are generated randomly at the beginning. Hence we can evaluate

&, by using aj;, bj estimated in the former generation. We repeat this process until the residual
between &;;, Ejk and a;j, bj is less than a threshold ¢ and then the optimized 4;;, bji are used in the FSM.

Algorithm 1. Procedures of a ijs bjk estimation.

Input:

Initial parameters a;;(0), bjx(0), Training set vT, convergence threshold ¢, z < 0

Output:

Finial estimated FSM parameters &;;, ?’jk

Loop z <z +1

Estimating d;;(z) by a(z — 1), b(z — 1) in Equation (8)

Estimating Ejk(z) by a(z —1),b(z — 1) in Equation (9)

aj(z) = aj(2)

bj(z) < bj(2)

Until max |a;;(z) — a;j(z — 1); bjx(z) — bjp(z — 1)] <e
ijk

N O OB W N
[y
~—

Return a;; < a;j(z), by <+ bjx(z)

4.2. Anomaly Detection Based on the Estimation Strategy

An estimation strategy is used in anomaly detection of FSM in this part, which is inspired by
anomaly detection approaches. Anomaly detection is defined as finding anomalous patterns in which
data do not relatively satisfy expected behavior [22]. The FSM estimation strategy calculates the
posterior probabilities of the symbol sequences generated by FSM. It can detect anomalies efficiently
if it has been built from normal data. Therefore, this strategy conforms to the basic idea of what
anomaly detection does. In this strategy, FSM is utilized to establish an expected pattern and the
estimation process involves finding the nonconforming sequences, in other words, the anomalies.
Figure 10 illustrates the schematic of anomaly detection using the estimation strategy. In order to
establish an expected normal pattern, the training data used in FSM modeling are utterly normal
sequences. Parameters a;;, bj; are estimated by FSM training, which indicates the intrinsic normal
pattern recognition capability contained in these parameters, hence, the model estimation probabilities
of testing symbol sequences in which abnormal sequences are included. Probabilities in normal
sequences will be much higher than that in abnormal ones, so the detection indicator is actually a
preset threshold that judges the patterns of test sequences.

The probability of a symbol sequence generated by a FSM can be described as:

Tmax

P(UT> - r; P(UT’er)P(w,T>, (10)

where r is the index of state sequence of length T, w,” = {w(1),w(2),...,w(T)}. If there are, for
instance, c different states in this model, the total number of possible state sequences is rmax = cT.
An enormous amount of possible state sequences need to be considered to calculate the probability of
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a generated symbol sequence v’

descried as:

p(er) - lip(w(tﬂw(t ~1))

11 0f 22

, as shown in Equation (10). The second part of the equation can be

(11)

Abnormal

Detecting
probabilities

. T T
Testing sequences Q) = ceeeer
Training sequences
precluding anomalies
T
Dl >
Symbol
sequences Pr.
—_—
FSM a P(vf)
.. i >
»| Training — [ >
v T b'k Estimating —>
— i, P(o)

sequence

T
V.

—

Figure 10. Schematic of anomaly detection using the estimation strategy.

The probability P(w,T) is continuous and chronological multiplication. Assume that activation
probability of a symbol critically depends on the current state, so the probability P(vT ’ w,T) can be
described in Equation (12) and then Equation (13) is the other description of Equation (10):

(12)

(13)

However, the computing cost of the above equation is O(c!T) which is too high to finish this
process. There are two alternative methods that can dramatically simplify the computing process, a
forward algorithm and a backward algorithm, which are depicted by Equations (5) and (6), respectively.
The computing cost of these algorithms are both O(02 T), that is cT=2 times faster than the original
strategy. Algorithm 2 shows the detection indicator based on the forward algorithm. Initialize a;;, by,
training sequences v(t) precluding anomalies, #;(0) = 1, t = 0., then update «;() until t = T and the
probability of v(t) is a;(T). If the probability is higher than the preset threshold, then the symbol
sequence is classified in the positive, normal class. Otherwise the symbol sequence is classified in the

negative, anomalous class.

Algorithm 2. Anomaly detection based on the estimation strategy.

Input:
t<0,a;, bjk, sequence v(t), zx]-(O) =1, threshold 8
Output:
Classification result Class(v(t))
1 Fort«+t+1
2 aj(t) < bixv(t) iy i(t — 1)ay;
3 Untilt=T
4 Return P(v(t)) < «;(T)
5 Ifa(T) >0
6 Class(v(t)) < Positive
7  Else Class(v(t)) < Negative
8  Return Class(v(t))
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There are two points to be mentioned. In the first place, the decision judgement is very simple
for use of anomaly detection by threshold 6. This convenience is ascribed to the normal pattern
constructed by FSM. The probabilities estimated from FSM intuitively simulate the possibilities of the
symbol sequences emerging in a real system. Furthermore, the performance of this strategy is not only
dependent on the efficiency of the trained FSM, but also on the proper threshold. Therefore, in the
modeling process, we optimize the threshold by traversing different values in order to get the highest
overall accuracy of normal and abnormal sequences.

4.3. Anomaly Detection Based on the Decoding Strategy

Compared to the estimation strategy, a FSM can detect anomalies too if it can recognize whether
there are hidden anomalous states in sequences. Fortunately decoding a state sequence is available in
FSM so another way to detect anomalies is to decode a symbol sequence to state sequence and then
find whether the state sequence contains abnormal states. Unlike the previous estimation strategy;,
the decoding strategy is a sort of, somehow, optimization algorithm in which a searching function is
used. Figure 11 illustrates the schematic of anomaly detection using the decoding strategy. In this
strategy, FSM is trained by all sequences that contain both normal and abnormal sequences so the FSM
reflects the system that may run on normal or abnormal patterns. After that, the decoding process
involves searching for the most probable state sequence that the symbol sequence corresponds to.
A greedy-based method is applied in searching in each step so the most possible state is chosen and is
added to the path. The final path is the decoded state sequence. Finally, the model judges a symbol
sequence by its state sequence on whether it contains anomaly states.

: T T
Testing sequences Q) = eeeeee
Dl Dm
Training sequences
T
1)1 >
State sequences
» T Abnormal
FSM a. 1 sequence
.. i - .
——»| Training — [ Searching iy
T b Decoding » abnormal F——»
i T
k
V,___, A (0] states

Figure 11. Schematic of anomaly detection using the decoding strategy.

Algorithm 3 shows the procedures of the decoding-based anomaly detection strategy. Initialize
parameters a;;, by, testing sequence v(t), «;(0) = 1, and path. Then, update a;(t) and in each moment
t, traverse all state candidates and the most possible state in this moment is the one who makes a;(t)
biggest and then add the state into the path until the end of the sequence. After that, scan the decoded
state sequence if there is at least one anomaly state (AS), then the observed sequence is classified in the
negative, anomalous class, otherwise classified in the positive, normal class.

Compared to the estimation strategy, the decoding strategy has some advantages and
disadvantages. First of all, the detection indicator based on the decoding strategy may help the
anomaly detection system sensitivity improve, meaning that it can precisely warn of an anomaly once
it occurs. Besides, it helps system locate anomaly emerging time in high resolution. For example,
a sequence contains 10 samples and the sample interval is 10 min so the length of the sequence is
100 min. If the sequence is abnormal and the two system, estimation-based model and decoding-based
model, both alert, the latter can provide a more precise anomaly occurrence time, for instance, in 20 min
and 60 min possibly but the former can only provide a probability that an anomaly may have occurred.
However, this point may also be a disadvantage of the decoding strategy due to the lack of robustness.
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This detection strategy is a local optimization algorithm that may reach a local minimum point that is
actually not the global optimized solution. It may have searched an utterly different state sequence than
the real one. Furthermore, error rate accumulates with the growth of the searching path, particularly for
a longer length T, and the false positive rate may be very high, meaning that many normal sequences
are classified as anomalies, so the length of the sequence is a critical factor for detection performance.
It indicates the robustness performance of the models. This issue will be analyzed in the next section.

Algorithm 3. Anomaly detection based on the decoding strategy.

Input:
t+ 0, llij, bjk/ U(f), lX](O) =1, pllth — {}
Output:
Classification result Class(v(t))
1 Fort +— t+1
2 j«1
3 Forj«j+1
4 Déj(t) <— b]-kv(t)Zle Otl'(t — 1)al-]-
5 Untilj=c¢
6 J argm]axzx]-(t)
7 Add wj to path
8§ Untilt=T
9  If path contains state (AS)
10 Class(v(t)) < Negative
11 Else Class(v(t)) < positive
12 Return Class(v(t))

5. Experimental Design and Results Analysis

5.1. Performance Evaluation

The data used in this section is from a SOLAR Titan 130 gas turbine power generator on an
offshore oil platform. The data list and symbol distribution are shown in Table 2 and Figure 6. Overall
(79581-T) sequences are used in training and testing by cross validation. The dataset was divided
equally and sequentially into ten folders. Each folder was used in turn as testing data, with the other
nine as training data, until every folder had been tested by the others. Hence the final result consists of
a performance average together with a standard deviation.

The labels of the samples are grouped into positive (normal) and negative (anomaly).
The detection performance is measured by the true positive rate (TP rate) and true negative rate (TN
rate) [42]. Table 4 shows the definition of confusion matrix which measures four possible outcomes.

Table 4. Definition on confusion matrix.

Actual Status Detecting Positive Detecting Negative

Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

The TP rate is defined as the ratio of the number of samples correctly classified as positive to the
number of samples that are actually positive:

TP

TPrate = —
rate = T T EN

(14)
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The TN rate represents the ratio of the number of samples correctly classified as negative to the

number of actual negative samples:
TN

TN + FP"

In this paper, anomaly detection on a gas turbine fuel system is a class imbalanced problem in
that the normal class is much larger than the abnormal class. The performance of imbalanced data
can be measured by AUC, which is the area under the Receiver Operating Characteristic (ROC) curve,
as shown in Figure 12. The ROC curve is a plot of the FP rate on the X axis versus the TP rate on the Y
axis. It shows the differences between the FP rate and the TP rate based on different rules.

TNrate = (15)

1

0.8

0.6

Hit rate

0.4

0.2

0 0.2 0.4 0.6 0.8 1
False alarm rate

Figure 12. Schematic diagram of Area Under ROC Curve (AUC). The surface of the area is the Receiver
Operating Characteristic curve and the area of the shadow is AUC.

5.2. Exemplary Cases and Experimental Results

To illustrate how the detection system works, two exemplary cases are provided. One is a normal
sequence. Another is an abnormal sequence that is in fuel nozzle valve anomaly, which may cause the
fuel flow fluctuation or drop and in turn cause a load drop. The selected sequences, after normalization,
are of length T = 10, with a 10 min sampling interval, for a total 100 min. The anomalous sequence
is shown in Figure 13 as the red sequence, for original parameters ‘Main gas valve demand” and
‘Power’. The two sequences, partitioned into symbols, are described in Figure 14. The routine map is
consisted of seven different symbols and 10 time points. The black row is the normal sequence and
the red dashed line is the anomalous sequence. Besides, the labeled state sequence of normal and
anomalous cases are {NS, NS, NS, ST-, ST-, NS, ST-, ST-, NS, ST-}.and {NS, NS, NS, NS, NS, AS, AS, AS,
NS, NS}, respectively.

0.94+
0.92/

09"

0.88/

086 Anomalies |

0.84 1

082+

L

o

o8-

078 L

Figure 13. An exemplary anomaly sequence.



Energies 2017, 10, 724 15 of 22

ASstate: NS NS NS NS NS AS AS AS NS NS
NS State: NS NS NS ST- ST- NS ST- ST- NS ST-

Symbol Normal ——  Anomaly — —»
SHL | =—\
\
SLL \ A A

S\ A

FRLL \\ LA,
Y 7 7
FDHL = \ / / \
\

\ /
\

FCC —— =

T 1 2 3 4 5 6 7 8 9 10

Figure 14. Comparison between a normal sequence and an anomaly sequence in symbolic description.

The results are generated by the trained FSM and the two detection models, the estimation- and
decoding-based models. Threshold 6 in this model is 0.00743 and the posterior probabilities of normal
and anomalous sequences determined by the estimation-based model are 0.01563 and 0.0009235.
The decoded most probable state sequences calculated by the decoding-based model are {NS, NS,
NS, NS, ST-, ST-, ST-, NS, ST-, NS} and {NS, NS, NS, NS, NS, AS, AS, AS, AS, NS}. The anomalous
sequence contains AS, yet the normal doesn’t. As a result, these two models have both made correct
decisions. The performance of the two models in each data group within the cross-validation is given
in Table 5. It can be seen from the table that the overall performance of the estimation-based model is
better than that of the decoding-based model. Specifically, the estimation-based model’s evaluation in
eight groups for TP rate, six groups for TN rate and eight groups for AUC are better than the other
model. Similarly, Tables 6 and 7 show the evaluation of the confusion matrixes for the two models.
The results illustrate that the estimation-based model outperforms the decoding-based model in overall
accuracy as well as deviation. Therefore, it can be concluded that in terms of T = 10, 6 = 0.00743, the
estimation-based model can resolve anomaly detection in gas turbine fuel systems more efficiently.
However, as analyzed earlier, the threshold 8 and length of sequence can drastically influence detecting
performance. As a result, several impacts need to be further discussed.

Table 5. Performance of the two models in each data group.

Model Estimation-Based Model Decoding-Based Model

Measurement TP Rate TN Rate AUC TP Rate TN Rate AUC
1 0.9577 0.8977 0.9277 0.9478 0.9009 0.9244
2 0.9692 0.9052 0.9372 0.954 0.8938 0.9239
3 0.9549 0.906 0.9305 0.9393 0.9032 0.9213
4 0.9617 0.9111 0.9364 0.9336 0.8931 0.9134
5 0.9679 0.8986 0.9333 0.9334 0.9052 0.9193
6 0.9549 0.9043 0.9296 0.9567 0.9089 0.9328
7 0.9574 0.9039 0.9307 0.9445 0.9188 0.9317
8 0.9488 0.9101 0.9295 0.9444 0.8976 0.921
9 0.9699 0.908 0.939 0.9587 0.8861 0.9224
10 0.9442 0.9164 0.9303 0.9487 0.8905 0.9196

Mean value 0.9587 0.9061 0.9324 0.9461 0.8998 0.9229

Table 6. Performance of the estimation-based model.

Actual status Detecting Normal Detecting Anomaly

Normal 0.9587 £ 0.0086 0.0413 £ 0.0086
Anomaly 0.0939 £ 0.0056 0.9061 + 0.0056
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Table 7. Performance of the decoding-based model.

Actual status Detecting Normal Detecting Anomaly
Normal 0.9461 + 0.0089 0.0539 + 0.0089
Anomaly 0.1011 £ 0.0097 0.8989 =+ 0.0097

5.3. Threshold Determination Strategy

Aside from training a FSM, a core problem of building an estimation-based detection model is to
determine a proper threshold 6. In a particular sequence length, we can find a most suitable value
that can classify the testing sequence well. Actually, with different thresholds, we will gain different
classification results, as is shown in Figure 15, which is a ROC curve of the estimation-based model
with different thresholds. The optimized threshold is one of them on the curve.

A sequence is judged to be anomalous when its posterior probability is less than 8. When 6 =0,
the TN rate, the correct detected anomalous sequence among all anomalies, is 0 initially. Then the TN
rate increases with the growth of 6 to 1 when 6 reaches a certain point. On the contrary, the TP rate is
1 initially when 6 = 0 since all the posterior probabilities are over 0. Then the TP rate starts to decrease
with the growth of 6. This regularity is illustrated in Figure 16. One concern is that both the TP rate
and TN rate are important for the model performance, so the most suitable threshold should be found
in a synthesized highest place, which is measured by the average accuracy that is the mean value of
the TP rate and TN rate. In this experiment, we searched the 6 in step of 0.0001 until it reached the
peak average accuracy when 6 = 0.0074.

A - A

—&A— ROC curve

05

Correct detection rate

0 0.1 0.2 0.3 0.4 0.5
False alarm rate

Figure 15. ROC curve of the estimation-based model with different thresholds.

1 A
09} ‘*,_*“ —+-___*~\ 4
e * .
08 g% *®
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07 /) A 1
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806 ,,l —E— TN rate 4
c - % - Average
< 1 (T T T AVErage | \
E 05% 2
(<)
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Figure 16. Performance change with increasing threshold.
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The optimized threshold will drop along with the change of length T because the posterior
probabilities are continuously multiplying. The probabilities drop exponentially as T increases.
Figure 17 shows optimized thresholds for different sequence lengths.

0.35 T T T T 10°

03

0.25

02

0.15 [

Optimized threshold

0.1

Optimized threshold in logarithmic coordinate

0.05 [

0 o 1010 . . . . >
0 20 40 60 80 100 0 20 40 60 80 100
Length Length

(1) Y axis is Cartesian coordinate (2) Y axis in Logarithmic coordinate

Figure 17. Optimized thresholds for different lengths of the sequence.

Figure 17(1) is depicted in Cartesian coordinates and Figure 17(2) is depicted in logarithmic
coordinates in the Y axis. It can be clearly seen that the 6 has an exponential tendency.

5.4. Comparison between the Two Models on Different Length of Sequence

Another main factor that influences the performance of the detection models with the length of
sequence. The robustness performance of the two models are measured by AUC for different sequence
lengths. A model with high robustness performance will have a relatively stable AUC with the growth
of length T, and vice versa.

Figures 18 and 19 illustrate the comparison between the estimation-based model and
decoding-based model in TN rate and TP rate for different lengths of sequence, respectively. With the
growth of length, the TN rate and TP rate of estimation-based model gradually decrease and then
become stable after about T > 60, steadying in 0.82 in TN rate and 0.89 in TP rate. However, the
performance of the decoding-based model seems different to that of the estimation-based model.
The TN rate of the decoding-based model rises to nearly 1 when the length T > 30, whereas the
TP rate decreases drastically when T > 20. The tremendous difference between the two models is
ascribed to several reasons. First, the detection mechanisms of the two models are not confirmed.
The estimation-based model is built upon the premise of a normal pattern which is constructed by a
normal pattern based FSM, while the decoding-based model is built upon the trained FSM containing
normal and anomalous sequences. It points out that estimation-based model concerns those data
without anomalies while the decoding-based model concerns all the data whatever class they belong to.
Second, the detection indicator used in the estimation-based model is posterior probabilities whereas
the detection indicator used in the decoding-based model is states. With the growth of length T, the
sequences become longer and more complicated for classification using a threshold because there
are more single symbols in a sequence. As a result, the performance of the estimation-based model
decreases and eventually becomes steady because of a suitable threshold and classification capability
of FSM. Regarding the decoding-based model, it is more complicated than the estimation-based model.
With the growth of length T, the sequences become longer, but it is easier to find a possible abnormal
state. A sequence is judged to be anomalous only if there is at least one abnormal state. The longer
the sequence is, the more probable it is that abnormal states will hide, so the TN rate rises when the
length is growing. On the contrary, it is easy to understand that long, complicated sequences would
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lead to the model’s incorrect judgement because the more states to be decoded, the higher the possible
of misjudgement, so the TP rate decreases along with the growth of T.

1 2 = ‘ ©

—A— Estimating Model
0.95 |- —O— Decoding Model | -{

09 |

0.85 4

08 q

TN rare

0.75 q

0.7 |

0.65 - 1

06 I L L L
0 20 40 60 80 100

Length

Figure 18. Comparison between the estimation-based and decoding-based models on TN rate.
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Figure 19. Comparison between the estimation-based and decoding-based models on TP rate.

Based on the points presented above, we can draw the following conclusion: the estimation-based
model has a better robustness performance than the decoding-based model while the decoding-based
model may yield better performance in particular intervals. Figure 20 shows the AUC comparison
between the estimation-based model and decoding-based model, which is an evaluation measurement
that reflects the overall classification performance of a model for class imbalanced problems. The AUC
of the estimation-based model gradually decreases as the TP rate and TN rate along with the growth of
length T. However, the AUC of the decoding-based model rises to a peak value when T = 20 and then
starts to drop. In this figure, we can see that before T = 12, the performance of the estimation-based
model is better than that of the decoding-based model. Between T = 12 and 53, the decoding-based
model outperforms the estimation-based model. After T > 53, the estimation-based model is much
more efficient than the decoding-based model. In conclusion, if we need a short term anomaly
detection system, e.g., with less than a 1 h observation window, the estimation-based model will
be satisfactory. If a long term anomaly detection system is needed, e.g., for 1 h to 8 h, then the
decoding-based model will be more efficient. For an ultra-long term anomaly detection system, e.g.,
over 8 h, an estimation-based model should be used.



Energies 2017, 10, 724 19 of 22

—A— Estimating Model
—O— Decoding Model

0.95
0.9
o]
D 085
<
0.8 -

0.75

0.7

0 20 40 60 80 100
Length

Figure 20. Comparison between the estimation-based model and decoding-based model AUC.

The main reason that causes the difference between the two models is that in the estimation-based
model, FSM is used to calculate posterior probabilities for normal sequences, so it is trained by
completely normal data. When FSM are calculating probabilities for testing sequences that are
anomalous data, the results would be much lower than that of normal data. Therefore, optimizing
a proper threshold classifying two classes would be of great use for an efficient model performance.
In the decoding-based model, FSM is used to find the most probable state sequence of an observed
sequence. The main task of FSM is to detect anomalous states efficiently so it is trained by both normal
and abnormal data. Once an anomalous state is detected, the sequence is judged to be an anomaly.

5.5. Comparison of the Different Models

In this Section, four models are compared to our proposed models, which are the fuzzy logic
method (FL) [21], extended Kalman filtering (EKF) [43], support vector machine (SVM) [14] and back
propagation network (BPN) [12]. Fuzzy set theory and fuzzy logic provide the framework for nonlinear
mapping. Fuzzy logic systems have been widely used in engineering applications, because of the
flexibility they offer designers and their ability to handle uncertainty. Extended Kalman filtering is
widely used in state estimation and anomaly detection. It uses measurable parameters to estimate
operating state by state functions and measurement functions for 1-D non-linear filtering. Supported
vector machine is an algorithm that emphasizes structural risk minimization theory. An SVM can
operate like a linear model to obtain the description of a nonlinear boundary of a dataset using a
nonlinear mapping transform. The perceptron learning rule is built by a hyperplane alone, with a
group of weights assigned to each attribute. Data are classified into one class when the sum of the
weights of an attribute is a positive number and into another class when the sum is a negative number.
In the back-propagation network, attributes are reweighted if the samples are classified incorrectly
until the classification is correct.

The four models can be divided in two categories: fuzzy logic and extended Kalman filtering are
model-based approaches, and support vector machine and back propagation network are machine
learning-based approaches. The estimation-based model (EBFSM) and decoding-based model (DBFSM)
are in sequential length T = 10. The overall accuracy is AUC instead. The experimental result is shown
in Table 8. It can be seen that the proposed models have a better performance than any other compared
models, though the compared four models have similar performance. Concretely, in 10 different
datasets, the estimation-based model outperforms the compared models in nine groups and the
decoding-based model outperforms the compared models in eight groups. The two proposed models
have about 3-5% higher accuracy than any other models.
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Table 8. Comparison of different models for overall accuracy.

Models Dataset FL EKF SVM BPN EBFSM DBFSM

1 0.8842 0.8709 0.9043 0.8823 0.9277 0.9244
2 0.8788 0.9033 0.8922 0.8945 0.9372 0.9239
3 0.9003 0.912 0.8933 0.9321 0.9305 0.9213
4 0.8679 0.8457 0.9208 0.9011 0.9364 0.9134
5 0.8614 0.8268 0.8822 0.8875 0.9333 0.9193
6 0.9099 0.8897 0.9012 0.9047 0.9296 0.9328
7 0.9071 0.8872 0.9188 0.9301 0.9307 0.9317
8 0.8922 0.9099 0.9189 0.8913 0.9295 0.921

9 0.8766 0.8962 0.9154 0.8489 0.939 0.9224

10 0.8999 0.8645 0.8989 0.8689 0.9303 0.9196
Mean value 0.8878 0.8806 0.9046 0.8941 0.9324 0.9229

6. Conclusions

The essential issue of anomaly detection is how to detect sensitively and effectively when and how
an anomaly would happen. Conventional anomaly detection methods for points or collective anomalies
are mostly established based on continuous real-time sensor observations. Noise, operating fluctuation
or ambient conditions may be all contained in raw data, which make anomalous observations appear
normal. The anomalous features often hide in the structural data which reflects various patterns
of the device operating. Thus, we first partitioned the original data into classes by using K-means
clustering and symbolized each class to construct a sequence-based feature-structure which intrinsically
represents the operating patterns of a device. Second, we built the core computing unit for anomaly
detection, finite state machine, on a large quantity of training sequential data to estimate posterior
probabilities or find most probable states. Two detection models were generated, an estimation-based
model and decoding-based model. The two models on anomaly detection for gas turbine fuel system
have their own advantages and weakness, concretely concluded as follows:

(1) The estimation-based model has strong robustness since the performance is highly stable when
the sequence length is growing. However, in the decoding-based model, the performance varies
with different sequence lengths. The anomalous sequences are easier to detect in longer lengths
than in shorter one, but there will be a higher false alarm rate at longer lengths, which means
many normal sequences are misclassified as anomalies.

(2) The decoding-based model can help us to locate anomalies occurring point with a high time
resolution, which means it can tell us precisely what symbol points are in an anomalous state
rather than only probabilities of sequences made by the estimation-based model.

The estimation-based model is more suitable for anomaly detection in gas turbine fuel systems
when the observation window is less than 1 h or over 8 h, whereas the decoding-based model is more
suitable when the observation window is between 1 and 8 h, so it may help people choose the most
efficient detection model for different demands.

Further work may be concentrated on algorithm optimization and application extension. As is
described above, the decoding-based model uses a local searching algorithm which may cause high
deviation in some circumstances, though it could be operated at a high computing speed, so the
algorithms need to be optimized. We also need to apply this method to other domains of gas turbine
anomaly detection, such as gas path, combustion components, etc. All of these need further attention.
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