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Abstract: A method for simultaneously visualizing the two-dimensional distributions of temperature
and soot volume fraction in an ethylene flame was presented. A single-color charge-coupled
device (CCD) camera was used to capture the flame image in the visible spectrum considering
the broad-response spectrum of the R and G bands of the camera. The directional emissive power
of the R and G bands were calibrated and used for measurement. Slightly increased temperatures
and reduced soot concentration were predicted in the central flame without self-absorption effects
considered, an iterative algorithm was used for eliminating the effect of self-absorption. Nine different
cases were presented in the experiment to demonstrate the effects of fuel mass flow rate and oxygen
concentration on temperature and soot concentration in three different atmospheres. For ethylene
combustion in pure-air atmosphere, as the fuel mass flow rate increased, the maximum temperature
slightly decreased, and the maximum soot volume fraction slightly increased. For oxygen fractions
of 30%, 40%, and 50% combustion in O2/N2 oxygen-enhanced atmospheres, the maximum flame
temperatures were 2276, 2451, and 2678 K, whereas combustion in O2/CO2 atmospheres were 1916,
2322, and 2535 K. The maximum soot volume fractions were 4.5, 7.0, and 9.5 ppm in oxygen-enriched
O2/N2 atmosphere and 13.6, 15.3, and 14.8 ppm in oxygen-enriched O2/CO2 atmosphere. Compared
with the O2/CO2 atmosphere, combustion in the oxygen-enriched O2/N2 atmosphere produced
higher flame temperature and larger soot volume fraction. Preliminary results indicated that this
technique is reliable and can be used for combustion diagnosis.

Keywords: oxy-combustion; soot volume fraction; temperature measurement; flame image processing

1. Introduction

Numerous thermal power plants in China use coal as fuel. When dealing with technologies
related to coal combustion, particulate removal and CO2 reduction have to be considered. A potential
technique for CO2 capture is oxy-combustion of coal. O2/CO2 combustion is a process of burning
coal in a mixture of oxygen and recycled flue gas, generating a CO2-concentrated sequestration-ready
flue gas [1,2]. Success in the implementation of O2/CO2 combustion in coal-fired boilers depends on
understanding the differences after the replacement of N2 with CO2. The difference in the thermal
properties of N2 and CO2 renders O2/CO2 combustion significantly different from air combustion.
Therefore, CO2 participates in the chemical reaction and affects the combustion characteristics, altering
the flame temperature, soot, and NOx formation [3–6]. Knowledge of the temperatures and soot
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concentrations in soot flames can provide valuable information to elucidate the processes involved in
soot production.

The optical pyrometer has proven to be a practical measurement technique that can provide the
distributions of flame temperatures and soot volume fractions in diffusion flames. Two-dimensional
(2-D) distributions of soot volume fraction in hydrocarbon flames can be obtained by light
extinction [7–9], and 2-color pyrometry combined with laser-induced incandescence (LII) has been
proposed by Snelling et al. [10] for measurements of absolute soot volume fraction. Kotzagianni
et al. [11] applied laser-induced breakdown spectroscopy (LIBS) for uniform methane–air mixtures
spanning a wide range of compositions and for turbulent non-premixed and premixed flames. Flame
image processing techniques based on a digital camera used for pyrometric measurements have been
used to measure flame temperature and radiative properties [12–21]. In a previous study [18], a color
digital camera was used to capture the flame image in visible spectrum. With consideration of the
broad response spectrum of the R, G, and B bands of the camera, the directional radiative intensity of
the R and G bands were calibrated and used to reconstruct the 2-D distributions of temperature and
soot volume fraction of the flame by solving the radiative transfer equation.

In the present study, the inversion of the 2-D distributions of temperature and soot volume
fraction from visible flame images obtained with a digital camera is experimentally investigated
considering the effect of self-absorption. Meanwhile, a high-resolution lens was used, the flame
images of different flame height were composited together using image processing techniques, and
the results of the high-resolution measurement were obtained. A co-flow laminar diffusion flame
burner under atmospheric pressure was designed to generate ethylene flames in pure air, O2/N2, and
O2/CO2 oxygen-enhanced atmospheres. First, flame radiation spectrum and color flame images in
different combustion conditions were captured and analyzed. Subsequently, the effect of fuel flow rate
and oxygen concentration on temperature and soot concentration in the three different atmospheres
was discussed.

2. Measurement Principle

The measurement of temperature and soot volume fraction is based on the radiative emission
from a soot particle, and the line-of-sight radiative intensity is determined by soot, which emits and
absorbs radiation:

Iλ =
∫ l f

0
κλ(l)Ib,λ(l) exp[−

∫ l f

l
κλ(l′)dl′]dl (1)

where Ib,λ(l) = 2πhc2/λ5
(

ehc/λkT(l) − 1
)

is the monochromatic blackbody radiative intensity, c is the
speed of light, h is Planck’s constant, k is the Boltzmann constant. κλ is the absorption coefficient

(m−1). κλ(l)Ib,λ(l) is defined as the spectral emission source term, and exp[−
∫ l f

l κλ(l′)dl′] is the
self-absorption term. A color CCD camera is used to obtain flame images in visible spectrum. The R,
G, and B data of the flame images represent the relative radiation intensities of the flame. A blackbody
furnace is used to calibrate the relationship between the absolute radiation intensity and the raw R, G,
and B data of the image obtained by the camera [18], which will be described in a later section. With
consideration of the spectral response of the camera, the absolute radiation intensity obtained by the
camera from the flame can be expressed as follows:

Ei =
∫ λ2

λ1

ηi,λ Iλdλ =
∫ λ2

λ1

ηi,λ

∫ l f

0
κλ(l)Ib,λ(l) exp[−

∫ l f

l
κλ(l′)dl′]dldλ (2)

where i = (R, G, B), and ηi,λ is the relative spectral response efficiency of the camera, and the method
used to obtain the spectral characterization of the camera is described in a subsequent section.
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To determine the local temperatures T(l) and the soot spectral absorption coefficient κλ(l),
Equation (2) is rewritten as:

Ei =
∫ l f

0
∫ λ2

λ1
ηi,λκλ(l)Ib,λ(l) exp[−

∫ l f
l κλ(l′)dl′]dλdl

=
∫ l f

0 Hi(l) exp[−
∫ l f

l κλ(l′)dl′]dl
(3)

where Hi(l) =
∫ λ2

λ1
ηi,λκλ(l)Ib,λ(l)dλ is the emission source term, and exp

[
−
∫ l f

l κλ(l′)dl′
]

represents
the self-absorption term.

The self-absorption effect is disregarded during the initial calculation; thus, Equation (3) can be
written as:

ER =
∫ l f

0 HR(l)dl

EG =
∫ l f

0 HG(l)dl
(4)

In the current study, Tikhonov regularization similar to that in the literature [15,22,23] is used to
reconstruct HR(l) and HG(l). After HR(l) and HG(l) are obtained, the local flame temperatures and
the soot absorption coefficients can be derived from the ratio of HR(l) toHG(l), as shown below:

HR(l)
HG(l)

=

∫ λ2
λ1

ηR,λ · κλ(λ) · Ibλ(λ, T)dλ∫ λ4
λ3

ηG,λ · κλ(λ) · Ibλ(λ, T)dλ
=

∫ λ2
λ1

ηR,λ · κλ(λ) · 2πhc2/λ5
(

ehc/λkT(l) − 1
)

dλ∫ λ4
λ3

ηG,λ · κλ(λ) · 2πhc2/λ5
(
ehc/λkT(l) − 1

)
dλ

(5)

According to the Rayleigh approximation, the soot volume fraction with its spectral absorption
coefficient is estimated as follows [24,25]:

fv = κλ · λ/(6π · E(m)) (6)

where E(m) is a function of the real and imaginary parts of the refractive index m, expressed as:

E(m) = Im
∣∣∣∣m2 − 1
m2 + 2

∣∣∣∣ = 6nk
(n2 − k2 + 2)2 + 4n2k2 (7)

E(m) is typically regarded as a constant independent of the wavelength [18,24,25] with a
magnitude of 0.26 in the visible region.

Considering Equation (6) and Hi(l) =
∫ λ2

λ1
ηi,λκλ(l)Ib,λ(l)dλ, the emission source terms HR(l)

and HR(l) can be rewritten as:

HR(l) =
∫ λ2

λ1
ηR,λ

fv(l)·6π·E(m)
λ Ib,λ(l)dλ

HG(l) =
∫ λ4

λ3
ηG,λ

fv(l)·6π·E(m)
λ Ib,λ(l)dλ

(8)

Thus, Equation (5) can be expressed as follows:

HR(l)
HG(l)

=

∫ λ2
λ1

ηR,λ · E(m)
λ · 2πhc2/λ5

(
ehc/λkT(l) − 1

)
dλ∫ λ4

λ3
ηG,λ · E(m)

λ · 2πhc2/λ5
(
ehc/λkT(l) − 1

)
dλ

(9)

Equation (9) contains only one unknown T(l), which can be solved using the Newton-type
iterative algorithm. After the temperatures T(l) are obtained, the soot volume fractions fv(l) can be
calculated from Equation (8), and the absorption coefficient κλ(l) can be expressed using Equation (6).

Notably, κλ(l) and T(l) are intermediate computational results; the self-absorption term

exp
[
−
∫ l f

l κλ(l′)dl′
]

is disregarded. In the current study, the self-absorption effect is corrected using the
method similar to that in Ref. [24] in multi-wavelength emission tomography for flame temperature
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and soot volume fraction measurements. The self-absorption term exp
[
−
∫ l f

l κλ(l′)dl′
]

can be obtained
after κλ(l) is determined, and Equation (3) can be expressed as a matrix equation:

ER = ∆l × Hself × HR = ∆l′ × HR
EG = ∆l × Hself × HG = ∆l′ × HG

(10)

where ∆l is the length of the path, Hself is the self-absorption term, ∆l′ is the updated length of the
path that the self-absorption term considers. The reconstructed emission source terms HR and HG can
be updated using another instance of Tikhonov regularization, and the updated T(l) and κλ(l) can be
recalculated by solving Equations (6), (8), and (9). After several iterations, the absorption coefficient
κλ(l) and the temperature T(l) are finally calculated to reach convergence so that the self-absorption
effect is considered. The whole solution procedure to simultaneously reconstruct 2-D distributions of
temperature and soot volume fraction is shown in Figure 1.
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Figure 1. Flow diagram of iterative reconstruction. Figure 1. Flow diagram of iterative reconstruction.

3. Measurement Algorithms Validated by Simulation

To validate the performance of the proposed measurement method, some measurement
simulations of a fictitious flame with a given temperature and a soot volume fraction were conducted.
The temperature of flame and soot volume fraction was measurement by flame emission spectrum
taken from Ref. [24]. The relative spectral response of the CCD camera was simply expressed by a
Gaussian function during simulation, and by using Equation (2), the absolute radiation intensity of the
flames ER and EG could be obtained, as shown in Figure 2.
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Figure 2. Measurement simulation of the absolute radiation intensity of the flame (a) at 30 mm high;
and (b) at 50 mm high.

The reconstructed emission source terms HR and HG could be calculated using ER and EG,
respectively, on the basis of Tikhonov regularization. The initial values of T(l) and fv(l) could be
obtained in accordance with Equations (6), (8), and (9), and those intermediate results of T(l) and fv(l)
could be used for iterative calculation later. The solution reached convergence as iterations increased,
and the convergence value was the final result. In the current study, the convergence was evaluated
using |∆ fv|, and the iterations were considered to be completed if |∆ fv| ≤ 0.001. These changes in
the value of the soot volume fraction at a height of 30 mm during iterative calculation are shown in
Figure 3.
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As shown in Figure 3, the calculation value of the soot volume fraction quickly approximates
the real value after only one iteration, and the difference between the soot volume fraction calculated
using the iterative algorithm and the soot volume fraction in the real-life scenario is not discernible
after five iterations. Figure 4 shows the results of the comparison when self-absorption effects are
considered and disregarded.
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As shown in Figure 4, both the temperature and the soot volume fraction can be reconstructed
accurately when the self-absorption term is considered. The calculation errors of the temperature and
the soot volume fraction increase gradually near the center of the flame when the self-absorption term
is disregarded. Without the self-absorption term considered, the temperature decreases but the soot
volume fraction increases in the central flame. At the flame height of 30 mm, the relative errors in the
calculation of the temperature and the soot volume fraction were 3% and 23%, respectively. Thus, the
reconstructed results were affected by the self-absorption term and must thus be considered. With the
aforementioned results, the performance of the proposed method of flame measurement was proven.

4. Experimental Setup and Calibration

4.1. Experimental Setup

The schematics for burners and experimental equipment is shown in Figure 5. The co-flow burner
is similar to the one designed by the National Research Council Canada. The burner consists of a fuel
tube with an inner diameter of 10.9 mm, centered in an oxidizer nozzle with an inner diameter of
88 mm and an outer diameter of 100 mm. Electronic mass flow controllers (Type: Sevenstar CS230,
Sevenstar Electronics Mass Flow Meter Branch, Beijing, China) with a long-term accuracy of ±1.0% S.P.
(≥35% F.S.) governed the flow rates of all gases, and these gases are delivered at room temperature
and atmospheric pressure (294 K, 1 atm). Axisymmetric laminar diffusion ethylene flames in pure air,
O2/N2, and O2/CO2 oxygen-enhanced atmospheres were generated by the burner. Figure 6 presents
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a photo of the experimental setup. Table 1 summarizes the flow rate of gases in the nine different
cases. The adiabatic flame temperatures in Table 1 were calculated using CHEMKIN PRO (ANSYS,
Inc., Canonsburg, PA, USA).

The visible flames were captured using a digital camera (Type: Manta G-504, Allied Vision
Technologies, Stadtroda, Germany). The camera has a Sony ICX655 sensor (Sony Corporation, Tokyo,
Japan) to receive R, G, and B data. The size of the sensor is 2/3 inch with about one million effective
pixels (1226 × 1028). Flame images were saved in a 12-bit lossless compressed raw format. To improve
the camera resolution, a special telecentric lens (Type: Computar TEC-55, Computar, Tokyo, Japan)
with an effective aperture of 33.0 mm was used. The distance between the camera lens and the nozzle
center of the burner was 14 cm. In this situation, nearly only the parallel incident light was able to enter
the lens, and the barrel distortion of the image was relatively weak. The resolution of the flame image
was 64 pixels/mm. To capture the whole flame, the camera was placed on the platform lift, 20 frame
flame images were captured at each flame height, and the whole flame image could be obtained by
image processing techniques. Figure 7 shows five flame images with different heights and a single
composite image.
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Table 1. Experimental conditions.

Case χO2

Tad
(K)

QC2 H4,1
mL/ min

Qair,0
L/ min

QO2,0
L/ min

QCO2,0
L/ min

Case1 21% 2369.0 132 284 0 0
Case2 21% 2369.0 150 284 0 0
Case3 21% 2369.0 194 284 0 0
Case4 30% 2647.6 194 252 32 0
Case5 40% 2818.6 194 216 68 0
Case6 50% 2926.8 194 180 104 0
Case7 30% 2278.0 194 0 85 199
Case8 40% 2517.8 194 0 114 170
Case9 50% 2684.8 194 0 142 142

Note: Tad represents the adiabatic flame temperature, calculated using CHEMKIN PRO.
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Figure 7. Five different parts of a flame (a,b) the composite image.

4.2. Calibrations of the Digital Color Camera

Consumer digital cameras are not specifically designed to be used as scientific detectors. To further
characterize the cameras, calibration was required. In a previous study on image processing techniques,
the R, G, and B data of a pixel in the color digital camera are not proportional to the monochromatic
radiative intensities because of the broad spectral response spectra of the R, G, and B bands of the color
camera [16–19]. To characterize the relative spectral response of the camera, an experiment similar
to Ref. [26] was performed. As shown in Figure 8a, the light source is a 1000 W xenon lamp (Type:
OBB Tunable KiloArc, HORIBA Group, Kyoto, Japan), the monochromatic light is obtained with a
monochromator, and the light from the monochromator is coupled through a diffuser for the light
to be as uniform as possible. The monochromatic light was imaged onto the camera in the visible
spectrum of 380–800 nm (negligibly sensitive to non-visible wavelengths for the camera used). The
bandwidths of every wavelength are set to 2 nm, although this is not sufficiently narrow for an optical
bandwidth. However, this width can sufficiently characterize the relative spectral response of the
camera. To obtain sufficiently detailed relative spectral response sensitivity curves, 85 images were
taken at each wavelength in steps of 5 nm. Figure 8b shows the typical monochromatic radiation
image. Meanwhile, a detector (Trap M), in addition to the camera, whose relative spectral response
curves was known, was used to capture monochromatic images controlled by the computer. By using
the method described in Ref. [26], the relative spectral response of the camera was obtained. Figure 9
shows the results for the camera (Type: Manta G-504) with lens (Type: Computer TEC-55, Computar,
Tokyo, Japan).
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Figure 9. Spectral response curves of the R, G, and B bands of the color digital camera (Type: Manta
G-504).

A blackbody furnace (Type: Mikron Model M330) with a temperature range of 300 ◦C to 1700 ◦C
(temperature uncertainty 0.25% of reading ±1 ◦C) was used to calibrate the directional emissive
powers and the raw data of the R and G bands of the camera, as shown in Figure 10. The variations of
log(ER) and log(EG) with log(R/exposure time) and log(G/exposure time), respectively, are shown
in Figure 11.Energies 2017, 10, 750 10 of 17 
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5. Experimental Results and Analysis

The flame images of ethylene combustion in nine different cases are shown in Figure 12. Notably,
these images represent the unsaturated flame images, which were used for reconstructing the flame
temperature and soot volume fraction. The exposure times were as follows: case1 to case3, 65,000 µs;
case4 to case9, 28,000 µs, 12,000 µs, 8500 µs, 60,000 µs, 15,000 µs, 8500 µs, respectively.Energies 2017, 10, 750 11 of 17 
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oxygen-enhanced atmospheres.

5.1. Pure Air Atmosphere

Case1 to case3 were flame combustion in different fuel flux in pure air atmosphere. The maximum
temperatures and soot volume fraction from case1 to case9 are summarized in Table 2. The condition
of case3 was similar to that in the literature [24,27]. The C2H4 fuel flow rate was set to the smoke point,
194 mL/min (21 ◦C, 1 atm), and the air co-flow was set to 284 L/min. The maximum soot volume
fraction of soot was about 7.8 ppm, and the maximum flame temperature was about 2058 K. The
profiles of the temperature and soot volume fraction in the present study were in good agreement
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with Ref. [24,27], as shown in Figure 13. The detailed 2-D distribution of temperature and soot volume
fraction for case1 is shown in Figure 14. The measurement results for case1 to case3 are shown in
Figure 15. Theoretical calculations as those in Table 2 revealed that the adiabatic flame temperature of
the three tested cases was equal to 2369.0 K; however, the actual flame temperature was determined
by both the chemical reaction heat and the radiant heat. The flame length increased with fuel flow,
and soot formation was enhanced because of a lack of oxygen, causing an increase in radiant heat loss.
Therefore, the maximum temperature of case1 was higher than that in case2 and case3. Table 2 also
shows that the maximum soot volume fractions of case1 and case2 are less than that of case3 because
case3 was a smoke point; the incomplete burning is enhanced as fuel flow increases owing to lack
of oxygen.

Table 2. Maximum temperatures and soot volume fractions of the nine cases.

Case χO2
Lf(mm) Tad(K) Tmax(K) fv(ppm)

Case1 21% 40.1 2369.0 2119 6.8
Case2 21% 51.5 2369.0 2105 7.3
Case3 21% 71.0 2369.0 2057 7.8
Case4 30% 46.2 2647.6 2276 13.6
Case5 40% 29.0 2818.6 2451 15.3
Case6 50% 21.0 2926.8 2678 14.8
Case7 30% 50.9 2278.0 1916 4.5
Case8 40% 30.7 2517.8 2322 7.0
Case9 50% 21.7 2684.8 2535 9.5Energies 2017, 10, 750 12 of 17 
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5.2. O2/N2 Oxygen-Enhanced Atmosphere 
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concentration in O2/N2 oxygen-enhanced atmosphere. This trend agrees with the Roper model. 
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owing to increases in diffusive oxygen exchange with increasing oxygen concentration. 
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increasing oxygen. 

Figure 15. 2-D distributions of temperature T (K) and soot volume fraction (10−6) for C2H4 combustion
in pure air atmospheres.

5.2. O2/N2 Oxygen-Enhanced Atmosphere

As shown in Figure 12, the luminous flame heights are depicted with increasing oxygen
concentration in O2/N2 oxygen-enhanced atmosphere. This trend agrees with the Roper model.
According to Roper’s approach [29], a jet diffusion flame ends on the symmetry axis at the point where
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oxygen and fuel meet at the stoichiometric ratio, and the point declines along the centerline owing to
increases in diffusive oxygen exchange with increasing oxygen concentration.

In Figure 16, the flame temperature contours and soot volume fractions as the oxygen fraction
changes from 30% to 50% are plotted. As shown in Figure 16, as the oxygen mole fraction increases,
the high-temperature region transitions from the relatively lower wings of the flame to the tip of the
flame along the centerline. Meanwhile, the high concentration of the soot region is located in the
wings of the flame. The use of the adiabatic flame temperature as the characteristic flame temperature
was verified [28,30]. The evidence for the correlation between the adiabatic flame temperatures and
the measured maximum temperatures are illustrated in Table 2. As indicated in the table, both the
maximum flame temperature and the adiabatic flame temperature increase with increasing oxygen.

Table 2 also suggests that the maximum soot volume fraction initially increases and then decreases
with increasing oxygen, and the maximum soot volume fractions are 13.6, 15.3, and 14.8 ppm.
This occurrence was attributed to the competition between early nucleation, surface growth, and
oxidation [31,32]. The increase in oxygen concentration leads to an increase in peak flame temperature.
Such an increase promotes the pyrolysis of the fuel, resulting in the production of hydrocarbon radicals
and H atoms, which enhance soot formation. Increased oxygen concentrations also increase the flame
temperature, and soot surface growth rates are increased. However, the increased presence of oxygen
promotes oxidative mechanisms because of the attack of soot particles by OH and O radicals, tending
to diminish soot concentrations.Energies 2017, 10, 750 14 of 17 
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5.3. O2/CO2 Oxygen-Enhanced Atmosphere

Similar to ethylene combustion in O2/N2 oxygen-enriched atmosphere, the height of the flame
decreased, along with increasing oxygen concentration. A comparison of case7 to case9 in Table 2
suggests that partial replacement of N2 with the same concentration of CO2 caused a slight reduction
in flame height.

Figure 17 present the measured distributions of temperature and soot volume fraction for case7 to
case9. Results in Figure 17 indicate that the high-temperature region transitioned from the wings of the
flame to the tip of the flame along the centerline. This occurrence was similar to combustion in O2/N2
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oxygen-enriched atmosphere. However, the maximum soot volume fraction steadily increased as the
oxygen fraction increased, compared with the O2/N2 oxygen-enriched atmosphere. Table 2 shows
that the maximum temperatures are 1916, 2322, and 2535 K for case7, case8, and case9, respectively.
The maximum temperatures are 2276, 2451, and 2678 K for case4, case5, and case6. The reason is that
the specific heat capacity of CO2 is larger than that of N2, which results in a significant decrease in
flame temperature.

Compared with combustion in O2/N2 oxygen-enriched atmosphere, the maximum soot volume
fractions also decreased with the same mole fraction of O2. Table 2 reveals that the maximum soot
volume fractions are 4.5, 7.0, and 9.5 ppm for case7, case8, and case9. Meanwhile, the maximum
soot volume fractions are 13.6, 15.3, and 14.8 ppm for case4, case5, and case6. The decrease in peak
temperature results from weakened fuel oxidation. The decrease in flame temperature causes a
decrease in the fuel pyrolysis, which leads to a further decline in C2H2 and H concentrations, which
inhibit soot formation [32]. According to [3,33,34] CO2 addition exerts chemical effects, in addition to
thermal effects, on the reduction in soot formation. The chemical mechanism of CO2 addition might
be to promote the concentrations of oxygen atom and hydroxyl in order to increase the oxidation of
soot precursors in soot-forming regions. In a real-life scenario, these effects occur simultaneously
and are intimately coupled. Numerical simulation results [3] suggest that the presence of CO2 in the
combustion environment can directly influence the chemical reduction of soot and PAH production
tendencies. By promoting the main reaction CO2 + H→ CO + OH, CO2 enhances the presence of OH
radicals in the post-flame zone, which can be responsible for the oxidation of PAH and soot and most
of the chemical destruction of their gaseous precursors.
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6. Conclusions

A method for simultaneously visualizing 2-D distributions of temperature and soot volume
fraction in an ethylene soot flame was presented. The radiation visible flame images were used for
the measurements. Compared with previous studies, the effect of self-absorption was specifically
considered, and the distributions of 2-D temperature and soot volume fraction were obtained.
High-resolution images of the flame (1 mm/65 pixels) were obtained using image processing
techniques, and those images were used for measurements by solving the radiative transfer equation
with iterative reconstruction.
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This study evaluated the effects of fuel flow rate and oxygen concentration on the temperature
and soot concentration in three different atmospheres. The experiment results indicates that for
combustion in a pure air atmosphere, the maximum temperature slightly declined, and the maximum
soot volume fraction slightly increased as the fuel mass flow rate increased. For the same oxygen
fraction, combustion in O2/N2 atmosphere produced both a higher flame temperature and soot volume
fraction compared with combustion in O2/CO2 oxygen-enriched atmosphere. The results showed that
this technique is reliable and can be used for combustion diagnosis.
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