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Abstract: This paper presents a design of microgrid (MG) with enhanced dynamic performance.
Distributed energy resources (DER) are widely used in MGs to match the various load types and
profiles. DERs include solar PV cells, wind energy sources, fuel cells, batteries, micro gas-engines and
storage elements. MG will include AC/DC circuits, developed power electronics devices, inverters
and power electronic controllers. A novel modulated power filters (MPF) device will be applied in MG
design. Enhanced bacterial foraging optimization (EBFO) will be proposed to optimize and set the
MPF parameters to enhance and tune the MG dynamic response. Recent dynamic control is applied
to minimize the harmonic reference content. EBFO will adapt the gains of MPF dynamic control.
The present research achieves an enhancement of MG dynamic performance, in addition to ensuring
improvements in the power factor, bus voltage profile and power quality. MG operation will be
evaluated by the dynamic response to be fine-tuned by MPF based on EBFO. Digital simulations have
validated the results to show the effectiveness and efficient improvement by the proposed strategy.

Keywords: enhanced bacterial foraging optimization (EBFO); energy conservation; microgrid (MG);
modulated power filters (MPF); performance optimization

1. Introduction

A microgrid (MG) should have various technical objectives for achieving the criteria of control,
stability and reliability for performance. Distributed energy resources (DERs) are important in the
operation of MGs; they are wind turbines, solar photovoltaics, micro turbines, fuel cells and others.
MGs can manage their own storage, conversion, and recycling of energy. A MG is able to be inherently
adapted for DER actions. Thus, MGs should keep away from voltage sag and must achieve balanced
active and reactive power profiles. Further, MGs should have additional performance indices for
voltage profile and power flow in both islanded operation and connections to utility [1–3]. There are
many developed devices that are used in MGs to realize enhanced performance with impacted
operation. Switching power electronics are installed for controllable actions in MGs. These power
electronic devices are applied on both DC and AC systems. Developed flexible AC distribution systems
are based on developed switched electronic converters, compensators and drives. Their response
emphasizes accuracy with controlled speed to enhance the system dynamics [4,5]. Those developed
distribution systems have many control and stabilization devices; one of them is the modulated power
filter (MPF), which is remarkable by its simplicity, while it still achieves power quality aspects with
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harmonic reduction to improve voltage regulation and power factor with a minimization of harmonic
levels of voltage and current wave. Conventional controllers regularly have a fixed structure with
a constant setting that makes changing the tuned parameters a complex mission especially at different
operating cases [6,7]. Dynamic control will be applied to minimize the harmonic reference content
and used to be adjusted by controlling the gains for minimizing the global error. That control strategy
is highly effective in realizing harmonic reduction, voltage stability and improving power efficiency.
The proposed dynamic-error driven controller depends on self-adaptation for dynamic stabilization.

There are different late inquires about the extended levels to depend on advancement heuristic
techniques for accomplishing worldwide applications with joining rate. Fuzzy logic programming
(FLP) could be associated with this region, but the request of few cycles can build the processing
duration of the arrangement. Particle swarm optimization (PSO), additionally, is utilized to manage
the improvement issue with execution upgrade. Other advanced methods such as differential
evolution (DE), ant colony optimization (ACO), artificial bee colony (ABC) and different methods have
significant contributions.

Reference [8] presented a fuzzy logic system (FLS) to plan the adaptive frequency control
of an AC MG. This paper addresses the MG framework regarding load changes and proposes
a fuzzy gain schedule proportional-integral-derivative (FGSPID) controller, and for relative validation,
the conventional PID controller is moreover executed on a similar MG structure. Recreation analysis
approves that the frequency control of the MG framework has been upgraded essentially with the
utilization of a FGSPID controller when contrasted with the customary controller. Reference [9]
presented an upgrade of MG dynamic reactions under severe conditions utilizing the simulated
neural system for quick changes of photovoltaic radiation and FLC for wind turbine. It uses
an artificial neural network (ANN) to control the outcomes of DGs, by actualizing FLC; it has quicker
reactions, smoother control actions, and less disturbance than previously mentioned techniques which
prompt enhancement of the dynamic reactions. The models were produced and connected in the
Matlab/Simulink program.

Bacterial foraging optimization (BFO) is an advanced technique which is utilized and proposed to
be part of framework applications such as in the economic operation schedule, load studies stream
and other applications. Enhanced bacterial foraging optimization (EBFO) principally relies upon
breeding between PSO with BFO systems. The EBFO strategy assembles powerful PSO with BFO
which directs us to the effective seeking method by exceptionally quickened exact joining [9–11].
EBFO realizes remarkable impacts, with effective universal property that is independent in solving
different numerical optimization problems that lead to positive options of EBFO application and to
properly select and control MPF parameters.

In that assigned problem, the search space exploration is performed by EBFO, and exploitation
in the explored space is performed that has the objective of getting an enhanced search performance
within scheduled media and environments. EBFO is considered and applied for constructive heuristics
to generate the arbitrary population and then is used for an improvement heuristic for the population
and surface constructed by EBFO. EBFO defines a significant surface to get an optimal pattern.
The potential issue of EBFO is that it controls the optimized patterns to be as input factors to the
selection cases. EBFO offers a satisfactory state of diversity to all populations, to avoid drawbacks as
precocious convergence and others. The hybridization within EBFO has shown potential enhancements
over the epoch’s generation; the best individuals are scattered once then after to keep them with the
upcoming iteration.

The system response for the operating cases with related MPF parameters will show the effect of
getting the significant setting of those parameters to enhance the response [12]. Without adapting the
MPF parameters, we may lose the benefits that can be obtained from installing the MPF where that may
impair the system response. MPF has been approved for upgrading the execution and power quality
parts of the MG with DERs. A novel control regulation for an error-driven dynamic loop by EBFO has
been applied to enhance the power quality and energy efficiency criteria. The PWM-optimized pulsing
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sequence for the MPF utilizes a dynamic loop based on error driven with proportional integral (PI)
controller. The proposed MPF is very efficient in the reduction of the harmonic distortion, improving
power quality, improving power factor and stabilizing the voltage profile.

The presented subsections of the paper are prepared as: Section 2 presents MG design and
configuration; Section 3 discusses the proposed optimization technique by EBFO; then, Section 4
handles case studies with description and results; finally, conclusions are summarized and presented
in Section 5.

2. Microgrid Design and Configuration

The MG design and setup, with all hardware and software facilities, are demonstrated in
University of Ontario Institute of Technology by ESCL Lab. The configuration of Microgrid has a lot of
distributed generation units such as micro turbine, fuel cell, wind system, and photovoltaic solar units.
Different sorts of DC and AC burdens are introduced, for example, resistive burdens, mechanized DC
arrangement engine loads, direct AC loads, non linear AC burdens and 3ph. mechanized burdens in
form of Induction motor.

Figure 1 demonstrates MG design, including MPF device for load terminals. This MG has diverse
AC/DC DER units that are providing distinctive AC and DC loads. The AC sources are DFIG wind
turbine generator and miniaturized scale gas turbine generator. The DC sources are the battery and
power module stack in view of hydrogen and PV clusters. For full operation use, there are boosting
converters, AC/DC, DC/AC and DC/DC converters associated with the MG [13,14].
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MPF Scheme will be chosen according to the location where it will be installed. The global benefits
will be to upgrade the voltage profile away from distortions, to lessen the power losses, and to improve
the power quality. The details of MG parameters, loading values, DERs and MPFs will be shown later
in the following sections.

MPF is considered as one of developed distribution systems. The scheme of MPF is presented in
Figure 2, which constructs for the most part with respect to a blend of capacitors, filters associations,
transistor switches. The MPF is constructed from three phase capacitors in a series of Rectifier Bridge,
and then connected to an inductive element with a resistance and two PWM controlling IGBT switches.
The control of IGBT switches is done by complementary S1 and S2 pulses. The equivalent impedance
of the device will be varied based on the variation of complementary pulses status. When S1 is OFF
(open circuit) and S2 is ON (short circuit), the inductive impedance (R + jX) will make the system
connect; when S1 is ON (short circuit) and S2 is OFF (open circuit), the inductive impedance (R + jX)
will be out of the system.
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The introduced regulated channel plan will be controlled by exchanging the pulsing signals of
PWM switch scheme to pick up the ideal control parameters that have dynamical variety to limit the
processed dynamic error, which depends on compelling voltage and current, and their harmonics parts.
The dynamic controller, in light of loop driven error, depends on the resultant error component which is
facilitated to support the control unit of the PWM modified exchanging sections, as appeared in Figure 3.
The first loop will be used for stabilizing the voltages that track load voltage deviations in order to
maintain the voltage at one PU. The next loop will be used to track the load current dynamic deviations
for compensating any occasional changing in the load or the operating condition. The last loop will be
used to track the current harmonics to minimize the harmonic component [15,16]. The global computed
dynamic error is fed to the PI controller. The resultant signal of the PI controller will supply the PWM,
and then the two complementary pulses (S1 and S2) will be generated; that sequence will adapt and
control the modulation index.
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The optimization technique is applied to tune PI controller parameters (KP and KI) for the MPF
devices to get the minimum of the system fitness value. The proposed fitness is characterized by the
global errors of all devices:

The globle error (ei) =
3

∑
i=1

γi∗error signali (1)

OF = min (e1+e2 + e3) (2)

The signal (e1): is the resultant error for device MPF 1, e2: is the resultant error for device MPF 2,
and e3: is the resultant error for device MPF 3. The signal (e1) itself consists of the summation of eV, eI,
eP at the location of that device, and so the other e2 and e3. γi are the weighting for each eV, eI, eP signal.

3. Heuristic Technique Using Enhanced Bacterial Foraging Optimization

Enhanced BFO (EBFO) technique is created on joint of both particle swarm and Bacterial Foraging
optimization, to pick up the benefits of them and keep away from the faults of them. PSO relies on its
idea of particles that attempt to join with and get away from sticking in a neighborhood; once in a while
the normal of the issue prompts trap in that nearby minima. The BFO reproduces the scrounging
conduct of microscopic organisms inside the human body [17–20]. The Normal Choice (NS) controls
the microscopic organism’s conduct, as indicated by “the survival for the fittest”; the microorganism
that scavenges well is superior to the others, so it survives and the others pass on. The system of BFO
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relies upon four procedures: chemotaxis, swarming, reproduction and removal–dispersal. There are
disadvantages for PSO and BFO; PSO experiences early union before the last settled one, while BFO
experiences altering the progression measure in light of uncontrolled molecule speeds, furthermore
from the irregular developments of people [21–25]. An improved BFO must deal with the downsides
to guarantee a worldwide optimum with a quicker and exact way. The method of EBFO is clarified
later in a flowchart, as in Figure 4.

1 
 

 

 

(a) (b) 

 
Figure 4. (a) Flowchart of standard particle swarm optimization (PSO) algorithm [20]. (b) Flowchart of
enhanced bacterial foraging optimization (BFO) algorithm

EBFO begins the seeking procedure with microbes starting molecule speed; and that is
haphazardly scattered in the arrangement space. Utilizing cell to cell swarming choice, the wellness
capacity is resolved to understand the best positions. At that point, there will be a redesign in the
individual's positions by a chemotaxis alternative where it utilizes a speed figure. In the reproduction
organization, the bacteria which have the most noticeable wellbeing are evacuated, while the others
replicate by part into two. At last, removal–dispersal organizing is concerned with evacuating
the microscopic organisms, and the best substitutions are instated to accomplish the worldwide
optimal position.

Stages for the EBFO procedure will be condensed to execute the technique:
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Stage I: Define the assigned controlled variables as taking after:
x: bacteria position, Ft(x): bacteria fitness, N: bacteria number in population, U: optimized variables.
The bacteria (i) has place (x) that relies on some elements: chemotactic (α), reproductive (β),

removal–dispersal (γ), and swarm length (λ).
Stage II: Propose arbitrary populations to all individuals to the random initial place x(i), and an

arbitrary speed v(i) with random number of −1 : 1.
Stage III: (1). Determine the current fitness Fti

current for all bacterium: Fti
current = Ft (i, α, β, γ), from

the beginning to seeking, where there is little upgrade of bacterium places; therefore, the neighborhood
optimum wellness is considered as present amount, Fti

local = Fti
current.

(2). Decide underlying worldwide wellness of population Ft global = min (Fti
local), which owns

best optimum location xi
best

Stage IV: Begin calculation of cell to cell attractant and repellent formulas of objective trend:

Fti
local = Fti +

N

∑
i=1

[
−A1 ∗

(
e−T1 ∑U

n=1 (xn− xi
n)

2
)]

+
N

∑
i=1

[
A2 ∗

(
e−T2 ∑U

n=1 (xn− xi
n)

2
)]

(3)

where

A1 Attraction quantity percentage
T1 Attraction diffusion percentage
A2 Repulsion quantity percentage
T1 Repulsion diffusion percentage

Stage V: (1). Upgrade objective trend throughout chemotactic formula:

x(i, α + 1, β, γ) = x(i, α, β, γ) + C(i)·
vi

β√(
vi

β

)T
· vi

β

(4)

Fti
global = min

[
Fti (x(i, α + 1, β, γ)] (5)

(2). Redesign the speeds and the places in terms of PSO standards:

vi
β+1 = w·vi

β + c1·r1

[
xi

best − xi
current

]
+ c2·r2

[
xi

best − xi
current

]
(6)

w, c1 and c2 are inertia, cognitive and social constants; r1 and r2 are random numbers in the interval [−1, 1].
Stage VI: Upgrade the fitness value throughout reproductive formula, later the NC steps of

chemotactic, to get the proper bacterium which directs 50% of bacterium to be cancelled; after that all
ones have reproduction using the split of two to have the population with the same size:

Fti
healthy =

NC+1

∑
i=1

Fi
t (α, β, γ) ∀ Nreproduced = N/2 (7)

Stage VII: Upgrade the fitness value again throughout by removal–dispersal actions to reproduce
any adjustment of any conditions because of supplement ingestion or critical temperature increment.
These terms will achieve removal–dispersal of some bacteria based on later probability Ped of NR
cycles of reproductive steps [26–30].

4. Digital Simulations and Discussion

Computerized analyses are performed to present the effectiveness of the proposed strategy to
upgrade the power quality and framework stability. They are finished by Matlab/Simulink/SimPower
instruments, according to the relegated MG analysis that is depicted as takes after:
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• Main Power Network: 140 KV, 5 GVA, X to R = 0
• Micro-Gas System: V = 1.8 kV, P = 220 kW
• Wind Turbine Generator: V = 1.6 kV, P = 1 MW
• Solar PV units: 250 V, 220 kW, Ns = 320, Np = 160, Tx = 295, Sx = 110, Iph = 6, Tc = 25, Sc = 210
• Units of FC: 250 V, 210 KW, Cells = 240 units, Efficiency percentage = 58%
• Batteries/storage: 240 V, operated rate: 320 Ah, discharge Ampere: 20 A
• Combined AC Load_a: linear load: 0.11 MVA, 0.85 lag pf, non linear load: 0.22 MVA,

Motor demand (induction): 3 ph., 0.32 MVA, 0.88 pf.
• Combined AC Load_b: linear load: 210 kVA, 0.85 lag pf, non linear load: 210 kVA, Motor demand

(induction): 3 ph., 110 kVA, 0.85 pf.
• DC Demand: resistance demand: 110 kW, Motor demand (series): 110 kW
• MPF: Cf = 225 µF, Rf = 0.15 Ω, Lf = 0.1 mH
• Dynamic controller: γV = 0.75, γI = 0.50, γP = 0.65, Rs = 0.11 Ω, Ls = 12 mH

The scope of the paper is focusing on the employment and effect of EBFO on MG operation, main
contribution is to compare without and with MPF cases, the conventional PI controller is not adaptive
and do not lead to proper operation of MPF. Conventional theory didn’t find the proper settings of MPF
due to the stuck in system local minima that is the reason for application heuristic optimization EBFO
to the system. Through the EBFO algorithm application, the values of optimized PI Controllers gain
for the MPF are presented in Table 1. The proposed optimization technique will be designed to achieve
the required performance, based on some values as: population size = 10, chemotactic number = 8,
maximum iterations = 120, swim length = 5, inertia constant = 0.9, 0.2, acceleration coeff. = 1.4, 0.15,
steps for removal–dispersal = 4, dimension search space = 2–4, probability of removal–dispersal = 0.30,
attractant coeff. = 0.01, 0.04, repellent coeff. = 0.01, 10, and No. of reproduction steps = 12.

Table 1. Values of optimized proportional integral (PI) controllers’ gains.

Unit
Optimal Patterns of PI

KP KI

MPF1 115 15
MPF2 150 35
MPF3 135 16

The MATLAB/SIMULINK/SimPower tools are utilized for MPF modelling and simulation.
The digital modelling and analysis is done based on without/with MPF to confirm its performance in
voltage stability, and to reduce the harmonic and compensate the reactive power at normal operating
conditions. Also, enhancement in the power factor, by managing the exchange power between MG
and utility grid, is achieved. The voltage response, current response, reactive power response, power
factor, calculated total harmonic distortion percentage (%THDv) for voltage waveforms and total
harmonic distortion percentage (%THDi) for current waveforms with cases of with/without MPF are
presented [25,26]. The harmonic analysis is shown by calculation of the total THD. The results show
that the THD are decreased; also, there is a reduction in the currents THD at the buses. Table 2 shows
percentage of total harmonic distortion for voltage waveforms and current elements at different buses
and terminals for loads and sources with cases of with and without MPF.
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Table 2. Harmonic distortion percentages.

Case
VS BUS V1 BUS VL BUS Vg BUS

THD(v) THD(i) THD(v) THD(i) THD(v) THD(i) THD(v) THD(i)

Without MPF 0.62 7.25 35.5 21 29.3 36.8 26.7 18.5
With MPF 0.1 4.55 4.82 4.56 4.4 4.92 4.61 4.2

The digital simulations are completed with and without the controlled MPF situated to
demonstrate its execution in voltage adjustment, harmonics minimization and reactive power
management at typical working conditions. Also, reduction in the enhancement in the power factor
managing the exchange power between the MG and utility grid are all achieved and shown in
Figures 5–10. The dynamic reactions of voltage, current, power related variables (all power components,
P, Q, S and pf), %THDv and %THDi at supplied terminals and demanded terminals with examination
of harmonics of each terminal with cases of with and without MPF are shown. Harmonics of V and I
are examined by THD is shown. Clearly the voltage harmonic levels are fundamentally diminished,
likewise harmonic distortion percentage of current waveform at every terminal is diminished.Energies 2017, 10, 776 9 of 13 
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Referring to the mentioned figures and tables, the controlled MPF mitigates the harmonics and
accomplishes other specialized advantages. Differentiating the dynamic response of without and with
the proposed MPF, it is totally obvious that the proposed MPF that the proposed MPF upgraded the
power quality, enhanced the power factor, managed the reactive power and settled the voltage profile.

The significant impact on MGs is realized by applying the optimal PID gains that are indicated
within Table 1. As indicated by Figures 5–10, MPF is able to handle the reactive power of AC/DC
buses that lead to stabilization in the voltage profile and improve the power factor. Figure 5 indicates
the voltage, current, reactive power and power factor at the power network with Vs. Power factor at
this bus is enhanced to 0.91 lag from 0.08 lead; this is because the reactive power is exchanged from
MG to the power network. In addition, stabilization of voltage profile with 1 per unit is achieved
at bus V1, as indicated in Figure 6. At Vg bus, voltage profile is enhanced for stabilization at 1 pu,
as indicated in Figure 8. The values of THD are shown and recorded in Table 2. That table indicated
the reduction of THD_voltage and THD_current with MPF that are enhanced and to be kept within
limits of the voltage.

5. Conclusions

This paper presented controlled Modulate Power Filters (MPF) that were introduced inside
a MG. Adjustment voltage profiles, proficient energy use, upgraded control scheme, and enhanced
power quality are vital specialized advantages that could be accomplished. EBFO was connected to
powerfully manage the control additions of the tri-loop PI-arrangement that was utilized for the MPF
structure to minimize the supreme estimation of the global error signal. Computerized simulations
approved the viability of the controlled MPF structure and the control procedure for enhancing power
quality and voltage profiles. Improper choice of the control parameters of the PI could influence the
dynamic execution, so it was imperative to progressively pick up the optimum patterns. The outcomes
demonstrated the viability of the procedure in minimizing all-out supreme error and regard voltage
stability, power factor enhancement, and improving of current and voltage dynamics.
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Nomenclature

Ft(x) Bacteria fitness
x Bacteria position
N Total number of bacteria in the population
U The number of optimized variables
A1 Attraction quantity percentage
T1 Attraction diffusion percentage
A2 Repulsion quantity percentage
T2 Repulsion diffusion percentage
r1, r2 Random numbers in the interval [−1, 1]
NC Steps of chemotactic
α Chemotactic rate
β Reproductive rate
γ Removal–dispersal rate
λ Swarm length
v The speed of a bacterium
w Inertia constant
c1 Cognitive constant
c2 Social constant
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