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Abstract: The effect of the discharge pressure on the performance of the trans-critical CO2 heat
pump with a low gas-cooler outlet temperature is experimentally investigated on a test rig of water
source heat-pump water heater. The optimal discharge pressure of the trans-critical CO2 heat pump
is investigated under different external operation conditions. When the tap-water temperature
is low, the characteristic of the S-shape isotherm at the supercritical region has little effect on
the occurrence of the optimal discharge pressure; while the mass flow rate of CO2, the suction
pressure and the gas-cooler outlet temperature play a significant role in determining the emergence
of the optimal discharge pressure. At the optimal discharge pressure, the COP reaches the peak;
however, the corresponding heating capacity is still lower than its maximum, which is reached as the
discharge pressure is slightly above the optimal discharge pressure. Reducing the tap-water flowrate
or increasing the water-source temperature can increase the optimal discharge pressure. The COP is
positively dependent on both the tap-water flowrate and the water-source temperature. In addition,
the tap-water flowrate has a negligible influence on the maximum heating capacity while increasing
the water-source temperature can greatly enhance the heating capacity.

Keywords: trans-critical CO2 cycle; heat pump; optimal discharge pressure; COP

1. Introduction

Owing to numerous incomparable advantages like excellent environmental compatibility and heat
transfer characteristic, carbon dioxide (CO2) has been widely acknowledged as the most competitive
alternative refrigerant. Since Lorentzen and Pettersen put forward the application of the trans-critical
CO2 system in the mobile air-conditioning [1], replacing CFC and HCFC refrigerants with CO2 has
attracted great attention in many industrial fields.

Conventional air-conditioning and refrigerating systems with CO2 as the working medium
operate in trans-critical mode. In a trans-critical system, the heat rejection process occurs above the critical
point while the heat absorbing process takes place below the critical point. While, in a sub-critical
system, both the absorbing and rejection of heat process take place below the critical point. It is
the unique characteristic of the trans-critical CO2 system that makes it different from the traditional
sub-critical system [2,3]. The main components of a trans-critical CO2 system include a compressor,
a gas cooler, an expansion device and an evaporator. The simplified sketch and the corresponding
pressure-enthalpy diagram of a trans-critical CO2 system are shown in Figures 1 and 2 respectively.
As shown in Figure 2, the isotherms in the super-critical region are S-shaped. The isotherms are
flattened a bit above the critical point, while in other area, the isotherms are steep. The unique
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characteristic of the S-shaped isotherm is the main reason for the emergence of the optimal discharge
pressure in a trans-critical CO2 system [2,3].
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The optimal discharge pressure is one of the research hotspots in the trans-critical CO2 systems.
In recent years, many theoretical analysis and experimental investigations were carried out on this
topic [2–11], and some stressed on the optimal discharge pressure control [12–14]. However, most of
these studies focused on the operating conditions when the CO2 temperature at the gas-cooler outlet is
above the critical temperature.

The trans-critical CO2 heat-pump water heater has gained much attention nowadays because it
can produce hot-water with higher temperature (up to 90 ◦C) while having a relatively high system
COP [15,16]. Much effort has been devoted to the system performance evaluation [17–20] and
many novel optimizing strategies have been proposed based on extensive theoretical analysis and
experimental tests [13,21,22]. Some other studies examined the performance of the gas cooler [23–25].

The tap-water temperature of the trans-critical CO2 heat-pump water heater is normally lower
than the critical temperature of CO2. Due to the influence of the tap-water temperature, the gas-cooler
outlet temperature is often below the critical temperature as well [15]. Hitherto only a few researchers
have investigated the optimal discharge pressure of the trans-critical CO2 system with lower gas-cooler
outlet temperature. To be specific, it is lower than the critical temperature of CO2. Wang et al. [26]
studied the influences of the low-temperature heat source temperature as well as the hot-water outlet
temperature on the system performance on a test bed of air-source trans-critical CO2 heat-pump water
heater. The gas-cooler outlet temperatures involved in their study was below the critical temperature.
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It was found that the CO2 gas-cooler outlet temperatures and the evaporating temperatures had
significant influences on the system COP and the optimal discharge pressure because of unique
thermophysical properties of CO2 around the critical point and similar sensible heat transfer in
gas cooler.

The optimal discharge pressure is of great importance in the performance of a trans-critical CO2

heat-pump system, while studies concerning the role of the optimal discharge pressure are still lacking
for the heat-pump water heater system with lower gas-cooler outlet temperature. Motivated by this,
we experimentally studied the performance of the trans-critical CO2 heat pump with lower gas-cooler
outlet temperatures. The optimal discharge pressures under different external operating conditions
were obtained. In addition, it is also studied the effects of the water-source temperature and the
tap-water flowrate on the system performance.

2. Materials and Methods

2.1. Experimental Apparatus

The test rig of water source trans-critical CO2 heat-pump water heater consists of three major
components: water-supply system, heat-pump system and data collection system. The schematic
diagram of this experimental system is shown in Figure 3. It is composed of a gas cooler, an evaporator,
a compressor, an accumulator, an internal heat exchanger, and an electronic expansion valve (EEV).
Detailed information about the main components is summarized in Table 1. The internal heat exchanger
is used to cool the working fluid discharging from the gas-cooler and heat the suction gas of the
compressor simultaneously for purpose of weakening the flash evaporation inside the EEV and
avoiding the liquid shock of the compressor [27,28].

At first, the superheated gas outflowing from the internal heat transfer is pressurized by the
compressor (1–2) and then cooled in the gas cooler by the tap water (2–3) and the internal heat exchange
(3–4) successively. After that, the working fluid flows through the EEV, in which its pressure and
temperature drop significantly (4–5). Then, the CO2 gas-liquid mixture absorbs heat from the water
source in the evaporator (5–6) and gathers in the accumulator (6–7). Finally, it is superheated in the
internal heat exchanger (7–1) and then a new cycle begins.
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Figure 3. Schematic diagram of the experimental system.

T-type thermocouples were adopted to measure the temperatures in the experimental system.
The measurement accuracy is ±0.2 ◦C in the range of −10 ◦C to 150 ◦C. CO2 flowrate was measured
by a Coriolis mass flow meter (SITRANS F C, Siemens Co, Munich, German) with the accuracy
at ±0.1% in the range of 0 to 5600 kg·h−1. Diffusion silicon pressure transmitters with the accuracy
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at ±0.25% (0–6 MPa and 0–16 MPa, respectively) were used to measure the CO2 pressures. Turbine
volumetric flow meters (LWGYC-20, Beijing Flowmeter Factory, Beijing, China) with the accuracy
at ±0.5% (0.06~0.6 m3·h−1 and 0.6~6.0 m3·h−1, respectively) were used to measure water flowrates.
Compressor power was measured by a digital wattmeter (QZ8716C1, Qingzhi Instruments, Qingdao,
China) with the uncertainty at 0.1% (AC: 0–500 V; V: 0.03–40.00 A). All the readings were collected by
a data acquisition device (MV2000, Yokogawa Meters & Instrument Corporation, Tokyo, Japan).

Table 1. Main components.

Name Type Main Characteristic

Compressor Hermetic rolling rotor
compressor

Swept volume: 9.8 cm3

Rotating speed: 2980 rpm

Gas cooler Tube in tube heat exchanger Outside tube: Φ28 mm × 1.5 mm
Inside tube: Φ6 mm × 1.0 mm

Evaporator Tube in tube heat exchanger Outside tube: Φ30 mm × 1.0 mm
Inside tube: Φ8 mm × 1.0 mm

Expansion valve Electrical expansion valve Port size: 2.0 mm
Opening: 0~100%

Internal heat exchanger Tube in tube heat exchanger Outside tube: Φ25 mm × 2.0 mm
Inside tube: Φ12 mm × 1.5 mm

2.2. Data Reduction and Uncertainty Analysis

The heating capacity Q refers to the heat transferred to the tap water in the gas cooler. It is
calculated according to the Formula (1):

Q = VwρwCp, w∆t (1)

where Vw is the volume flowrate of water, ρw is the density of water, Cp, w is the constant-pressure
specific heat of water, and ∆t is the temperature rise of the water in the gas cooler.

The compressor power W refers to the work input in the compressor for lifting heat from the
evaporator to the gas cooler.

The COP is defined as the heat capacity divided by the compressor power, as shown in Formula (2):

COP =
VwρwCp, w∆t

W
(2)

The uncertainties of the indirectly measured variables (heat capacity and COP) can be estimated
by the error transfer function [29], as shown in Function (3):

δR =

√√√√ j

∑
i=1

(
∂R
∂xi

δxi )
2

(3)

where δR is the total uncertainty associated with the dependent variable R, xi is the independent
variable which affects the dependent variable R, and δxi is the uncertainty of the independent variable xi.

According to the error transfer function as shown in Function (3), the uncertainty of the heating
capacity can be estimated by the Formula (4):

δQ =

√(
∂ f

∂Vw

)2
δVw

2 +

(
∂ f
∂∆t

)2
δ∆t

2 =

√(
ρwCp, w∆t

)2
δVw

2 +
(
VwρwCp, w

)2
δ∆t

2 (4)
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where δQ, δ∆t and δVw are the uncertainties of the heating capacity, the temperature rise and the
volumetric flowrate, respectively.

The uncertainty of the COP can be estimated by the Formula (5):

δCOP =

√(
∂ f

∂Vw

)2
δVw

2 +
(

∂ f
∂(∆t)

)2
δ∆t

2 +
(

∂ f
∂W

)2
δW

2 =

√(
ρwCp ,w∆t

W

)2
δVw

2 +
(

VwρwCp, w
W

)2
δ∆t

2 +
(
−VwρwCp, w∆t

W

)2
δW

2 (5)

where δW is the uncertainty of the compressor power.
Based on the above error transfer theory, the uncertainties of the heating capacity and the COP

were estimated to be 1.8% and 1.9%, respectively.

2.3. Test Condition

Several parameters can be directly adjusted, including the water-source temperature,
the water-source flowrate, the tap-water flowrate, the tap-water temperature and the EEV opening.
The influence of the discharge pressure on the system performance can be tested by adjusting these
parameters under different operating conditions. The experiment primarily investigated three aspects
and the experimental conditions are shown in Table 2.

The first one (See case 1 in Table 2) is the influence of the discharge pressure upon the system
performance. In this part, the discharge pressure was regulated by adjusting the opening of the EEV
when the temperature and the flowrate of both the water source and the tap water were kept unchanged.
At a given EEV opening, the stable discharge pressure was achieved when the experimental system
operated for at least 20 min. In the same way, a series of discharge pressures, which are corresponding
to different EEV openings, were obtained under steady-state conditions. On this basis, the effects of
the discharge pressure on the key parameters of the trans-critical CO2 heat-pump were investigated.

The second one (See case 2 in Table 2) is the effect of the tap-water flowrate on the system
performance. In this case, the EEV opening and the tap-water flowrate were adjusted when the
water-source flowrate, the water-source temperature and the tap-water temperature were kept constant.
The characteristic parameters of the heat pump with different discharge pressures and the tap-water
flowrates were obtained.

Table 2. Experimental conditions.

Parameters
Value

Case 1 Case 2 Case 3

Water-source temperature (◦C) 20 20 10, 15, 20, 25

Water-source flowrate (m3·h−1) 1.5 1.5 1.5

Tap-water temperature (◦C) 15 15 15

Tap-water flowrate (m3·h−1) 0.25 0.3, 0.25, 0.2 0.25

The last one (See case 3 in Table 2) is the influence of the water-source temperature upon the system
performance. EEV opening and the water-source temperature were adjusted when the water-source
flowrate, the tap-water temperature and the tap-water flowrate were kept constant. In this case,
the characteristic parameters of the heat pump with different discharge pressures and water-source
temperatures were achieved.

3. Results and Discussion

3.1. Discharge Pressure

In the experiment, the EEV opening was adjusted when the temperature and the flowrate of the
water source, and the temperature and the flowrate of the tap water were kept constant. In this case,
several performance parameters of the heat pump with different discharge pressures were obtained,
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including the suction pressure, CO2 mass flowrate, gas-cooler outlet temperature, COP, compressor
power, hot-water outlet temperature and heating capacity, etc.

The effects of the discharge pressure upon the key parameters characterizing the trans-critical
CO2 heat-pump system are illustrated in Figures 4–6.

As shown in Figure 4, upon increasing the discharge pressure, the suction pressure and the
CO2 mass flowrate gradually decreases. This results from the regulation of the discharge pressure
by adjusting the EEV opening. For the trans-critical CO2 heat-pump system with a compressor at
a fixed frequency, provided that the other operating parameters are kept constant, the increasing of the
discharge pressure is caused by the excessive CO2 gathering in the gas cooler. If the EEV opening is
reduced, the mass flow of CO2 flowing through EEV decreases, leading to an excessive accumulation
of CO2 in the gas cooler. As a result, the discharge pressure increases. As the total amount of CO2 is
constant in the system, the accumulation of CO2 in the evaporator would decrease if much of CO2 is
accumulated in the gas cooler. Therefore, the corresponding suction pressure decreases.
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Figure 4. Effects of discharge pressure on suction pressure and CO2 mass flowrate (tap-water
temperature: 15 ◦C; tap-water flowrate: 0.25 m3·h−1; water-source temperature: 20 ◦C; water-source
flowrate: 1.5 m3·h−1).

Figure 5 shows the influences of the discharge pressure upon the gas-cooler outlet temperature
and the hot-water outlet temperature.

It can be found from Figure 5 that upon increasing the discharge pressure, the CO2 gas-cooler
outlet temperature increases firstly and then decreases. This is attributed to the S-shape isotherm
at the supercritical area (see the process a–b in Figure 7). The decreasing trend of the temperature
is relatively steep at the beginning, then it becomes more flattened, and finally it remains almost
unchanged (see the process b–c in Figure 7). The decrease of the CO2 gas-cooler outlet temperature is
attributed to the reduction of the CO2 mass flowrate due to the increase of the compression ratio along
with the increased discharge pressure. However, when the discharge pressure is too high, the decrease
of the CO2 gas-cooler outlet temperature is restricted by the constant tap-water inlet temperature
because the gas cooler is a counter-flow heat exchanger. Consequently, the decreasing trend of CO2

gas-cooler outlet temperature becomes flattened. The change of the gas-cooler outlet temperature with
the discharge pressure is relatively evident, with the maximum variation being up to 18 ◦C, as shown
in Figure 5. A similar trend has also been obtained by Wang et al. [26]. In their research, the maximum
variation of the gas-cooler outlet temperature with the discharge pressure is about 22 ◦C.

From Figure 5, it can also be found with the increase of the discharge pressure, the hot water outlet
temperature increases firstly and decreases afterwards, leaving an apex there. During the experiment,
the tap-water flowrate and the tap-water temperature remains unchanged, therefore, the hot water
outlet temperature directly depends on the heating capacity. The variation trend of the hot water
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Figure 6 shows the variation of the heating capacity and the COP versus the discharge pressure.
From Figure 6, it can be found that upon increasing the discharge pressure, the heating capacity

gradually increases until reaching the apex, and then it declines slowly. The main reasons behind this
trend are as follows: On one hand, as the discharge pressure increases, the enthalpy difference in the
gas cooler increases correspondingly, which can be observed clearly in Figure 7. This is attributed to the
combined action of the increased CO2 gas-cooler inlet enthalpy along with the increased compression
ratio and the decreased CO2 gas-cooler outlet enthalpy. The variation trend of the CO2 gas-cooler
outlet enthalpy depends not only on the CO2 gas-cooler outlet temperature but also on the slope of the
isotherm. On the other hand, the CO2 mass flowrate decreases upon increasing the discharge pressure
as shown in Figure 4. Both-side effects lead to the variation trend of the heating capacity with the
discharge pressure.

Upon increasing the discharge pressure, the specific work of the compressor increases significantly
due to the increase of the compression ratio. However, the CO2 mass flowrate decreases with the
increase of the discharge pressure. It is worth noting that the variation of the specific work is much
larger than that of the CO2 mass flowrate, therefore, the combined effects of these two factors lead
to the increase of the power consumption of the compressor with the discharge pressure, as shown
in Figure 6.

With the increase of the discharge pressure, the COP rises firstly and then drops, leaving the apex
at approximately 4.3. It means that for the heat-pump system, there is an optimal discharge pressure,
at which the COP reaches the maximum value. According to the definition of the COP, the influence of
the discharge pressure on the COP depends on the variation trend of the heating capacity and the power
consumption with the discharge pressure together, which in turn depends on the combined effects of
the suction pressure, the CO2 mass flowrate, the CO2 gas-cooler outlet temperature, the slope of the
isotherm and so on. Based on the previous analysis, the power consumption increases monotonously
with the increase of the discharge pressure; however, the heating capacity increases firstly and then
decreases upon increasing the discharge pressure. Both effects of these two factors lead to the emergence
of an optimal discharge pressure.

It can be noted from Figure 7 that at the optimal exhaust pressure, the gas-cooler outlet
temperature is about 25 ◦C. It is below the critical temperature of CO2 (31.1 ◦C). This is similar
to the case in Reference [26], in which the gas-cooler outlet temperature corresponding to the optimal
discharge pressure is about 19.8 ◦C. Under this condition, the isotherm near the optimal point does not
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exhibit the S type characteristics. It is different from the evident S type isotherm near the optimal point
as in the trans-critical CO2 heat-pump cycle with a high gas-cooler outlet temperature (higher than
the critical temperature of CO2). Therefore, the effect of the discharge pressure on the characteristic
parameters in this case is different from that of the trans-critical CO2 heat pump cycle with a high
gas-cooler outlet temperature.

In addition, it can be observed from Figure 6 that at the optimal discharge pressure, the COP
reaches the maximum value while the heating capacity is still lower than the maximum value, which is
later reached when the discharge pressure is slightly above the optimal discharge pressure. This is
attributed to the different increasing tendencies of the compressor power and the heating capacity
upon increasing the discharge pressure.
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3.2. Tap-Water Flowrate

By keeping the water-source flowrate, the water-source temperature and the tap-water
temperature unchanged, and simultaneously adjusting the tap-water flowrate and the EEV opening,
the effects of the tap-water flowrate under different discharge pressures on the system performance
were obtained.
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Figures 8–10 show the influences of the tap-water flowrate on the key parameters of the heat
pump under different discharge pressures.Energies 2017, 10, 810 9 of 14 
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Figure 8. Comparison of heating capacity under different tap-water flowrates.

It can be seen from Figure 8 that the heating capacity rises firstly and then drops upon increasing
the discharge pressure regardless of the tap-water flowrate. The difference between them is that
the discharge pressure corresponding to the maximal heating capacity decreases with an increase
of the tap-water flowrate. The maximal heating capacity increases slightly upon increasing the
tap-water flowrate.

When the discharge pressure is below the peak, at a given discharge pressure, increasing the
tap-water flowrate leads to an increase in the heating capacity. This is because as the tap-water flowrate
increases, the water-side heat transfer in the gas cooler is enhanced, therefore, the corresponding
heating capacity increases.

Besides, at a given heating capacity, the discharge pressure increases with the decrease of
the tap-water flowrate. It is because upon decreasing the tap-water flowrate, the water-side heat
transfer coefficient decreases due to the smaller water velocity. In order to achieve the same heating
capacity, a larger heat transfer temperature difference is required, which is corresponding to a large
discharge pressure.
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As shown in Figure 9, with an increase of the discharge pressure, the hot-water outlet temperature
increases firstly and then decreases independent of the tap water flowrate. The difference is that
an increase in tap water flowrate leads to a reduction in the discharge pressure corresponding to the
maximum hot-water outlet temperature.

At a given discharge pressure, increasing the tap-water flowrate leads to a decrease in the
hot-water outlet temperature. This is because the gas-cooler is a counter-flow heat exchanger,
the hot-water outlet temperature is directly affected by the compressor discharge temperature.
Therefore, when keeping the discharge pressure unchanged, an increase of the tap-water flowrate
would induce a decrease in the hot-water outlet temperature.

Hence, to achieve a high hot-water outlet temperature, a smaller tap-water flowrate and a higher
discharge pressure are required. It is worth noticing that when the discharge pressure increases to
a certain value, the hot-water outlet temperature would decline after reaching the maximum value.
It is owing to the reduction of the CO2 mass flowrate which has a great influence on the heat capacity.

The maximum hot-water outlet temperature decreases upon increasing the tap-water flowrate.
This is because the maximum heating capacity has a small variation with the increasing tap-water
flowrate, as shown in Figure 8.
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As shown in Figure 10, with the increase of the discharge pressure, the COP increases firstly and
then decreases under the three flowrate conditions, leaving an optimal COP there. The optimal COP
increases conspicuously and the optimal discharge pressure decreases upon increasing the tap-water
flowrate. As an example, when the tap-water flowrate increases from 0.20 m3·h−1 to 0.3 m3·h−1,
the optimal COP increases by about 19.4% and the optimal discharge pressure decreases by about
1.5 MPa. It is attributed to the enhanced water-side heat transfer in the gas cooler resulting from the
increased tap-water flowrate.

3.3. Water-Source Temperature

Keeping the water-source flowrate, the tap-water temperature and the tap-water flowrate
unvaried, and simultaneously adjusting the water-source temperature and the EEV opening, the effects
of the water-source temperature under different discharge pressures upon the system performance
were investigated.

Figures 11–13 show the effects of water-source temperature on the key parameters of the heat
pump under different discharge pressures.
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Figure 11. Heating capacity versus discharge pressure for different water-source temperatures.

As shown in Figure 11, with an increase of the discharge pressure, the heating capacity increases
firstly and then decreases regardless of the water-source temperature. The difference is that the
maximal heating capacity increases along with the increase of the water-source temperature. When the
water-source temperature increases from 10 ◦C to 25 ◦C, the maximum heating capacity increases
by roughly 28.9%. In addition, increasing the water-source temperature also leads to an increase
in the discharge pressure corresponding to the maximum heating capacity. The main reason is that
upon increasing the water-source temperature, the evaporation temperature increases correspondingly
because of the enhanced heat transfer in the evaporator, which leads to an increase in the suction
pressure. For an invariable frequency compressor, the corresponding discharge pressure also increases.
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Figure 12. Comparison of hot-water outlet temperature under different water-source temperatures.

Figure 12 shows the variation of the hot-water outlet temperature versus the water-source
temperature. As the water-source temperature increases from 10 ◦C to 25 ◦C, the maximum hot-water
outlet temperature increases by about 9.8 ◦C. Because the tap-water flowrate and the tap-water inlet
temperature are kept unchanged, the varying trend of the hot-water outlet temperature resembles
that of the heating capacity as shown in Figure 11. For simplicity, the underlying reasons will not be
repeated here.
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As shown in Figure 13, with an increase of the discharge pressure, the COP increases firstly and
then decreases independent of the water-source temperature, leaving an apex there. Upon increasing
the water-source temperature, both the optimal COP and the optimal discharge pressure increase
correspondingly. As the water-source temperature varies from 10 ◦C to 25 ◦C, the optimal discharge
pressure increases by about 1.5 MPa and the optimal COP increases by about 20.5%. This is because
as the water-source temperature rises, the water-side heat transfer in the evaporator is enhanced,
and then the evaporation temperature and the corresponding evaporation pressure increase as well,
resulting in an increased COP.

4. Conclusions

In summary, we experimentally studied the system performance under different operating
conditions on a test rig of water source trans-critical CO2 heat-pump water heater. The main conclusions
are shown as follows:

(1) When the tap-water temperature was low (~15 ◦C), there had an optimal discharge pressure for
the trans-critical CO2 heat-pump water heater. Under this operating condition, the influence of the
discharge pressure on the COP depends on the combined effects of the suction pressure, the CO2

mass flowrate, the CO2 gas-cooler outlet temperature and the slope of the isotherm. This is
different from the trans-critical CO2 heat-pump cycle with a higher gas-cooler outlet temperature,
in which the optimal discharge pressure depends on the characteristic of the S-shape isotherm at
the supercritical region.

(2) At the optimal discharge pressure, the COP reached the maximum value while the heating
capacity was still lower than its maximum value, which was reached when the discharge pressure
was slightly above the optimal discharge pressure.

(3) Decreasing the tap-water flowrate and increasing the water-source temperature resulted in
an increase of the optimal discharge pressure. Decreasing the tap-water flowrate led to a significant
decrease of the COP while increasing the water-source temperature enhanced the COP greatly.
In addition, decreasing the tap-water flowrate had little influence on the maximum heating
capacity. However, increasing the water-source temperature could significantly enhance the
maximum heating capacity.

(4) For the trans-critical CO2 heat-pump system with an invariable frequency compressor, to achieve
a high hot-water outlet temperature, a smaller tap-water flowrate, a higher water-source
temperature and a relatively higher discharge pressure are required. From the perspective of the
COP, a larger tap-water flowrate, a higher water-source temperature and an optimal discharge
pressure are required.
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