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Abstract: Wireless power transfer (WPT) technology can provide intelligent robots with a flexible,
robust, and safe power supply, especially in very harsh environments including high humidity and
high temperature. To meet increasing power requirement for robotic applications, this paper proposes
a novel method to increase system power transfer capability without increasing voltage and current
stress, realized by using dual excitation units at the primary side. On this basis, this paper proposes a
phase-shifted control method for output power regulation which can keep efficiency high. At the
same time, the system is proved to have a better output robust characteristic by analysis under the
condition of parameter variation. Finally, experimental results show the proposed dual excitation
units (DEU)-WPT system can increase output power by at least three times compared to classical
WPT system, and the efficiency is improved by 9%.
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1. Introduction

In mobile robot applications, battery charging is seen as a bottleneck problem. Wireless power
transfer (WPT) technology can provide a flexible, safe, and convenient way to power the robot [1–6].
WPT technology utilizes a magnetic field to transfer energy between two loosely-coupled coils,
which can enhance the mobility and reliability of the robots and operate under harsh environments
such as humid, high-temperature, dirty, and corrosive environment [7–9].

With the rapid development of robotic technology, increasing applications require fast charging.
Wireless power transfer capacity should be increased accordingly to meet fast charging requirement.
Current research on power capacity improvement can be classified by three groups: the first
group of methods utilize composite resonant network to increase system energy absorption ability.
The composite resonant network can also provide a system with better anti-frequency drifting ability.
LCL (inductor capacitor inductor), CLC (capacitor inductor capacitor) and LCC (inductor capacitor
capacitor) composite network are commonly used for the purpose. References [10,11] proposed a WPT
system based on an LCL resonant network, which improves the capacity of the resonant tank and
accomplishes constant current. References [12,13] used an LCC compensation network in dynamic
wireless charging for system optimization. However, the composite resonant network will yield a
high system order and slow down system response. Moreover, it may increase the risk of frequency
bifurcation due to the existence of more soft switching running points. The second group of methods
utilize multi-phase converter and matrix converter to increase high-power conversion ability [14,15],
which can reduce the stress of switches at the same time. However, it has a complex circuit structure
and the resonant tank still needs to be subjected to excessive current and voltage stress in high-power
application. Reference [16] presented a novel dynamic WPT system by combining the multi-parallel
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system with an LCC composite resonant network, which minimized the electromagnetic interference
(EMI) and reduced the system’s power loss. Moreover, for a high-order system (especially parallel
multi-inverter), the response of the system is slow and the power regulation is relatively difficult.
The third group of methods utilize an additional energy storage and emission circuit to increase
the energy storage ability. It is realized by energy injection and emission control to regulate power
capacity [17]. In the above methods, in order to achieve high power capacity, high voltage and current
stresses will appear in the power conversion and resonant tank system. It will directly increase the
cost of whole system and may bring the risk of system failure. Therefore, it is necessary to propose a
method to improve system power capacity without increasing voltage or current stress.

In high-power applications of WPT technology, a single excitation unit will meet many difficulties
in application, including limited power transfer capacity and high voltage and current stress.
The dual excitation units (DEU)-WPT approach with dual excitation units will greatly improve the
power transfer capacity and reduce the voltage and current stress at the same time. Furthermore,
the output power can be flexibly regulated by controlling the phase-shift angle between dual excitation
units. Output characteristics under mutual inductance and load variation are given. Through the
specific analysis, the proposed system has a better robust characteristic. Finally, the simulation and
experimental results verify the feasibility.

2. Design of DEU-WPT System

The structure of the system based on the dual excitation unit is shown in Figure 1. Compared
with the traditional WPT topology, an excitation unit is added, and each unit is connected by a
full bridge inverter circuit. The coil magnetic field is generated and enhanced by the alternating
current of the dual track. Considering the parallel compensation of secondary winding will have
the phenomenon of frequency drifting, and cross-coupling of primary side coils in DEU-WPT will
make the system impedance matching more complicated; in order to reduce the complexity of the
system, the series compensation of secondary winding is adopted. Moreover, primary coils which use
parallel compensation are the optimal choice when both high transfer efficiency and power output
power are required, and specific analysis will be discussed in Sections 3 and 5. Because the system is a
current-mode WPT, it is represented by a large inductance Ldc in series with the DC (Direct Current)
power supply. Among them, M1, M2 represent the mutual inductance between each primary coil and
secondary coil, and M12 is the cross-coupling inductance. The value of the mutual inductance will
have impacts on the output power and efficiency of the system.
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Figure 1. Dual excitation unit wireless power transfer (DEU-WPT) system.

The equivalent circuit of the circuit model is shown in Figure 2, where Lp1, Lp2 are primary coil
and Ls are secondary coil inductance, respectively. Cp1, Cp2, and Cs are the resonant capacitance. ip1, ip2

are resonant currents in the coil. up1 and up2 are resonant voltage at the primary side. Z1 and Z2 are the
reflection impedance. Co is the capacitance of rectifier circuit, and RL is the equivalent load resistance.
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Figure 2. Equivalent circuit model of DEU-WPT system.

According to the KVL’s (Kirchhoff Laws) law, the phasor equation of voltage and current in the
DEU-WPT system can be derived as

.
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.
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.
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.
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.
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(1)

where Ro = 8RL/π2. In order to obtain balanced excitation, assume that Lp = Lp1 = Lp2. The process
variables are defined as follows
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The primary current equation can be derived by
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According to (1) and (3), the impedance of the primary coil branch can be deduced as
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As can be seen in (3) and (4), the impedance of the primary coil branch changes with equivalent
load variation when M1, M2, and M12 changes under the condition of charging. When the value of M1

and M2 is closed, the order of magnitude of M2
1 −M2

2 is small, which is almost equal to 0. Equation (4)
can be derived as

Re(Z1) =
ω2(M2

1+M1 M2)
Ro

Im(Z1) = jω(Lp + M12)

Re(Z2) =
ω2(M2

2+M1 M2)
Ro

Im(Z2) = jω(Lp + M12)

(5)

In other words, the coil resistance and reflection impedance will dominate the real part of Z1 and
Z2, which depends on mutual inductance. Similarly, the imaginary part of Z1 and Z2 is decided by
M12 and Lp. The resonant frequency of the secondary resonant tank can be designed as

ωo =
1√

LsCs
(6)

The compensation capacitance of primary side of DEU-WPT can be obtained
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3. Comparison Analysis between WPT and DEU-WPT System

It is necessary that a comparison analysis between a classical WPT system and a DEU-WPT
system should be considered. To analyze the characteristics of the system more intuitively, assume
that M1 = M2 = M for simplicity, and the impedance of the primary coil branch can be expressed as

Z1 = 2ω2 M2

Ro
+ jω(Lp + M12)

Z2 = 2ω2 M2

Ro
+ jω(Lp + M12)

(8)

From (8), the real part of Z1 and Z2 are reflection impedance, which are twice than the reflecting
impedance of traditional WPT system. When M1, M2 and the parameters of dual excitation units are
same (that is,

.
ip1 =

.
ip2 =

.
ip), the resonant current on the coil can be derived as

.
ip1 = u

jωLp+Z1.
ip2 = u

jωLp+Z2

(9)

The output power can be deduced as

Pout = (is)
2Ro =

4ω2M2
∣∣∣ .ip

∣∣∣2
Ro

(10)
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Considering the loss of resistance Rp and Rs, the loss of the primary resonant network for P1 and
secondary loss of P2 is as follows

P1 =
∣∣∣ .ip1

∣∣∣2Rp +
∣∣∣ .ip2

∣∣∣2Rp = 2
∣∣∣ .ip

∣∣∣2Rp

P2 =
∣∣∣ .is

∣∣∣2Rs =

(
2ωM2

∣∣∣ .ip

∣∣∣
Ro+Rs

)2

Rs

(11)

The expression for the efficiency can be obtained

η = Pout
Pout+(P1+P2)

=
4ω2 M2Ro

4ω2 M2(Ro+Rs)+Rp(Ro+Rs)
2

(12)

where Ro is much greater than Rs; this formula can be simplified for

η =
4ω2M2

4ω2M2 + RoRp
(13)

In order to analyze the output characteristics of DEU-WPT system, Table 1 gives a comparison of
PS (Primary Parallel Secondary Series) DEU-WPT systems as well as traditional PS-type WPT systems
in the case of the same parameter matching. Where the M′ is the mutual inductance of WPT, M is the
mutual inductance of DEU-WPT and the M12 is the cross-coupling inductance of DEU-WPT. Zrs is
the reflection impedance of the system. γ1 and γ2 are the impedance angle of the primary resonant
network, which equals to the imaginary part divided by the real part of an impedance.

Table 1 shows that the reflection impedance Zrs of DEU-WPT is two times that of classical WPT.
Furthermore, the efficiency η of the DEU-WPT system has obviously been improved because the ratio
of numerator to the denominator of η increases. In practice, the resonant network cannot be matched
ideally, and the coupling coefficient of cross-mutual inductance is generally less than 0.05, so γ2 > γ1

because of reflection impedance Zrs (real part of impedance) of DEU-WPT is much greater while the
imaginary part of DEU-WPT (jω(Lp + M12)) is almost equal to the imaginary part of WPT (jωLp);
that is to say, the up of DEU-WPT is reduced. Similarly, compared with classical WPT system, the ip of
DEU-WPT is reduced to a certain extent due to the increase of reflected impedance and the existence
of cross-mutual inductance.

Table 1. Comparison between classical WPT and DEU-WPT.

Parameter PS Topology WPT PS Topology DEU-WPT

Zrs
ω2 M2

Ro
2ω2 M2

Ro

up
π

2
√

2
Ein cos γ1

π
2
√

2
Ein cos γ2

ip
up√

(ωLp)
2+(Zrs)

2

u′p√
(ω(Lp+M12))

2+(2Zrs)
2

is ωM′
∣∣∣ .ip

∣∣∣
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2ωM
∣∣∣ .i′p∣∣∣

Ro
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(ωM′

∣∣∣ .ip

∣∣∣)2

Ro

(2ωM
∣∣∣ .i′p∣∣∣)2

Ro

η ω2 M′2

ω2 M′2+Ro Rp

4ω2 M2

4ω2 M2+Ro Rp

However, to verify the PS topology, the DEU-WPT system has improved the output power
compared with the traditional PS topology WPT, only needing to guarantee
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P′o ≥ Po(
2ωM

∣∣∣∣ .i′p∣∣∣∣)2

Ro
≥

(
ωM′

∣∣∣ .ip

∣∣∣)2

Ro

(14)

where P′o represents the output power of DEU-WPT and Po represents the output power of WPT.
To prove (14), assume that M′ = M and bring in the expressions of resonant current in Table 1,
as follows

4u2(
ω
(

Lp + M12
))2

+
(

2ω2 M2

Ro

)2 ≥
u2(

ωLp
)2

+
(

ω2 M2

Ro

)2 (15)

Simplified as
4Lp

2 ≥
(

Lp + M12
)2 (16)

From (16), when Lp = M12, the inequality is equal. However, the loose coupling coefficient k
is generally equal to or less than 0.3, so Lp > M12 obviously. It can be concluded that, in theory,
the output power of the PS topology DEU-WPT can increase the output power by four times compared
with the PS topology WPT when Lp >> M12.

Generally, it is justified that the DEU-WPT system reduced the stress of voltage and current in
resonant tank compared to a classical WPT system, and cross-coupling M1 and M2 will have a direct
influence on impedance matching. Additionally, the cross-coupling M12 between dual primary units
will influence the power gain, which can be seen in Equation (16). The optimum output characteristic
of system will be analyzed specifically in Section 5 when the mutual inductance is asymmetric.

4. Control Method of Output Power

For the DEU-WPT system, the phase difference θ between resonant current
.
ip1 and

.
ip2 will directly

influence the magnetic field intensity. This paper proposed an output power regulation method to
control

.
up1 and

.
up2 so that phase difference θ between

.
ip1 and

.
ip2 could be regulated. Figure 3 gives

the phase-shifted waveform. The resonant voltage phasor is controlled by phase-shift of the driving
signal, as shown in Figure 3; S1–S4 is the driving signal in inverter 1, and S5–S8 is the driving signal in
inverter 2.
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According to (1), the
.
up1 and

.
up2 be expressed as

.
up1 = uejα
.
up2 = uejβ (17)

where θ = α− β, and the RMS (Root Mean Square) of is on the secondary side can be derived as

is =

∣∣∣∣∣∣
jω
(

M1
.
ip1 + M2

.
ip2

)
Ro

∣∣∣∣∣∣ (18)

Because
.
ip1 =

.
up1/Z1 and

.
ip2 =

.
up2/Z2, set the phase offset ϕ between Z1 and Z2 as

ϕ = arctan(
Im(Z1)

Re(Z1)
)− arctan(

Im(Z2)

Re(Z2)
) (19)

Output power Pout can be obtained

Pout =
ω2u2(

M2
1
|Z2

1 |
+

M2
2
|Z2

2 |
+ 2M1 M2
|Z1||Z2|

cos(θ − ϕ))

Ro
(20)

According to (19), phase offset ϕ is dependent on different coupling coefficients. Figure 4 shows
the phase offset variation with respect to coupling coefficients k1 and k2, where k1 and k2 are from 0.1
to 0.3.
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Figure 4. Phase offset ϕ under the change of mutual inductance in DEU-WPT system.

In Figure 4, the phase offset ϕ changes from 0 degrees to 18 degrees. From papers, mutual
inductance could be calculated. Then, the phase offset could be determined by Formula (10). In order
to eliminate the phase offset ϕ and realize the output power regulation, the flow chart of phase-shift is
in Figure 5.

It should be noted that prior knowledge of k1 and k2 should be obtained before phase-shift
regulation. There are a few online identification methods [18,19] which can be utilized in the practice.



Energies 2017, 10, 1000 8 of 16

Energies 2017, 10, 1000 8 of 16 

 

 
Figure 4. Phase offset φ under the change of mutual inductance in DEU-WPT system. 

In Figure 4, the phase offset ϕ  changes from 0 degrees to 18 degrees. From papers, mutual 
inductance could be calculated. Then, the phase offset could be determined by Formula (10). In 
order to eliminate the phase offset ϕ  and realize the output power regulation, the flow chart of 
phase-shift is in Figure 5.  

 
Figure 5. Flow chart of power regulation by phase-shift. 

It should be noted that prior knowledge of k1 and k2 should be obtained before phase-shift 
regulation. There are a few online identification methods ([18,19]) which can be utilized in the 
practice.  

5. Analysis of System Output Under Parameters Variation 

5.1. Influence of Load Variation on System 

Figure 6 shows the comparison of the output power and efficiency in the case of load changes. 
The red line represents the DEU-WPT system, the blue line represents the general WPT system, and 
the green line represents the improving times of output power of DEU-WPT system compared to 

Start

Get the parameter 
of k1 and k2

θ’=θ+φ θ’=θ-φ

Control phase shift and 
regulate the output 

power

End

Calculate the value of φ 

If φ > 0Y N

Figure 5. Flow chart of power regulation by phase-shift.

5. Analysis of System Output Under Parameters Variation

5.1. Influence of Load Variation on System

Figure 6 shows the comparison of the output power and efficiency in the case of load changes.
The red line represents the DEU-WPT system, the blue line represents the general WPT system, and
the green line represents the improving times of output power of DEU-WPT system compared to WPT
system. The load is variable, and the other parameters remain unchanged when switch resistance
is ignored.

For the PS-type DEU-WPT system, Figure 6a shows that the output power gain can reach four
times that of a traditional WPT system, and it is easier to reach four times the output power with
load changes than SS-type. Figure 6b shows that greater efficiency can be reached with the PS-type
DEU-WPT than with the PS-type WPT. The efficiency of DEU-WPT is much more stable than WPT with
the changes of load. However, for SS-type DEU-WPT in Figure 6c,d, once the reflection impedance is
far less than the coil resistance, the primary resonant network will be in short circuit and the resonant
current will bring heavy burden to the system so that the efficiency decreases more quickly.
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Figure 6. Output characteristics under system load variation: (a) The output power of PS-type (Primary
Parallel Secondary Series) system under load changes; (b) The efficiency of PS-type system under load
changes; (c) The output power of SS-type (Primary Series Secondary Series) system under load changes;
(d) The efficiency of SS-type system under load changes.

5.2. Influence of Mutual Inductance on System

Normally, the cross-coupling inductance M12 is fixed in charging, but the lateral misalignment
leads to the change of mutual inductance, as shown in Figure 7. Therefore, it is necessary to analyze
the characteristic of output under the condition of mutual inductance variation.
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Figure 7. The diagram of coupling coefficients changes.

Figure 8 shows the output power under the change of mutual inductance. The x and y axis
represents the coupling coefficient k1 and k2 between primary coil and secondary coil respectively.
The cross-coupling coefficients k3 is fixed at 0.03.
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Figure 8. Output characteristics under mutual inductance variation of DEU-WPT: (a) Output power
under mutual inductance variation of PS-type DEU-WPT; (b) Efficiency under mutual inductance
variation of PS-type DEU-WPT; (c) Output power under mutual inductance variation of SS-type
DEU-WPT; (d) Efficiency under mutual inductance variation of SS-type DEU-WPT.

From Figure 8, it can be seen that system can achieve optimum output power and efficiency with
symmetrical coupling coefficient. Although the output power changes in the charging area that the two
coupling coefficients are different, the efficiency could remain high. Compared with a general WPT
system, the DEU-WPT system exhibits good adaptability. More specifically, for a PS-type DEU-WPT,
the maximum output power and efficiency can be achieved simultaneously under the condition of
constant load when there are no phase differences between currents in primary coils. From Figure 8c,d,
when coupling coefficients are equal, the SS-type DEU-WPT shows high efficiency and the output
power first increases and then decreases. However, when the coupling coefficient changes the output
power improves, but the efficiency declines rapidly.

Figure 9 shows the curve of output power modulation and efficiency with phase shift variation
under different coupling conditions, where the phase difference is from −180◦ to 180◦.

In Figure 9, the output power is mainly affected by the coupling coefficient and θ. Compared
with the general phase-shift method (which regulates the output power by changing the RMS of input
voltage), the method proposed in this paper produces much less harmonics in resonant tank and
achieves high-efficiency transmission by controlling the phase angle θ of voltage between the two
coils. Moreover, compared to other systems which regulate output power by adding DC-DC module,
the method proposed which only needs fewer devices to cut the costs reduces the complexity of system
circuits and improves efficiency.
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6. Simulation and Experimental Verification

6.1. Simulation Verification of Proposed System

The Simulink simulation model of the system is established by Matlab (MathWorks, Natick, MA,
USA). This paper takes the PS-type DEU-WPT as an example to analyze. Set the controlled aim of
system input voltage as Ein = 30 V, the operating frequency f = 20 kHz, the output load RL = 5 Ω, and
secondary coil Ls = 210 µH. According to (6) and (7), other parameters are shown in Table 2. To compare
with a WPT system with a single excitation unit, we set the same parameters of the traditional WPT
system, as shown in Table 3.

Table 2. Main simulation parameters of PS-type DEU-WPT system.

Parameters Values Parameters Values

Lp 116 µH Ls 210 µH
Rp 0.13 Ω Rs 0.3 Ω
Cp 0.52 µF Cs 0.3 µF
Ein 30 V RL 5 Ω
Ldc 1 mH M1 17 µH
M12 3 µH M2 17 µH

Table 3. Main simulation parameters of PS-type WPT system.

Parameters Values Parameters Values

Lp 116 µH Ls 210 µH
Rp 0.13 Ω Rs 0.2 Ω
Cp 0.54 µF Cs 0.3 µF
Ein 30 V Ldc 1 mH
M 17 µH RL 5 Ω

The resonant current ip, resonant voltage up, and output power Pout waveform comparison is
shown in Figure 10, where up is the resonant voltage of the primary side, ip is the resonant current of
the primary side, and is is the resonant current of the secondary side.
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Figure 10. Comparison of simulation result: (a) Comparison of the primary resonant voltage of the
system; (b) Comparison of the primary resonant current of the system; (c) Comparison of the secondary
resonant current of the system; (d) Comparison of the output of the system.

Figure 10 shows that the output power of the DEU-WPT system compared to the WPT system
is increased by about four times compared to the traditional WPT system. Furthermore, due to
the advantages of parallel structure, the cross-coupling inductance jωM12 and reflection impedance
2ω2M2/Ro on the branch of inductance ensures that the current stress of the PS-type DEU-WPT system
is less than the traditional WPT system. Under the condition of improving power level, the RMS of
the primary resonant current of DEU-WPT compared to the WPT is reduced by about 5%, the RMS of
primary resonant voltage of DEU-WPT is reduced by about 4%, and the resonant current of DEU-WPT
system’s pick-up side is almost doubled. Regarding cost, for higher-power application such as electrical
vehicle (EV) charging, the cost of the DEU-WPT system will be lower than traditional WPT system at
same power capacity level because the voltage and current stress equipment are lower than traditional
WPT system.

6.2. Experimental Verification of the Proposed System

In this paper, the experimental tests are divided into two groups: one group is a PS-type WPT
system, and the other is a PS-type DEU-WPT system. The an image of the DEU-WPT experimental
device is shown in Figure 11, where the two primary coils are 14 cm in diameter. The secondary coil is
placed in front of the robots (20 cm in diameter). The transmission distance between primary coils and
secondary coil is about 4 cm, and for the two experimental systems’ parameters, refer to Tables 1 and 2.
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the system is 30 V, and the measured input current is 0.21 A. In Figure 13a, channel 1 is the driving 

Figure 11. Experimental set-up.

Figure 12 shows the experimental waveforms of the PS-type DEU-WPT system. The input voltage
of the two systems are both 30 V, and the measured input currents are 0.30 A and 0.31 A, respectively.
Figure 12a is the resonant voltage up1 and up2 of the two coils, which are fully synchronized with the
driving signals given by FPGA (Field-Programmable Gate Array) in channel 1. The RMS of voltage
is 33 V and 32.9 V respectively. The Figure 12b show the waveform of resonant current ip1 and ip2,
the RMS of current are 2.15 A and 2.22 A. Figure 12c shows that the io is 1.65 A. According to the
formula Pout = Ip

2Ro, the output power of the DEU-WPT system is 14.5 W, and the efficiency is 80%.
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Figure 12. Experiment results of the DEU-WPT system: (a) Voltage waveform of the primary
coil in DEU-WPT; (b) Current waveform of the primary coil in DEU-WPT; (c) Load waveform in
DEU-WPT system.

Figure 13 shows the experimental waveforms of the PS-type WPT system. The input voltage of
the system is 30 V, and the measured input current is 0.21 A. In Figure 13a, channel 1 is the driving
signal of the inverter circuit which has 20 kHz frequency. ip is the resonant current waveform of the
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primary coil, and the RMS of current is 2.30 A. up is the resonant voltage waveform of the primary coil,
and the RMS of voltage is 34.3 V. In Figure 13b, the mean value of output current of the rectifier circuit
io is 0.945 A, and the output power is 4.5 W when the efficiency is 71.4%.

Energies 2017, 10, 1000 14 of 16 

 

signal of the inverter circuit which has 20 kHz frequency. ip is the resonant current waveform of the 
primary coil, and the RMS of current is 2.30 A. up is the resonant voltage waveform of the primary 
coil, and the RMS of voltage is 34.3 V. In Figure 13b, the mean value of output current of the rectifier 
circuit io is 0.945 A, and the output power is 4.5 W when the efficiency is 71.4%. 

(a) (b)

Figure 13. The experimental results of the WPT system: (a) Waveform of the primary coil in WPT 
system; (b) Waveform of load in WPT system. 

Several experiments were carried out for verification of output power regulation. Figure 14 
shows the io when the θ of the DEU-WPT system is 45 degrees, 90 degrees, 135 degrees, and 180 
degrees. 

(a) (b)

(c) (d)

Figure 14. Experimental verification of power modulation: (a) 45 degrees phase difference; (b) 90 
degrees phase difference; (c) 135 degrees phase difference; (d) 180 degrees phase difference. 

In Figures 12 and 13, the output power has increased by 3.3 times compared with the WPT 
system, and the efficiency of the DEU-WPT system was improved by 9%. At the same time, the 
resonant voltage up and resonant current ip of the primary coil of the DEU-WPT decreased by 3.3% to 
6% compared with WPT. The experimental results are consistent with the theoretical analysis. Table 

Figure 13. The experimental results of the WPT system: (a) Waveform of the primary coil in WPT
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Several experiments were carried out for verification of output power regulation. Figure 14 shows
the io when the θ of the DEU-WPT system is 45 degrees, 90 degrees, 135 degrees, and 180 degrees.
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Figure 14. Experimental verification of power modulation: (a) 45 degrees phase difference;
(b) 90 degrees phase difference; (c) 135 degrees phase difference; (d) 180 degrees phase difference.

In Figures 12 and 13, the output power has increased by 3.3 times compared with the WPT system,
and the efficiency of the DEU-WPT system was improved by 9%. At the same time, the resonant
voltage up and resonant current ip of the primary coil of the DEU-WPT decreased by 3.3% to 6%
compared with WPT. The experimental results are consistent with the theoretical analysis. Table 4
shows the comparison of experimental results between WPT and DEU-WPT. Figure 15 shows the
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experimental result under phase-shift. As can be seen from Figure 15, the proposed power regulation
method can be achieved.

Table 4. Comparison of experimental results.

Parameters WPT DEU-WPT

Ein 30 V 30 V
up 34.3 V 32.9 V/33 V
ip 2.3 A 2.15 A/2.22 A
is 0.945 A 1.65 A

Pout 4.5 W 14.5 W
η 71.4% 80%
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7. Conclusions 

In this paper, a DEU-WPT system for charging intelligent robots is built, and a method of 
output power modulation is proposed. Compared with traditional the WPT system, the DEU-WPT 
system has the following benefits: (1) Compared to the traditional system, output characteristics of 
the PS-type DEU-WPT have been improved significantly. Not only can output power of DEU-WPT 
increase by 3.3 times, but the efficiency of DEU-WPT has also increased by 9%. The reliability of the 
system has enhanced. (2) The power modulation is realized by the current phase control of the 
primary coil, which reduces the harmonics and improves the flexibility of the system. (3) Reducing 
the stress of voltage and current of the primary resonant network enhances the security of the 
system. (4) The PS-type DEU-WPT system is more stable than PS-type WPT for intelligent robots in 
both dynamic charging and static charging. In summary, the DEU-WPT system has advantages 
compared with the traditional system, providing a new method to improve the output 
characteristics of robot charging based on wireless power transfer, and provides a new way to solve 
the system security problem. 

By comparing with the traditional WPT topology, it is found that the DEU-WPT system can 
significantly increase output power and efficiency while reducing the stress of voltage and current 
in the resonant network. At the same time, the DEU-WPT is more robust than general WPT system 
under the condition of parameter variation. 
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7. Conclusions

In this paper, a DEU-WPT system for charging intelligent robots is built, and a method of output
power modulation is proposed. Compared with traditional the WPT system, the DEU-WPT system has
the following benefits: (1) Compared to the traditional system, output characteristics of the PS-type
DEU-WPT have been improved significantly. Not only can output power of DEU-WPT increase by
3.3 times, but the efficiency of DEU-WPT has also increased by 9%. The reliability of the system has
enhanced. (2) The power modulation is realized by the current phase control of the primary coil, which
reduces the harmonics and improves the flexibility of the system. (3) Reducing the stress of voltage
and current of the primary resonant network enhances the security of the system. (4) The PS-type
DEU-WPT system is more stable than PS-type WPT for intelligent robots in both dynamic charging
and static charging. In summary, the DEU-WPT system has advantages compared with the traditional
system, providing a new method to improve the output characteristics of robot charging based on
wireless power transfer, and provides a new way to solve the system security problem.

By comparing with the traditional WPT topology, it is found that the DEU-WPT system can
significantly increase output power and efficiency while reducing the stress of voltage and current
in the resonant network. At the same time, the DEU-WPT is more robust than general WPT system
under the condition of parameter variation.
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