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Abstract: This paper compared the capabilities of the artificial neural network (ANN) and the
fuzzy logic (FL) approaches for recognizing and discriminating partial discharge (PD) fault classes.
The training and testing parameters for the ANN and FL comprise statistical fingerprints from
different phase-amplitude-number (φ-q-n) measurements. Two PD fault classes considered are
internal discharges in voids and surface discharges. In the void class, there are single voids, serial
voids and parallel voids in polyethylene terephthalate (PET), while the surface discharge class
comprises four different surface discharge arrangements on pressboard in oil at different voltages
and angular positioning of the ground electrode on the respective pressboards. Previously, the ANN
and FL have been investigated for PD classification, but there is no work reported in the literature
that compares their performance, specifically when applied for real time PD detection problem.
As expected, both the ANN and FL can recognize PD defect classes, but the results show that the
ANN appears to be more robust as compared to the FL, but these conclusions required to be further
investigated with complex PD examples. Finally, both the ANN and FL were assessed as practical PD
classification. Despite of the limitations of the ANN, it is concluded that the ANN is better suited for
practical PD recognition because of its ability to provide accurate recognition values and the severity
level of PD defects.

Keywords: partial discharge; fuzzy logic; artificial neural network; polyethylene terephthalate

1. Introduction

One technique for examining failures in the insulation of high-voltage (HV) equipment is through
the monitoring evaluation of partial discharges (PDs). PDs are well known electrical discharge
phenomena that occur within the insulation system of HV power apparatus [1,2]. These discharges
represent low energy degradation phenomena taking place in regions where the insulation dielectric
strength is very low compared to the other materials. PDs can occur irrespective of the sources that
produce them due to mechanical, thermal, electrical and environmental stresses, and once present,
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they become principal mechanism for insulation degradation and in the long run can cause complete
failure of the system, leading to potentially significant capital cost and financial consequences [3–5].
The nature and characteristics of PD have so far been established and evaluated [2,5], but what remains
of interest nowadays is identifying enhanced techniques that can effectively identify and discriminate
different PD sources and the noise associated with them such as voids in electrical insulation materials,
surface discharges and corona [6–8]. This is important in order to provide a reliable assessment of the
HV insulation condition and the nature of the PD fault [9,10].

During the early days, PD recognition was carried out by visual examination on a power frequency
ellipse [11]. In this case, the positive half of the AC cycle ellipse starts at the 0◦ marker and goes
clockwise around the ellipse to 180◦ while the negative half starts at 180◦ and goes around the lower
half of the ellipse [11]. The position of the PD pulse and its magnitude are displayed on the ellipse.
One drawback of this technique is that it can be complicated to implement due to interference from
electrical equipment noise and radio frequency interference [9,11]. Afterwards, the availability of
computer-assisted devices provides automatic recognition process and this led to the application of
phased-resolved partial discharge (PRPD) pattern observations for evaluating the PD [8,12]. The typical
trend in the PRPD patterns is to record the PD signals as a 3-D array in function of (φ-q-n) where
φ is the phase angle, q is the amplitude and n is the number of discharges [12]. These patterns
can be captured over different power cycles thereby creating new opportunities for an improved
evaluation of the PD faults. It was then established that different PD sources produce different PRPD
patterns [11,13,14]. Thereafter, the goal has identified an efficient technique for recognizing PD patterns
using the expert systems. This comprises the artificial neural network (ANN) [11,14–17], FL [18,19],
wavelet analysis [20,21], and support vector machines [22] among others. It is interesting to note that
these techniques recorded recognition performance up to 90% for a number of cases of PD sources.

Based on the aforementioned techniques, the first task in PD recognition is selecting PD
patterns, which produce excellent discriminating capabilities and where the PRPD patterns have
been established. Secondly, feature extraction is carried out using statistical tools. These tools provide
a well-defined evaluation of the PRPD patterns [11,13]. The work reported in references [9,23] shows
that the application of many statistical parameters provides good recognition capability using the
ANN, together with development and evaluation of the performance of difference combinations of the
statistical fingerprints.

It is evident that a number of papers have reported the recognition and discrimination of PD
patterns, but little work has been done to investigate the capability of these pattern recognition
tools to recognize single or multiple identical PD sources and their degradation levels at various
locations within the insulation system. This is vital in order to find out the variation in their insulation
characteristics. Following this approach, Abubakar Mas’ud [3] reported that PD source positions
relative to each other and to the ground have an effect on the PRPD patterns. Therefore, this paper
investigates and compares the robustness of the ANN and the FL in recognizing and discriminating
different PD fault positions within different HV insulation systems. Previously, ANN and FL have been
compared in recognizing different dataset in other disciplines, but there appears to be no literature
reports that compare their performance regarding PD classification. Ben Salah and Ouali [24] compared
the ANN and FL techniques for maximum power point tracking (MPPT) of PV systems and their
results shows that the FL deliver up to 7% more power than that one obtained by applying ANN.
A similar comparison is carried out by Albedin et al. in [25], where the MPPT is obtained with ANN
and FL algorithms under variable conditions. Their results show that the FL controller appears to be
easier to implement for MPPT than the ANN, but its major setback is a slow transient performance and
fluctuations. However, the ANN shows better performance and was able to show accurate estimate of
maximum power generation under various conditions. Another research presented in [26] compares
the ANN and FL performance for predicting a number of day’s compressive strength of concretes
containing low-lime and high-lime ashes. The results show that both, the ANN and FL, demonstrates
strong potential for recognition, with none outperforming the other.
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In this paper, ANN and FL are considered because research findings indicate that both are
techniques already integrated for commercial services in PD recognition [27]. PD faults of interest
include single and multiple voids in PET and surface discharges on pressboard in oil commonly used
as insulation for oil-immersed transformers.

Voids are the most common PD sources in underground cable insulation and slot insulations
in electrical machines while surface discharge are mostly associated with the oil insulation of
transformers [5]. In this paper, multiple voids are considered because HV insulation may contain more
than one void. Therefore, it is important to understand the discharge patterns from different void
arrangements to establish whether there exist variations in the PD patterns in terms of uniqueness and
statistics. In particular, to investigate whether any pattern recognition tool can capture slight variations
of similar PD fault types.

2. Experimental Set-Up

2.1. The PD Detection System

In this research, the PD measurement circuit employed is in accordance with the IEC 60270
standard [28]. The HV AC test system is made up of a HV transformer, over voltage protection,
current/voltage regulating devices, an AC measurement capacitor (C1) of 1 nF, partial discharge free
up to 100 kV, used as a low impedance path for PD pulses, a measurement impedance (Z) used for the
HV AC signal measurement, and the PD acquisition system. A schematic diagram is shown in Figure 1.
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The PD detection system offers capabilities such as calibration settings, data capture control and
saving path and the basic function control. It can produce power cycle synchronized PRPD patterns in
real time. It also has functionalities for data logging patterns. This is important for this investigation
because it is needed to capture and store PD data over long stressing period to monitor the different
levels of degradation that may be affected by environmental factors such as temperature, pressure etc.
Since the PD measurement gives the amplitude in volts, there is a need for calibration to obtain the
actual value in Coulombs. Therefore, prior to the real experimentation and testing of the standard PD
geometry, the traditional calibration technique was employed to establish a scale factor relating the
response of the measuring system to the level of the discharge pulse PD injector calibration pulse of
amplitude levels 500 pC, 2000 pC and 10,000 pC are applied. To calibrate the PD, a known PD pulse is
injected into the HV system when it is not energized and the amplitude level in mV is monitored using
the PD detection system. To determine the calibration factor for the experiments, the peak amplitude
level of the PD in mV corresponds to the injected pulse in pC.

2.2. PD Test Samples

One of the targets of this investigation is to produce appropriate physical PD models of voids
in PET, surface discharges in oil and then produce relevant PRPD patterns. These patterns will be
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processed using statistical tools for feeding as input to the ANNs and FL. The models for investigation
are shown in Figure 2 and are described as follows:
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(a) Single void (void 1): In this test object, nine PET sheets were sandwiched between the HV
electrode and the ground. A single cylindrical void of D = 0.6 mm and t = 50 µm is located at the
centre of the PET layers as shown in Figure 3a. The inception voltage for void 1 is approximately
2.82 kV. PD data was captured over 250 cycles from the start of the experiment through a 7 h
continuous degradation period. However, to guarantee that the experimental set-up is discharge
free prior to the samples with voids being investigated, PET layers without any voids were
initially stressed to confirm the validity of discharge free PET environments [3]. Optimal external
pressure is maintained on all samples to ensure an ideal specimen without any small voids on
the edges and any other twist that can create a void.

(b) Parallel void (void 2): This test arrangement is similar to void 1, except that two voids with the
same dimension (i.e., D = 0.6 mm and t = 50 µm) are created adjacent to each other in a horizontal
form as shown in Figure 3b. The inception voltage for void 2 is approximately 3.2 kV.

(c) Serial void (void 3): This test arrangement is also similar to void 1, except that two voids with
the same sizes (i.e., D = 0.6 mm and t = 50 µm) are created adjacent to each other in a vertical
form as shown in Figure 3c. The inception voltage is approximately 2.82 kV. It can be seen that
the inception voltage for void 2 is greater than that of void 1 and void 3 due to the influence of
the electric field on the different void arrangements.

(d) Surface discharge in oil 1 (surf 1): Surface discharge along an oil-pressboard interface is
investigated by means of an experimental test arrangement as shown in Figure 2b. In this
test arrangement, a needle was placed at an angle of 10◦ to a pressboard surface, with the needle
tip at a predetermined distance (d) = 25 mm from an earth electrode also placed on the pressboard
in oil. The applied voltage is 18.5 kV. In order to have good representative of PD patterns for
evaluation were captured continuously from onset up to 7 h of continuous stress.

(e) Surface discharge in oil 2 (surf 2): Test arrangement is similar to surf 1 except that d = 45 mm.
(f) Surface discharge in oil 3 (surf 3): This test arrangements is also identical to surf 1 except that

d = 25 mm and applied voltage of 30 kV.
(g) Surface discharge in oil 4 (surf 4): This test object is similar to surf 3 except that d = 45 mm.
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Different surface discharge samples were investigated in order to understand and quantify the
variations that may be seen in the PRDP patterns from various surface discharge arrangements in oil
when the ANN and fuzzy logic approaches were applied.

3. PD Pattern Recognition Tools

3.1. Artificial Neural Networks

ANNs are mathematical models that emulate the way humans classify patterns, learn tasks and
solve problems [29,30]. The structure of an ANN consists of the input layer, middle layer (i.e., hidden
layer) and output layer. The number of outputs of an ANN is directly related to the number of classes
to be distinguished. Each layer of the ANN consists of one or more neurons, which compute the sum
of the incoming signals, and passes it to a non-linear squashing function, e.g., hyperbolic function or
sigmoid function, to give an output [29]. These neurons in the ANN are connected to each other by
synapses which weights are assigned [29,30].

An example of the learning process in an ANN applied to the identification of PD is shown in
Figure 4. In this context, the input vectors are the statistical fingerprints derived from different PRPD
patterns and the outputs are a combination of 0 s and 1 s to differentiate the PD. The ANN can have
many layers and normally has sigmoid functions in the hidden layer. The sigmoid function is the most
commonly used function in the construction of the ANN because of its asymptotic properties and
can normally squash input parameter to a range 0 to 1 [30]. There is no certain criterion for selecting
the number of neurons in the hidden layer, but enough neurons are needed to obtain a very good
performance [17]. Generally, in designing and training the ANN, certain considerations have to be
taken to be able to get the best result, i.e., by choosing the number and types of neurons in the hidden
layer and finding the best solution to avoid local minima in the error space [29]. Local minima are
a sudden termination of the training error curve resulting from instability of the ANN [29].

In the majority of ANNs including PD, at the beginning of training, the weights are randomly
chosen within the range of−0.1 to 0.1, while the bias values are threshold values initially chosen to be 1
and can changed depending on the training pattern [11]. They are then adjusted based on the difference
between the output value and the target value, according to a certain training algorithms [11]. Basically,
the inputs are fed into the ANN and the weights continuously adjusted until the error predefined
(output value) reaches the minimum acceptable value. Among the training algorithms for the ANN,
the back-propagation (BP) is the most widely used for PD classification and recognition rate as high
as 90% have been recorded for some unseen PD samples [4,11,15]. The BP is simpler to implement
and more efficient in determining the gradients in ANNs. The BP algorithm is a kind of supervised
learning [29]. There are basically four steps in implementing the BP ANN [31]. These include the
feed-forward propagation, BP to the output layer, BP to the hidden layer and weight updates [32].
The BP algorithm is typically used for updating weights and biases of ANN and allows reducing the
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mean square error (MSE). The adjustment results, for training and testing phases, have been chosen
according with the knowledge acquired from previous works, such as [3,14].

After training enough samples and continuously amending the connection weights, the final
weight values and threshold values in the neurons are obtained to indicate the correct information. The
neuron refers to an information-processing element important for the function of the ANN. The inputs
are connected to the neuron and multiplied by certain weights. There is also an adder for summing
the input signals weighted by the respective synapse. Next is the activation function that limits the
amplitude of the output of the neuron, normalized to either [0, 1] or [1, −1] at the output. In the
literature, Gulski and Krivda [11] have compared the ANN using the BP for identify and discriminate
different arrangements of two electrode PD samples. They were able to demonstrate that with the BP
ANN, recognition rate of PD reached as high as 100%.

Similar to Gulski, Abubakar Mas’ud [3] and Abubakar Mas’ud et al. [14] have tried in several
attempts to recognize a number of PD patterns of corona and surface discharges using the ANN.
Statistical metrics were applied as input to the ANN and recognition rate up to 90% was recorded for
some PD fault geometries.
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3.2. Fuzzy Logic

The FL system is a knowledge-based or rule based system [33]. Generally, it is simply a nonlinear
mapping of an input fingerprint set to a scalar output fingerprint [34]. The main component of the
fuzzy system is a knowledge base made up of fuzzy IF-THEN rules. These IF-THEN statements are
distinguished by certain membership functions (MF) that represent the degree of which a member
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belongs to a set as follows: MF = 1 perfect membership; MF = 0 no membership, and MF = (0, 1) partial
membership [35].

Figure 5a shows an example of MF, where the classes are numbers that are negative large (NL),
negative medium (NM), negative small (NS), close to zero, positive small (PS), positive medium (PM)
and positive large (PL). µ refers to the membership in a particular class or set. A FL comprises of
four fundamental parts [36]: fuzzifier, rules, inference engine, and defuzzifier, as shown in Figure 5b.
The fuzzy logic algorithm is as follows:

(a) Fuzzifier: In this case, crisp input set is collected and then converted to fuzzy set using certain
linguistic parameters, terms and membership functions. There are basically three types of fuzzifier
namely singleton fuzzifier, Gaussian fuzzifier and trapezoidal (or triangular fuzzifier) [33].
In the singleton fuzzifier, the inputs are converted into fuzzy singletons. It simplifiers the fuzzy
computations but cannot eliminate noise [33]. The Gaussian and trapezoidal are commonly
used for pattern recognition because they can suppress noise and simplify fuzzy calculations
based certain membership functions [34,35]. In this paper, trapezoidal fuzzifier will be applied to
recognize PD.

(b) The inference is carried out based on certain fuzzy rules. In the inference stage, a number of
fuzzy operators (OR, AND, NOT) are applied in the IF part of the rule. This is important in order
to define input and output behaviours and choosing the minimum number of variables that are
applied to the fuzzy logic machine.

(c) Finally, the defuzzification step, where the corresponding fuzzy output is mapped to a crisp
output based on the membership functions. Many types of defuzzification exist which include the
maximum defuzzification technique, centre of gravity and the bisector method. The maximum
defuzzification technique is the most common and it selects the output with the maximum
membership function [33,36].
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PD [37–39], with the most recent one being the fuzzy art maps [39]. Gopal [37] used different PRPD 
patterns (internal void, surface discharge, oil corona and corona) to represent the crisp number set of 
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shape) in order to obtain the optimum generalization and classification. Secondly, the corresponding 
values of q, φ and n represent the crisp number sub-set. Membership functions are defined for each 
subset and fuzzy rules are applied in order to classify the PD e.g., if φ is very low and n is very high 
and q is medium then the PD represent an internal void, i.e., φUqUn = void. The PD logic classification 
chart as defined in the literature is summarized in Figure 6a. Prior to classification, the low, high and 
medium values for each subset are defined based on the understanding of the parameters of each PD 
fault. Chen et al. [38] investigated the application of the statistical parameters for fuzzy logic 
classification. The optimum statistical fingerprints with higher discriminating capability of PD 
patterns were initially determined by comparing the 25%, 50% and 75% quartiles of the different PD 
faults. 

Figure 5. (a) Membership Functions for different classes (N = Negative, P = Positive, L = Large,
M = Medium, S = Small, NL = Negative Large, NM = Negative Medium, NS =Negative Small,
PS = Positive Small, PM = Positive Medium, PL =Positive Large) (Adapted from [34]); and (b) a fuzzy
inference system.

Previously, few papers have reported successful classification of PD using FL applied to classify
PD [37–39], with the most recent one being the fuzzy art maps [39]. Gopal et al. [37] used different PRPD
patterns (internal void, surface discharge, oil corona and corona) to represent the crisp number set of
the fuzzy logic. Different membership functions were analysed (e.g., trapezoidal, triangular and bell
shape) in order to obtain the optimum generalization and classification. Secondly, the corresponding
values of q, φ and n represent the crisp number sub-set. Membership functions are defined for each
subset and fuzzy rules are applied in order to classify the PD e.g., if φ is very low and n is very high
and q is medium then the PD represent an internal void, i.e., φUqUn = void. The PD logic classification
chart as defined in the literature is summarized in Figure 6a. Prior to classification, the low, high and
medium values for each subset are defined based on the understanding of the parameters of each
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PD fault. Chen et al. [38] investigated the application of the statistical parameters for fuzzy logic
classification. The optimum statistical fingerprints with higher discriminating capability of PD patterns
were initially determined by comparing the 25%, 50% and 75% quartiles of the different PD faults.
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The four artificially created PD faults investigated include internal discharge, surface discharge,
corona and discharges from bubbles in oil. Afterwards, Φi (inception phase), Φm (mean phase) and
sk (skewness) were determined to be the most discriminating markers for fuzzy logic identification.
Figure 6b shows the fuzzy logic classification tool as adopted by Chen. The PD markers (fingerprints)
were fuzzified into five linguistic attributes i.e., low, low medium, medium, medium-high and high.
Fuzzy rules for PD inference were determined based on the statistical parameters confidence limits in
order to obtain the correct diagnosis of the PD fault. In this paper, similar algorithms as implemented
by Chen et al. [35] will be developed for PD classification using the FL.

4. PRPD Patterns and Statistical Parameters for the ANN and FL

4.1. PRPD Patterns for PD Faults

The PRPD represented as φ-q-n plots for all void arrangements at the initial degradation stage
are shown in Figure 7, while that for the surface discharges are shown in Figure 8. From Figure 8,
it is obvious that there may be statistical variability among the three void arrangements. In terms
of the φ-q-n distributions, void 1 and void 3 appear to be similar, but are different from void 2. The
number of discharges occurring at larger amplitudes appears to be higher in the void 2 situation when
compared to void-3. However, this depends on the distance between the two voids in the void 2
arrangement [3]. When PD occurs, the closely spaced void 2 arrangement affect the field in each of the
voids due to electrostatic interaction, while more distanced spaced voids in void 2 arrangement have
little influence on the electric field in the voids themselves [40]. Generally, it is expected that when
the number of voids is increased, the number of PD per cycle increases. Theoretically, PD patterns
from different arrangement of voids in any HV insulation may vary due to change in temperature,
air pressure within the void and fabrication tolerance of the PET sheets, which may affect the PD
discharge amplitude levels [3]. However, for a practical cable (e.g., cross-linked polyethylene (XLPE)),
the partial discharge inception voltage (PDIV) may vary from these experiments because of certain
cable parameters considered, i.e., insulation medium, geometry (conductor radius), local conditions
(distance of void to conductor, rated voltage, temperature, internal pressure), level of degradation
(void size) and their travelling paths up to reach the sensors [41].
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For tests involving a point to ground on pressboard in oil (Figure 8a–d), the applied voltage,
gap distance and angular positioning of the point discharge source play a significant part in the PD
repetition rate and oil-pressboard degradation process. Although the PRPD pattern shown illustrates
only the initial degradation, it is clear that the higher the applied voltage, the higher the discharge
intensity. From the experiment, it was observed that distinguishing aspect between 25 mm and 45 mm
point-ground gaps on pressboard in oil is the spread of the tracking marks on the pressboard surface
due to sustained intense PD. This result is an indication of variability in the PD patterns and statistical
fingerprints defining the surface discharge in oil.

Energies 2017, 10, 1060 9 of 20 

 

mm point-ground gaps on pressboard in oil is the spread of the tracking marks on the pressboard 
surface due to sustained intense PD. This result is an indication of variability in the PD patterns and 
statistical fingerprints defining the surface discharge in oil. 

(a)

 
(b)

 
(c) 

Figure 7. Sample PRPD pattern for: (a) void 1; (b) void 2; and (c) void 3. 
Figure 7. Sample PRPD pattern for: (a) void 1; (b) void 2; and (c) void 3.



Energies 2017, 10, 1060 10 of 20Energies 2017, 10, 1060 10 of 20 

 

 
(a) (b)

(c) (d)

Figure 8. φ-q-n pattern for surface discharges in oil (a) v = 18.5 kV, d = 45 mm; (b) v = 30 kV, d = 45 
mm, in oil; (c) v = 18.5 kV, d = 25 mm and (d) v = 30 kV, d = 25 mm. 

4.2. Statistical Fingerprints 

For this investigation, numerous PRPD pattern fingerprint structures are obtained so as to 
determine the appropriate input parameter vector to which the ANN and FL can learn from. Since 
PD events that transpire in the dielectric material are essentially complex random phenomena that 
demonstrates considerable statistical inconsistency in characteristics, i.e., pulse magnitude, 
appearance and time of event. The PD behaviour can also be either continuous or random process, 
which reveals that statistical measures (operators) should be the most reliable choice for analysis. In 
this paper, in order to simplify the pattern recognition process, the φ-q-n plots are obtained and 
transformed into 2-D plots. It is complex to analyse the φ-q-n plots in the 3D and therefore 2D plots 
are commonly used. The 2D plots chosen for this investigation are the phase-number histograms 
(Hn(φ)), amplitude-number histograms (Hn(q)) and average amplitude-number histograms (Hqn(φ)). 
These distributions are evaluated in both the positive and negative half power of the AC cycle. 
Example of the φ-q-n (2D) derived pattern is shown in Figure 9. 

 
(a) (b) (c) 

Figure 9. Example of 2D (a) Hn(φ); (b) Hn(q) and (c) Hqn(φ) derived plots for single void. 

Figure 8. φ-q-n pattern for surface discharges in oil (a) v = 18.5 kV, d = 45 mm; (b) v = 30 kV, d = 45 mm,
in oil; (c) v = 18.5 kV, d = 25 mm and (d) v = 30 kV, d = 25 mm.

4.2. Statistical Fingerprints

For this investigation, numerous PRPD pattern fingerprint structures are obtained so as to
determine the appropriate input parameter vector to which the ANN and FL can learn from. Since
PD events that transpire in the dielectric material are essentially complex random phenomena that
demonstrates considerable statistical inconsistency in characteristics, i.e., pulse magnitude, appearance
and time of event. The PD behaviour can also be either continuous or random process, which reveals
that statistical measures (operators) should be the most reliable choice for analysis. In this paper,
in order to simplify the pattern recognition process, the φ-q-n plots are obtained and transformed into
2-D plots. It is complex to analyse the φ-q-n plots in the 3D and therefore 2D plots are commonly used.
The 2D plots chosen for this investigation are the phase-number histograms (Hn(φ)), amplitude-number
histograms (Hn(q)) and average amplitude-number histograms (Hqn(φ)). These distributions are
evaluated in both the positive and negative half power of the AC cycle. Example of the φ-q-n (2D)
derived pattern is shown in Figure 9.
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Previously, encouraging performance was recorded by means of a number of aforementioned
statistical tools as training and testing set for the ANN [11]. In agreement with the literature this paper
also utilizes 15 statistical fingerprints from the φ-q-n patterns. These include: skewness (sk) and kurtosis
(ku) of the Hn(φ)+, Hn(φ)−, Hqn(φ)+, Hqn(φ)−, Hn(q)+ and Hn(q)− distributions. The mathematical
representations for these statistical fingerprints is shown in Table 1, where µ is the average value, σ is
the standard deviation, m represents the size of the data and Pj is the probability of the discrete value
xj and yj as the case may be. QS

+ and QS
− represent the sum of discharge amplitudes in both the +ve

and negative half power cycles. Similarly NS
+ and NS

− represent the number of discharges in both the
+ve and –ve half power cycle.

The Hn(φ)+, Hn(φ)− distributions represent pulse count distribution (positive and negative half
cycle) in phase while the Hqn(φ)+, Hn(q)− plots are the mean pulse height distribution (+ve and −ve
half cycle) in phase. Similarly, the Hn(q)+ and Hn(q)− are the pulse amplitude distribution (+ve and
−ve half cycle) in amplitude.

The discharge factor (Q), cross-correlation (cc) and the modified cross-correlation (mcc) also form
part of the statistical variables as input to the ANN and FL. sk measures the asymmetry of each of the
2D PRPD derived distributions in comparison to the normal distribution. ku measures the sharpness
or evenness of the distributions. The cross-correlation (cc) determines the variation in shape between
any two Hqn(φ) plots in the positive and negative half power cycles. Q determines the difference in the
average discharge level of any two Hqn(φ) plots.

Figures 10 and 11 shows the statistical variability of selected 2D plots for the voids and surface
discharge over a 7 h degradation period. From Figure 10, it is clear that sk (Hqn(φ)+) and Q for single
and serial voids follow identical patterns which correlates with their PD mechanism as described in
Section 4.1. However there is no clear variability between the surface discharges in Figure 11, clearly
showing that there is no clear pattern for surface discharges degradation over different gap distances
or applied voltage, what is more, basically little φ-q-n pattern variation may exist between them.

Table 1. Mathematical expressions of statistical operators.

Statistical Operator Mathematical Equation

Skewness sk =
∑ (xj−µ)

3
Pj

σ3

Kurtosis ku =
∑ (xj−µ)

4
Pj

σ4

Discharge Factor Q = QS
−/NS

−

QS
+/NS

+

Cross-correlation (cc)
cc = ∑ xjyj−

∑ xj ∑ yj
n√[

∑ xj
2−

(∑ xj )
2

n

][
∑ yj

2−
(∑ yj )

2

n

]

Modified cross-correlation Q cc
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4.3. Results and Analysis

4.3.1. ANN results

In this section, attention is drawn to the behaviour of the ANN in classifying and discriminating
PD patterns of: (a) different void arrangement in PET, and (b) different surface discharge arrangements
in oil. The training and testing fingerprints comprises statistical operators acquired from the Hqn(φ),
Hn(q) and Hn(φ) distributions in both the positive and negative voltage half cycles. For the ANN,
two strategies are employed. Firstly, training the ANN (with either single, serial or parallel voids
distributions) and then testing undertaken with the others. The same procedure of training and testing
for voids is applied for the different surface discharges on pressboard in oil. For each PD defect, the
input fingerprints for the ANN comprised of 28 samples derived from the sk and ku of the (Hn(φ)+,
Hn(φ)−, Hqn(φ)+ and Hqn(φ)−), Q, cc and mcc. The choice of samples depends on the complexity of
the data. For less complex data, few samples are enough. But for more complex data, such as in this
case, large samples are needed to obtain better approximation. The output parameters are chosen to be
[0, 1], [1, 0] and [1, 1] for the void classification while [0, 0], [0, 1], [1, 0] and [1, 1] are selected for the
surface discharges on pressboard in oil. Out of the 28 samples, eight are applied as testing dataset and
the remaining are the training dataset.

To determine the performance of the ANN for each training and testing strategy, up to
100 iterations of ANN results are obtained starting with different initial states (weights and biases).
After 100 iterations, the result became stable and therefore adding more iteration is meaningless. Much
iteration is needed for this investigation in order to obtain the confidence limits recognition rate of
the ANN for a more reliable PD diagnosis. In deciding the configuration of ANN for each strategy,
the hidden layer and the learning rate are varied, though the momentum rate remains the same. The
momentum rate is applied in order to speed up the training process, thereby smoothen up weight
updating and offering some resistance to irregular weight variations. The learning rate is usually
set between value of 0 and 1. After several trial and errors with several layers, 10 hidden layers,
a momentum rate of 0.6 and learning rate of 0.05 are determined to be the optimal for all the strategies.
For this investigation, no validation samples were applied due to small data examples and training
is said to be completed when the learning cycle reaches the maximum acceptable value or when the
mean square error reaches 10−3.

Figure 12 shows examples of varying recognition efficiencies when any of the void samples
(single, serial or parallel) is applied for training the ANN and other void samples utilized for testing.
The result clearly indicates that for ANN trained with the similar PD statistical sample, higher average
recognition rate with lower variance has been observed, while for the ANN trained with one void
sample and test with another sample, higher variance of recognition rates with lower variance is
observed. Similarly, results for training and testing with different surface discharge samples are shown
in Figure 13. To further evaluate Figures 12 and 13, average recognition rates of different training and
testing permutations are shown in Table 2. The results show that patterns of single and serial void are
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approximately similar with recognition efficiency of up to 98%, which is different from a parallel void.
This result clearly correlates with the statistical variability of the voids (Figure 10) and the respective
PD patterns (Figure 7). From this result, it can be established that when training the ANN with any
of the three void arrangements considered in this paper and testing with others, high recognition
probability is attained up 70%, which is enough to reveal that they all belong to the same defect,
though with different geometry or arrangement. This result further demonstrates, though the single
and the parallel void have similar PD characteristics such as the inception voltage, PD magnitude
among others but they vary in terms of the PRPD distributions.
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Table 2. Comparison of the mean recognition efficiency for the ANN for the different void arrangements
and different surface discharge arrangements.

Training Data
Testing Data and the Corresponding Recognition Rate

Void 1 Void 2 Void 3 Surf 1 Surf 2 Surf 3 Surf 4

Void 1 98% 75% 96%
Void 2 65% 97% 69%
Void 3 94% 70% 96%
Surf 1 95% 74% 82% 74%
Surf 2 78% 96% 79% 75%
Surf 3 80% 77% 95% 76%
Surf 4 73% 78% 78% 97%
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Similarly, for the ANN applied for training with one surface discharge sample and testing with
the same surface discharge, higher recognition performance is recorded up 97% in some instance.
But when training any surface discharge sample and testing with another surface discharge sample,
73% appears to be the minimum recognition performance recorded. In contrast to the voids, the surface
discharges appear to be different from each other in terms of the PD patterns and their degradation.
The results indicate that the needle angular position, gap distance and applied voltage may play a role
in determining the PD degradation pattern. This investigation implies that depending on training or
testing with any PD source, the ANN is capable to capturing even slight changes in PD patterns of
voids or surface discharge on pressboard in oil captured over long stressing period and this has laid
the foundation for further investigation that specific ANN can be developed to recognized PD patterns
from the similar arrangements.

4.3.2. FL results

In this section, the FL capability of being able to discriminate different void arrangement in PET
and different surface discharge arrangements in oil will be investigated. However, due to the statistical
and distribution similarity of some of the PD patterns as used in [42], it is necessary to scale down the
input parameters for the FL to the ones that demonstrates higher discriminating potential. Box plots
showing different quartiles (25%, 50% and 75%) will be applied to show the statistical distinction of
the PD patterns. To determine quartiles intervals for recognition, 20 samples are used for each PD fault
geometry of voids and surface discharges. Any statistical fingerprint applied for FL classification must
be able to demonstrate non-overlapping characteristics [42,43]. However, this may be difficult for all
statistical features because of stochastic nature of the PD.

Furthermore, to ensure effective classification, box plots for both positive and negative half
power cycles are evaluated. For the different voids, sk of the Hqn(φ), Q and cc appear to show clear
discrimination for the PD void patterns and will therefore be applied as input to the FL (see Figure 14).
This is expected because of the different discharge levels and distributions on both half of the AC power
cycle in the parallel void as opposed to the single or serial void. Similarly, for the surface discharges,
sk of Hn(q), sk, Hqn(φ) and the cc appear to show better discrimination parameters (see Figure 15).
Figure 16a,b show the developed fuzzy identification system containing the fuzzy rules implemented
for the void and surface discharge classification respectively. Initially, the fuzzy inputs are classified to
five linguistic elements, i.e., low, low-medium, medium, high-medium and high depending on the
discrimination level of the statistical parameters. Logical operators of fuzzy intersection (AND) and
fuzzy union (OR) are used to determine the fuzzy rules. Similar to the literature [38] and for the voids
the fuzzy rules are defined as follows:

a. If (Q is high) ∪ (cc is high) ∩ (sk (Hqn(φ) is low)- Then (void 1)
b. If (Q is low) ∪ (cc is low) ∩ (sk (Hqn(φ) is medium), Then (void 2)
c. If (Q is high-medium) ∪ (cc is high) ∩ (sk (Hqn(φ) is low)- Then (void 3)

The fuzzy rules for surface discharge classification are as follows:

a. If (sk (Hn(q) is low) ∩ (cc is medium) ∪ (sk (Hqn(φ) is medium)- Then (surf 1)
b. If (sk (Hn(q) is medium) ∩ (cc is low) ∪ (sk (Hqn(φ) is low)- Then (surf 2)
c. If (sk (Hn(q) is medium) ∩ (cc is low) ∩ (sk (Hqn(φ) is high)- Then (surf 3)
d. If (sk (Hn(q) is medium) ∩ (cc is medium) (sk (Hqn(φ) is medium)- Then (surf 4)

In order to recognize the PD samples for voids and surface discharges, eight samples for each
defect are used and recognition is decided when majority of the samples show particular trend.
The recognition is decided as either 0 or 1 based on the membership functions of the fuzzy logic
(see Figure 16). Table 3 shows the recognition performance of the FL as applied to recognize PD
faults of similar geometry. The results clearly demonstrated FL capability to categorize the PD faults
scenarios, depending on testing with different φ-q-n samples.
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Table 3. Comparison of the mean recognition efficiency for the FL for the different void arrangements
and different surface discharge arrangements.

Training Data
Testing Data and the Corresponding Recognition Rate

Void 1 Void 2 Void 3 Surf 1 Surf 2 Surf 3 Surf 4

Void 1 100% 0% 0%
Void 2 0% 100% 0%
Void 3 0% 0% 100%
Surf 1 100% 0% 0% 0%
Surf 2 0% 100% 0% 0%
Surf 3 0% 0% 100% 0%
Surf 4 0% 0% 0% 100%
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height distributions; (b) Q and (c) cc.
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4.3.3. ANN and FL results comparison

Generally, the ANN is well known as a nonlinear technique and easier to implement. It has the
capability to give important conclusion useful complex data. On the other hand, the FL is more useful
in interpreting uncertainties associated with data by interpreting data relationship using fuzzy rules.
For complex problem solving, the ANN requires large data for correct interpretation while fuzzy
does not [43].

In this paper, both the ANN and the FL have been applied to recognize similar PD faults of
different arrangement within the HV insulation system. The ANN was able to capture even slight
changes in the statistical features of the PD patterns of voids and surface discharges. One interesting
thing about the ANN is its ability to provide recognition probability value of different defects in order
to show the extent of similarity or variations of the PD defects. These have been achieved with few
PD samples and through extensive evaluation of the ANN using different initial training conditions.
Limited numbers of PD samples are used in this work because even in practice, PD data are commonly
known to be few. The implication of the ANN results is that it is possible to recognize and discriminate
PD faults of closely similar geometry depending on training or testing PD samples. Contrary to the
ANN, the FL can provide recognition probability of the PD faults as either correct (1) or incorrect (0).
However, it is difficult to understand the similarity of the PD defects and whether they are of the same
geometrical arrangement or not.

One interesting thing about the FL is that it permits to develop fuzzy rules with suitable statistical
parameters that can provide better discrimination of the PD faults of internal PD, (i.e., sk of the Hqn(φ),
Q and cc) and surface discharges, (i.e., sk of Hn(q), sk, Hqn(φ) and cc) which can be beneficial for
practical implementation of this algorithm. In Table 4, it is included a brief qualitative comparison
between ANN and FL techniques for PD pattern recognition.

Table 4. Qualitative comparison between ANN and FL for PD recognition.

ANN FL

ANN is well-known as a non-linear technique and easier
to be implemented

FL is more useful in interpreting uncertainties
associated with data by interpreting data relationship
using fuzzy rules

For complex problems, ANN requires large data for
training to obtain correct result FL do not require large data for correct interpretation

For PD recognition, ANN can provide recognition
probability values of different defects in order to show the
extent of similarity or variations of the PD defects

FL can provide recognition probability of the PD
faults as either correct (1) or incorrect (0)

The ANN can recognize and discriminate PD faults of
closely similar geometry depending on training or testing
PD samples

With FL, it is difficult to understand the similarity of
the PD defects and whether they are of the same
geometrical arrangement or not

5. Conclusions

This paper has compared the ANN and FL for recognizing and discriminating a number of PD
geometries of two classes, i.e., voids class and surface discharge class. Experiments were carried out
and PD samples captured over a 7 h stressing period in order to obtain a fair representative of the PD
samples for evaluation by the ANN and the FL techniques. Then, statistical features obtained from
the pulse height and pulse count distributions were applied as input to the ANN and FL systems.
The results clearly show that both the ANN and FL can recognize and discriminate the PD faults.
The ANN algorithm can better provide the level of similarity or closeness between the PD fault samples.
On the other hand, the FL permits to know the best statistical parameters for the discrimination of the
void classes and for surface discharges, which is not inappropriate for the ANN because of the limited
PD samples available. Although, the results show that the ANN provides a more robust classification
but these conclusions have to be further investigated with more complex PD examples.
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Based on this analysis, it is obvious that the ANN may be best suited for practical PD classification.
As first step, it is important to firstly identify the kind of defect through online PD classification looking
at its PRPD pattern. Then offline ANN PD testing tools already trained with either void class or surface
discharge class of defects can be used to recognize in detail the PD fault of similar PD geometry. In
training the offline PD classification tool, data must be available from actual HV installation either
in service or from factory test. If such data is not available, then the possibility of using simulated
PD samples may be investigated. If sufficient PD sample data can be assured, then the ANN can be
used to behave as an experienced evaluator. However, the ANN may have some limitations such
as excessive training and inability to obtain sufficient PD samples. On the other hand, the FL does
not have these limitations but its inability to provide accurate recognition probability values may be
a setback and may not provide the condition-monitoring engineer’s correct information about the
similarity of different PD faults. Though this work is purely based on laboratory data, future work
will concentrate on comparing the capabilities of the ANN and FL for practical PD dataset in order to
arrive at a more reliable conclusion.
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