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Abstract: This paper deals with the energy management strategy (EMS) for an on-board semi-active
hybrid energy storage system (HESS) composed of a Li-ion battery (LiB) and ultracapacitor (UC).
Considering both the nonlinearity of the semi-active structure and driving condition uncertainty,
while ensuring HESS operation within constraints, an adaptive model predictive control (AMPC)
method is adopted to design the EMS. Within AMPC, LiB Ah-throughput is minimized online to
extend its life. The proposed AMPC determines the optimal control action by solving a quadratic
programming (QP) problem at each control interval, in which the QP solver receives control-oriented
model matrices and current states for calculation. The control-oriented model is constructed by
linearizing HESS online to approximate the original nonlinear model. Besides, a time-varying Kalman
filter (TVKF) is introduced as the estimator to improve the state estimation accuracy. At the same time,
sampling time, prediction horizon and scaling factors of AMPC are determined through simulation.
Compared with standard MPC, TVKF reduces the estimation error by 1~3 orders of magnitude, and
AMPC reduces LiB Ah-throughput by 4.3% under Urban Dynamometer Driving Schedule (UDDS)
driving cycle condition, indicating superior model adaptivity. Furthermore, LiB Ah-throughput of
AMPC under various classical driving cycles differs from that of dynamic programming by an average
of 6.5% and reduces by an average of 10.6% compared to rule-based strategy of LiB Ah-throughput,
showing excellent adaptation to driving condition uncertainty.

Keywords: hybrid energy storage system; ultracapacitor; energy management; adaptive model
predictive control; online linearization; time-varying Kalman filter

1. Introduction

As concerns about energy crisis and environmental issues mount, electric vehicles (EVs) have
been considered as the most promising substitutes for internal combustion engine vehicles. EVs’
performance is strongly effected by their energy storage sources (ESS) [1,2]. ESSs for EVs must
simultaneously possess high specific energy, high specific power and long cycle life, which is impossible
for a single ESS. Consequently, hybrid energy storage system (HESS) have becomes favorable options.
Among all ESSs, Li-ion batteries (LiB) are the most extensively used for their high specific energy,
however, low specific power and short cycle lives limit their application [3]. Compared with LiB,
ultracapacitors (UCs) have longer cycle life and higher specific power [4]. Therefore utilizing HESSs
that include LiB and UC and possess both the high specific energy of LiB and high specific power of
UC is an advisable choice. In this way, the LiB burden would be reduced remarkably by the assistance
of UC, and LiB lifetime would be effectively extended.
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HESS performance in extending LiB life is mainly influenced by three factors: HESS structure
selection, parameter matching and the energy management strategy (EMS). Among all structures,
passive, semi-active and active structures have been widely researched [5–10]. In passive structures,
the LiB and UC are directly combined in parallel, and the power distribution between them only
depends on their internal resistances. This structure is the most cost effective, yet the controllability
is poor. In active structures, both the LiB and UC are connected to a direct current (DC) bus by two
full-size bi-directional DC/DC converters, and they can be controlled independently, although the
need for two converters increases the HESS cost significantly. In semi-active structures, either the LiB
or UC are connected to the DC bus with a bi-directional DC/DC converter as the controlled component,
and this structure provides a tradeoff between cost, controllability and complexity. As the control
process gives rise to a slight delay, peak HESS power demand will result in a pulsed current to the
passive component and cause damage. For this reason, LiB is chosen as the controlled component in
this paper, and UC is left to deal with the pulsed current passively.

After determining the structure, the priority for the HESS is to develop an appropriate energy
management strategy (EMS) to decide how the HESS power demand is allocated to LiB and UC. Lots
of EMSs have been put forward, and they can mainly be classified into two categories: rule-based
controllers (RBCs) and optimization-based strategies. With off-line optimization [11–13], an optimal
power distribution can be obtained, but it’s not viable for real-time application since the whole future
driving conditions must be known a priori. Instead, RBC is suitable for real-time application, because
the future conditions are not needed.

In [14], RBC is proposed for the active HESS structure. After optimizing both UC parameters and
RBC parameters under a certain cycle, the proposed RBC is capable of reducing the battery peak current
by 49%. In [15], a fuzzy-logic energy management based on Markov random prediction is designed
for a semi-active HESS structure. Simulation results show that the average battery current rate is
effectively reduced. In [16], an optimal power distribution for minimizing HESS energy consumption
is solved by gradient method. Based on the optimal distribution, a neural network (NN) controller is
developed, and the performance is near-optimal. The aforementioned EMSs are easily implemented
online, and the performance are satisfactory under certain cycle. Nevertheless, due to the stiffness
of parameters, their performance would degrade when applied to other cycles. In [17–19], wavelet
transform (generally a 3-level Haar wavelet) is adopted to split HESS power demand into high as well
as low frequency parts. Different parts are allocated to different sources based on their characteristics.
This method is easy to implement online, yet both power demand prediction and the ultracapacitor
state of charge (USOC) adjustment remain challenges.

The RBCs mentioned above do not guarantee optimal performance. Besides, the robustness is poor
when the driving cycle is uncertain. To conquer the weaknesses, online optimization-based strategies
are increasingly getting attention. Optimization-based EMSs artificially design a cost function with
constraints, and solve its minimum online by using different kinds of algorithms: model predictive
control (MPC), dynamic programming (DP), convex optimization (CVX) or some evolutionary
algorithms [20,21]. Among them, model predictive control (MPC) is a kind of model-based control
design method which has been introduced in the EMSs for HESS recently. In [22,23], a detailed
control-oriented state space model of an active HESS is constructed for MPC, and the battery current
magnitude/fluctuation were minimized successfully. In [24], an explicit MPC (EMPC) was designed
by solving piecewise linear functions of states and control laws offline to replace online QP calculation,
reducing the computational burden dramatically. MPC and EMPC are suitable for designing EMSs of
linear HESS. Conversely, it’s difficult for MPC and EMC to design proper EMSs for highly nonlinear
semi-active HESS. To handle the nonlinearity of multi-sources, some researchers have adopted DP
instead of quadratic programming (QP) in MPC [25,26]. Unfortunately, a large states number or a small
states discretization step size would cause a heavy computational burden for real-time implementation.
As DP has computational problems when handling nonlinear multi-states optimization problems, CVX
could be a reasonable substitute. In [27,28], HESS parameters and EMS are optimized simultaneously
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to extend battery life, as well as reduce total energy consumption. In [29,30], EMS for HESS is designed
based on CVX to minimize battery current magnitude/ fluctuation. CVX is an effective tool in dealing
with optimization problems with multi-states, whereas, it is only applicable to convex cost functions
with convex constraints, and its application in non-convex models is limited.

From the literature described above, optimization-based EMSs are preferred over RBC-based
EMSs for their optimality and adaptability to driving condition uncertainty, but due to the strong
nonlinearity of semi-active HESS, the mentioned optimization methods are not applicable. In this paper,
an AMPC-based EMS for semi-active HESS is proposed to handle the model nonlinearity. The proposed
AMPC minimizes LiB Ah-throughput in the prediction horizon and ensures HESS operation within
constraints. Three aspects of research are conducted on the proposed AMPC. Firstly, a module for
generating control-oriented model is designed, including linearization, direct feedthrough elimination,
discretization and state augmentation. Secondly, a time-varying Kalman filter (TVKF) is introduced as
state estimator to improve the state estimation accuracy. In this way, both control-oriented model and
estimated states improve the control action accuracy calculated by the QP solver. Finally, sampling time,
prediction horizon and scaling factors of AMPC are determined through simulation. The proposed
EMS is created and verified on the Matlab/Simulink (The MathWorks, Natick, MA, USA) platform.
Compared with standard MPC (SMPC), TVKF reduces estimation errors by 1~3 order of magnitude,
AMPC reduces LiB Ah-throughput by 4.3% under UDDS conditions, indicating superior model
adaptivity. Furthermore, simulation results under various driving cycles differ from those of DP by
an average of 6.5% and reduce an average of 10.6% compared to RBC, indicating that AMPC is able
to minimize the LiB Ah-throughput online effectively when the HESS is nonlinear and the driving
conditions are uncertain.

The rest of the paper is organized as follows: in Section 2, the detailed HESS model is introduced.
In Section 3, the control-oriented model updating process is performed, and TVKF is specified.
In Section 4, AMPC parameters are discussed, and AMPC is compared with SMPC, RBC and DP to
verify the model adaptivity and adaptability to driving condition uncertainty. Moreover, the influence
of the weights is researched and a suggested range is given. Section 5 presents the conclusions.

2. The Hybrid Energy Storage System Modeling

The structure of the semi-active HESS is shown in Figure 1, in which UC is connected to the
DC bus directly. LiB is connected to the DC bus through a full-size bi-directional DC/DC converter.
The LiB power output is determined by EMS, and the UC delivers rest power demand passively.
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Figure 1. Semi-active HESS structure.

2.1. LiB Model

The LiB cell used in this paper is a Panasonic NCR 18650B (Panasonic Co., Ltd, Osaka, Japan),
and the main parameters are listed in Table 1.
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Table 1. LiB Parameters.

Nominal Capacity 3.35 Ah Maximum Discharge Current 6.6 A

Nominal Voltage 3.6 V Maximum Charge Current 2 A
Voltage Range 2.5 V~4.2 V Specific Energy 243 Wh/kg

The Partnership for a New Generation of Vehicles (PNGV) battery model is selected as the LiB
equivalent circuit model [31], as shown in Figure 2.
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Figure 2. Battery PNGV model.

In the PNGV model, E and Vbb approximate the voltage source of the LiB, in which E is a constant
evaluated as the open circuit voltage (OCV) value when the LiB is fully discharged. Vbb represents a
linear relationship between the variation of source voltage and variation of remaining source energy,
just like a capacitor approximately, and Cbb is corresponding capacity. Cbp and Rbp reflect the electrode
polarization phenomenon; Rbb is the equivalent dc resistance. Vbl is the cell terminal voltage, Pb is pack
power, nb is cell number in pack.

LiB state of charge (BSOC) is defined as:

BSOC = BSOCinit −
1

Qb

∫
ib(t)dt (1)

where, BSOCinit is the value of BSOC when the simulation starts, which is set as 0.7. Qb is the LiB cell
nominal capacity.

The OCV under different BSOC is obtained by experiment. When BSOC is between 0.2 and 0.9,
the OCV increases nearly linearly with BSOC. Limiting BSOC within the range of [0.2, 0.9], and we
linearized the relationship of BSOC and OCV to obtain E and Cbb:

OCV = a + b× BSOC = E + Vbb (2)

Thereafter, BSOC = Vbb/b, E = a [32]. Vbb and Vbp are two states expressed by:
.

Vbb = − 1
Cbb

ibb, Cbb = Qb
b.

Vbp = − 1
CbpRbp

Vbp +
1

Cbp
ib

(3)

Terminal voltage Vbl is expressed by:

Vbl = E + Vbb −Vbp − ibRbb (4)

Based on Kirchhoff Voltage Laws, ib is obtained:

ib =
(E + Vbb −Vbp)−

√
(E + Vbb −Vbp)

2 − 4PbRbb/nb

2Rbb
(5)
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where, Pb is the only manipulated variable of the HESS.
A hybrid pulse power characterization test is conducted, and the lumped parameters Cbp, Rbb and

Rbp are fitted under different BSOC (0.1 as interval). As BSOC is limited to [0.2, 0.9], Rbb, Rbp and Cbp
are evaluated by taking an average within the range. The bi-directional DC/DC converter is simplified
as an efficiency module with constant efficiency of 95%.

2.2. UC Model

As UC is directly connected to the electric machine (EM) controller, the working voltage must be
limited to the range of the controller protection voltage which is 220 V~400 V in this paper. The cell
voltage upper bound is set as 2.7 V, and based on the bound, the cell number is calculated as 150.
According to the protection voltage lower bound as well as calculated cell number, the cell voltage
lower bound is obtained as 1.5 V. The cell capacity selection is a sizing problem coupled with EMS
optimization. Based on various literatures [33–35], pack capacity is chosen as 100 Wh. Based on the
pack capacity, the cell capacity is calculated as 0.67 Wh. A Maxwell BCAP0650 is selected whose cell
capacity is 0.66 Wh, the main parameters of which are listed in Table 2.

Table 2. UC Parameters.

Rated Capacitance 650 F Absolute Maximum Current 680 A

ESRDC 0.8 mΩ Specific Power 14 kW/kg
Voltage Range 0 V~2.8 V Specific Energy 4.1 Wh/kg

The equivalent circuit of the UC is shown in Figure 3 [4]. This model consists of two parts: the part
for main energy storage (C0 and C1) and the part reflecting electrode kinetics (Rub, Rup and Cup). In the
main energy storage part, C0 and C1 are connected in parallel. C0 is characterized by constant capacitance,
and C1 is characterized by capacitance varying linearly with the voltage Vub. They characterize the
nonlinearity of the source jointly. In the electrode kinetics part, Rub represents the Ohmic resistance,
while Rup and Cup represent polarization resistance and polarization capacitance separately.
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Vub and Vup are two states calculated by:
.

Vub = − 1
C0+kVub

iu
.

Vup =
iuRub−Vup

Cup(Rub+Rup)

(6)

USOC is obtained by:

USOC =
Vub

Vub,max
× 100% (7)

where, Vub,max is 2.8 V according to the manual.
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Terminal voltage Vul is expressed as:

Vul = Vub −Vup − CupRup
.

Vup (8)

Based on Kirchhoff Voltage Laws, iu is represented as:

iu =
Vub − Rub

Rub+Rup
Vup −

√
(Vub − Rub

Rub+Rup
Vup)

2
− 4 RubRup(Pd−Pb)

(Rub+Rup)nu

2 RubRup
Rub+Rup

(9)

where, Pu is replaced by Pd − Pb, indicating that Pb and Pd decide the working conditions of UC jointly.
Vub, iu and Vul reveal strong nonlinearity, and standard state space model is insufficient to characterize
the model precisely.

3. AMPC-Based Energy Management Implementation

When the C-rate is within 2C, BSOC is within the range of [0.2, 0.9], Ah-throughput is capable
of representing numerically the ageing condition of batteries [36]. The purpose of the EMS is: (1) to
minimize LiB current (or plus current variation), thereby reduce LiB Ah-throughput and extend battery
life; (2) to ensure HESS is operating within the constraints. This is a finite horizon optimization problem
with constraints, and MPC is excellent for managing optimization problems like this. In SMPC, the
control-oriented model is designed off-line, and remains unchanged during simulation. If the plant
is linear or weak nonlinear, the model prediction accuracy is acceptable. However, as the proposed
semi-active HESS is highly nonlinear, the constant prediction model isn’t accurate, AMPC is used
to address the degradation by adapting the prediction model for changing the working conditions.
Intrinsically, AMPC has the same structure as SMPC but allows the model parameters and optimization
cost function to evolve with time. At each interval, a state space model is obtained by linearizing the
HESS model around current working conditions. The original HESS model is:


.

Vbb.
Vbp.
Vub.
Vup

 =


− ib

Cbb

− 1
CbpRbp

Vbp +
ib

Cbp

− 1
C0+kVub

iu
Rubiu−Vup

Cup(Rub+Rup)

 =


f1(Vbb, Vbp, Vub, Vup, Pb, Pd)

f2(Vbb, Vbp, Vub, Vup, Pb, Pd)

f3(Vbb, Vbp, Vub, Vup, Pb, Pd)

f4(Vbb, Vbp, Vub, Vup, Pb, Pd)


ib =

Eb+Vbb−Vbp−
√
(Eb+Vbb−Vbp)

2−4RbbPb/nb
2Rbb

= g1(Vbb, Vbp, Vub, Vup, Pb, Pd)

iu =
Vub−

Rub
Rub+Rup Vup−

√
(Vub−

Rub
Rub+Rup Vup)

2
−4

Rub Rup(Pd−Pb)
(Rub+Rup)nu

2
Rub Rup

Rub+Rup

= g2(Vbb, Vbp, Vub, Vup, Pb, Pd)

(10)

To ensure ib and iu have real solutions, the following two expressions are added to outputs:{
yb = (Eb + Vbb −Vbp)

2 − 4RbbPb/nb

yu = (Vub − Rub
Rub+Rup

Vup)
2
− 4RubRup(Pd−Pb)

Rub+Rupnu

(11)

As AMPC is able to set limits for inputs and outputs only, states Vbb and Vub who have engineering
constraints are also added to outputs. Besides, as state estimator is required, the model observability
must be guaranteed. To this end, Vbl and Vul are added to outputs as measured variables. By this
means, two current sensors and two voltage sensors are needed. The final model is with inputs
U = [Pb, Pd], internal states X = [Vbb, Vbp, Vub, Vup] and outputs Y = [Vbb, ib, Vbl, yb, Vub, iu, Vul, yu].
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3.1. Control-Oriented Model Implementation

3.1.1. Linearization

At each control interval, the plant is linearized around current operation point (Xt, Ut) by first
approximation of Taylor expansion. The linearized plant is described as:{ .

X = AX + BU + f (X0, U0)− AX0 − BU0

Y = CX + DU + g(X0, U0)− CX0 − DU0
(12)

where, the constant matrices f (X0,U0) − AX0 − BU0 and g(X0,U0) − CX0 − DU0 are set as measured
disturbances with constant inputs of 1, and the new inputs are augmented as U = [Pb, Pd, Md]. The state
space model is augmented as:

.
X = AX +

[
B f (X0, U0)− AX0 − BU0

]
U

Y = CX +
[

D g(X0, U0)− CX0 − DU0

]
U
⇒
{ .

X = AX + BU
Y = CX + DU

(13)

Matrix A, B, C and D are calculated as:

A =
∂ f
∂X

, B =
∂ f
∂U

, C =
∂g
∂X

, D =
∂g
∂U

(14)

3.1.2. Eliminating Direct Feedthrough

Non-empty matrix D which causes direct feedthrough from inputs to outputs is unacceptable by
AMPC. To eliminate the feedthrough, the linearized plant in Equation (13) is augmented by adding
first-order filters with time constant Ta to inputs, as shown in Equation (15). Ta is chosen as one-tenth
or smaller of the AMPC sampling time [37,38]. With this method, the original inputs are turned into
new states and new inputs are identical to old ones except a slight delay:

Ta
.

U = −U + Ua (15)

The linearized model is augmented by:
.

Xa =

[
A B

03×4 − 1
Ta
× I3×3

]
Xa +

[
04×3

1
Ta
× I3×3

]
Ua

Y =
[

C D
]

Xa

,⇒
{ .

Xa = AaXa + BaUa

Y = CaXa
(16)

Augmented states now are Xa = [Vbb, Vbp, Vub, Vup, Pb, Pd, Md], and new inputs are Ua = [Pba, Pda, Mda].
The delay in the inputs intrinsically causes a slight model mismatch, which AMPC is good at
dealing with.

3.1.3. Model Discretization

The Zero-Order Hold method is used to discretize the state space model with sample time Ts, the
discrete state space is represented as:{

Xa(k + 1) = G(Ts)Xa(k) + H(Ts)Ua(k)
Y(k) = CaXa(k)

(17)

where:

G(Ts) = eAaTs, H(Ts) =
∫ Ts

0
eAatdt · Ba (18)
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The matrix exponential of G (Ts) is calculated using Padé approximant and integral of H (Ts) is
implemented using Simpson’s Rule.

3.1.4. LiB Current Fluctuation Suppression

To avoid LiB damage caused by enormous current fluctuation, the current variation is also
considered as a control target [27]. Here we define a state:

∆ib(k + 1) = ib(k + 1)− ib(k) (19)

Based on the discrete state space, and output increments are represented as:

∆Y(k + 1) = Ca

(
Xa(k + 1)− Xa(k)

)
= Ca(G− I)Xa(k) + CaHUa(k) (20)

∆ib is expressed by the second row of ∆Y, in which coefficients vector of Xa is expressed by Gdib,
coefficients vector of Ua is expressed by Hdib. ∆ib is expressed as:

∆ib(k + 1) = GdibXa(k) + HdibUa(k) (21)

The discrete state space model is augmented again:


(
Xa(k + 1)
∆ib(k + 1)

)
=

[
G 07×1

Gdib 0

](
Xa(k)
∆ib(k)

)
+

[
H

Hdib

]
Ua(k)(

Y(k)
∆ib(k)

)
=

[
Ca 08×1

01×7 1

](
Xa(k)
∆ib(k)

) ⇒
{

XA(k + 1) = GAXA(k) + HAUa(k)
YA(k) = CAXA(k)

(22)

The final state space model for AMPC is obtained with internal states XA = [Vbb, Vbp, Vub, Vup, Pb,
Pd, Md, ∆ib], inputs Ua = [Pba, Pda, Mda] and outputs YA = [Vbb, ib, Vbl, yb, Vub, iu, Vul, yu, ∆ib], as well as
control-oriented model matrices GA, HA and CA.

3.2. Optimization Problem

The AMPC is designed based on the model shown in Equation (22), in which Pba is the only
manipulated variable, Pda and Mda are measured disturbances, ib, iu, Vbl and Vul are measured outputs,
Vbb, Vub, yb, yu and ∆ib are unmeasured outputs.

The AMPC solves a QP problem at each control interval and determines the control action of next
interval. The QP problem here includes outputs reference tracking and constraints violation, the cost
function to be minimized is as follows [39,40]:

J =
ny

∑
j=1

p
∑

i=1

{
wj
sy,j

[
rj(k + i|k)− yj(k + i|k)

]}2

+ ρεε
2
k

subject to
Pb,min

su
− εkECRu,min ≤ Pb(k+i−1|k)

su
≤ Pb,max

su
+ εkECRu,max

yj,min
sy,j
− εkECRj,min ≤

yj(k+i|k)
sy,j

≤ yj.max
sy,j

+ εkECRj,maxi = 1 : p, j = 1 : ny

(23)

where, ny is the number of outputs, p is prediction horizon, wj is the weight of jth output, ρε is the
constraints violation penalty weight, and ε is the slack variable at interval k. J involves a trade-off
between the output reference tracking and constraint violation by weighting, and corresponding QP
decision is [Ua (k|k) Ua(k + 1|k) . . . Ua (k + p− 1|k) ε]. The first part of J represents the output reference
tracking with weight matrix wj, while the second part shows the constraint violation with weight ρε.
When ρε increases, ε tends to be smaller or zero, meaning J is more inclined to suppress constraint
violation. If ε is zero, Ua and Ya are strictly limited within constraints; if ε is positive, at least one soft
constraint is reached. While, when ρε is smaller, ε tends to be greater, soft constraints are more likely



Energies 2017, 10, 1063 9 of 21

to be activated, and the controller performance can be substandard. Sy,j and su are scaling factors (SFs)
whose roles are to scale inputs and outputs to the same magnitude. ECRs are nonnegative parameters
used to soften inputs and outputs constraints, the larger the ECRs are, the greater constraints violation
are allowed to obtain optimal solution.

Suppose HAu is coefficient matrix of Pba, and HAv is coefficient matrix of [Pda, Mda], the model in
Equation (22) is rewritten as: XA(k + 1) = GAXA(k) + HAuPba(k) + HAv

[
Pda(k)
Mda(k)

]
YA(k) = CAXA(k)

(24)

Assign Uau = Pba and Uav = [Pda, Mda], based on Equation (23), the predicted output is:

YA(k + 1|k) = CAGAXA(k) + CA HAu(Uau(k)) + CA HAvUav(k)
YA(k + 2|k) = CAG2

AXA(k) + CAGAHAuUau(k) + CA HAuUau(k + 1)+
CAGA HAvUav(k) + CA HAvUav(k + 1)

...

YA(k + i|k) = CAGi
AXA(k) +

i
∑

h=0
CAGi−h−1

A (HAuUau(k + h) + HAvUav(k + h))

(25)

Define ∆Uau(k) = Uau(k) − Uau(k− 1), we can derive that ∆Uau(k + i) = Uau(k− 1) +
∑i

j=0 ∆Uau(k + j). Then substitute ∆Uau into Equation (25), the predicted output is expressed as:

YA(k + i|k) = CAGi
AXA(k) +

i
∑

h=0
CAGi−h−1

A (HAu(Uau(k− 1) +
h
∑

j=0
∆Uau(k + j)) + HAvUav(k + h))

i = 1 : p
(26)

where, HAu is coefficient matrix of Pba from HA, HAv is coefficient matrix of [Pda, Mda] from HA.
As shown in Equation (26), GA, HA (HAu and HAv) and CA are used by QP solver for calculation.

ECRs for inputs and outputs are decided based on whether their upper or lower bounds are
allowed to be violated or how great their bounds are allowed to be violated. Constraints for Pb are not
set for they are limited intrinsically by the limitation of Vbb and ib, and their ECRs are set as 1 by default.
Vbb is limited to the range of 0.18 V~0.81 V based on BSOC constraints, both constraints leave some
margin and can be violated, ECR1,min and ECR1,max are set as 1. Constraints for ib are −3.2 A~6.4 A
according to the manual, the lower bound is strictly limited by the manufacturer, while the upper
bound can be set as high as 10 A in our experiment, ECR2,min is 0 and ECR2,max is 1. Constraints for
Vbl and Vul are not set for they are intrinsically limited by other states, corresponding ECRs are set
as 1. Outputs yb and yu must be non-negative, and the constraints are not allowed to be violated.
Considering linearization error, the lower bounds for yb and yu are set as 0.5, ECR3,min and ECR6,min
are 0. Vub is limited to meet the voltage range of DC bus, cell voltage range is thus between 1.5 V~2.7 V.
As the energy stored in the UC increases exponentially with Vub, the upper bound would be violated
slightly by absorbing much energy, which is acceptable, ECR4,max is 1. While the lower bound would
be violated severely by even delivering little energy, which is unacceptable, ECR4,min is 0. Constraints
for iu are −1200 A~1200 A and can be violated, for huge current do not harm the UC cell obviously,
ECR5,min and ECR5,max are 10. Constraints for ∆ib are not set for the constraints of ib intrinsically avoid
severe variation of ∆ib, meanwhile weights for ib and ∆ib prevent them from wide variation.

3.3. Controller State Estimation

QP solver receives states for calculation, as shown in Equation (26). As HESS states can’t be
measured directly, a state estimator is needed. Currents and terminal voltages of LiB and UC are
related to all four states to be estimated, and they are all measured variables. By gathering voltage and
current signals, the HESS observability is guaranteed.
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TVKF is applied to construct the estimator. Different from the standard Kalman filter, TVKF
calculates the gain matrix with varying model matrices GA, HA and CA. The model in Equation (22) is
augmented with noise vector w(k) and v(k) [26]:{

XA(k + 1) = GAXA(k) + HAUa(k) + HAw(k)
YA(k) = CAXA(k) + v(k)

(27)

where, w(k) is process noise with covariance matrix Q, its gaining matrix is the same as inputs, and v(k)
is measurement noise with covariance matrix R. Q is n-by-n diagonal matrix, n is equal to the number
of states. R is m-by-m diagonal matrix, m is equal to the number of measured outputs. Suppose w(k)
and v(k) are driven by white noise with unity gain, Q =HA HT

A, and R is diagonal matrix with diagonal
elements [SF2, SF3, SF6, SF7] considering influence of scaling.

The estimation process at control interval k is as follows:

(1) Prediction updating:

X̂A(k|k− 1) = GAXA(k− 1|k− 1) + HAUa(k) (28)

P(k|k− 1) = GAP(k− 1|k− 1)GT
A + Q (29)

(2) Measurement correction:

Kg(k) =
P(k|k− 1)CT

A
CAP(k|k− 1)CT

A + R
(30)

X̂A(k|k) = X̂A(k|k− 1) + Kg(k)(YA(k)− CAX̂A(k|k− 1)) (31)

P(k|k) = (I − Kg(k))P(k|k− 1) (32)

where X̂A(k− 1|k− 1) is the corrected states prediction of previous interval, X̂A(k|k− 1) is the
uncorrected states prediction of current interval, P(k− 1|k− 1) is the corrected states estimation
error covariance matrix of previous interval, P(k|k− 1) is the uncorrected error covariance matrix
of current interval, Kg(k) is gain matrix for measurement correction, X̂A(k|k) is the corrected
states prediction of current interval, P(k|k) is the corrected error covariance matrix of current
interval. It’s obvious that time-varying GA, HA and CA influence the value of Kg significantly.

3.4. Measured Disturbance

The control-oriented model of AMPC has two measured disturbances: Pda and Mda. Mda is a
constant set as 1, while Pda is HESS power demand determined by vehicle power balance equation
shown below:

Pda = v(mg f +
CD A
21.15

v2 + δma) (33)

where, v is vehicle velocity from driving cycle, m is vehicle mass, f is rolling resistance coefficient, CD is
drag coefficient, A is windward area, δ is correction coefficient of rotating mass, a is vehicle acceleration.

As AMPC solves the QP problem with the assumption that measured disturbances in the
prediction horizon are known, the velocity needs to be predicted. Yet, model prediction inevitably
causes errors, and the predicted power demand wouldn’t improve AMPC efficiency, and sometimes it
may even deteriorate the efficiency if the velocity prediction is not that accurate. As a result, current
power demand is applied to AMPC, and remains unchanged in prediction horizon. The whole process
of the AMPC is shown in Figure 4, in the red box is the AMPC.
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4. Results and Discussion

4.1. Sampling Time, Prediction Horizon and Scaling Factor

As sampling time (Ts) decreases, rejection of unmeasured disturbance as well as model error
improves. Once prediction duration (pd) and Ts are determined, prediction horizon (ph) is calculated
by ph = pd/Ts. ph decides how many steps the model prediction is conducted, as ph increases, the
prediction accuracy gradually decreases. ph also decides the size of the matrices in the QP problem,
as ph increases, the matrices become large and the computation burden is heavy. The AMPC with
different Ts and ph is conducted under UDDS, and the results are shown in Table 3. Finally, Ts is set as
0.1 s, pd is chosen as 2 s, ph is 20.

Table 3. Influence of sample time and prediction duration.

Ah-Throughput/As pd/s

2 5 10

Ts/s

0.1 387 387 398
0.2 391 391 400
0.5 430 429 452
1 654 577 712

Scaling factors (SFs) are set to adjust inputs and outputs to the same magnitude, and improper SFs
may cause inaccurate states estimation as well as poor QP solutions. As the magnitudes of HESS inputs
and outputs vary a lot, it is important to choose proper SFs. SFs are usually determined empirically as
their respective spans, whereas the simulation results may not be optimal. Based on spans of inputs
and outputs, SFs of inputs [Pb, Pd, Md] are initially selected as [10,000, 10,000, 1], and SFs for outputs
[Vbb, ib, Vbl, yb, Vub, iu, Vul, yu, ∆ib] are initially selected as [0.0005, 1, 1, 1, 0.01, 10, 1, 1, 1]. Among them,
SF of Pb and iu are found to be sensitive to the simulation results. Table 4 shows the results under
different SFs:
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Table 4. Influence of SFs.

Ah-Throughput/As SFPb

100 1000 10,000

SFiu

5 389.5 398 551
10 386 390 492
20 385.5 387 440
30 385 386 418

Finally, SFs for Pb and iu are reselected as 1000 and 30.

4.2. Model Adaptivity Verification

To validate the AMPC adaptivity to a nonlinear model, SMPC is introduced for comparison.
SMPC is designed off-line with the same process of AMPC around HESS initial working points, and
keeps constant through the simulation. A steady state Kalman filter (SSKF) is used as the estimator
of SMPC.

SSKF estimation of SMPC is shown in Figure 5, TVKF estimation of AMPC is shown in Figure 6.
We can see from Figure 5 that uub estimation gradually deviates from the real value, and the error is
accumulative. This is because the gain matrix solved by SSKF is constant through the simulation, an
the state estimation error is not applied to update the gain matrix. For the same reason, excessive
deviation happens in the remaining four estimations. In Figure 6, TVKF exhibits a pretty precise
estimation. TVKF of AMPC solves gain matrix with updated GA, HA and CA at each control interval,
it is obvious that varying GA, HA and CA could approximate the real HESS model better, TVKF thus
significantly outperforms SSKF in estimation accuracy.

Average estimation errors of SSKF and TVKF are listed in Table 5. Estimation errors of TVKF are
lower than those of SSKF in order of 1~3 magnitude, quantitatively proving TVKF is more accurate
and model adaptive.
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Table 5. Average states estimation errors of SSKF and TVKF.

Vbb Vbp Vub Vup ∆ib

SSKF 3.08 × 10−4 3.88 × 10−4 0.22 2.72 × 10−3 0.18
TVKF 2.35 × 10−7 2.55 × 10−6 5.76 × 10−4 4.13 × 10−4 0.05

GA, HA and CA elements of AMPC under UDDS are shown in Figure 7, in which elements
with marked change are shown in bold. It’s obvious that elements variation in three matrices are
non-negligible, further indicating that a single model is unable to approximate the real HESS, and
SSKF is unable to make accurate estimation.
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Figure 8 shows the SMPC and AMPC comparison for ib, Figure 8b,c is zooms of Figure 8a.
In Figure 8b, the LiB current of SMPC is charging and discharging dramatically, which is not observed
in AMPC. In Figure 8c, the LiB current of SMPC is fluctuating remarkably around 0 when HESS is
charging. Furthermore, the LiB current of SMPC distinctly goes beyond that of AMPC. All the situations
mentioned above lead to an increase of LiB Ah-throughput, as shown in Figure 8d. The phenomena
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indicate that time-varying prediction model matrices as well as accurate state estimation by TVKF
significantly improve accuracy of control action calculated by QP solver of AMPC. Besides, as SMPC
isn’t able to estimate states precisely, the constraints on Vub and yu may be violated, resulting in SMPC
failure, which will cause damage to HESS.
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By comparison, the superior model adaptivity of AMPC is validated.

4.3. Driving Condition Uncertainty Adaptation Verification

To verify the adaptation to uncertain driving conditions, AMPC is simulated under various classic
driving cycles, DP and RBC are constructed for comparison.

4.3.1. DP and RBC Description

As DP solution time increases exponentially with the number of states, to reduce computation
burden, USOC is selected as the only state. Within DP, LiB and UC are simplified as resistor capacitor
(RC) circuits, USOC discretization step size is 0.001, and the cycle discretization step size is 1 s.
To numerically understand the efficiency of different EMSs on extending LiB life, DP cost function
includes LiB current absolute only. The cost function is:

J =
N

∑
i=1
|ib(i)| (34)

where, ib is calculated by:

ib(i) =
Eb −

√
E2

b − 4RbbPb/nb

2Rbb
(35)

where, Pb is calculated by Pd − Pu, in which Pu is obtained from USOC variation.
The DP process is shown in Figure 9. Forward iteration calculation is conducted. LiB Ah-throughput

from the initial USOC point to different end USOC points are calculated, and the minimal solution as
well as corresponding USOC path are recorded. Due to USOC discretization and model simplification,
there is slight deviation between the DP result and real optimum value of the semi-active structure.
Yet, considering that more accurate computation companies with much heavier computation burden
and this result is accurate enough, it is adopted as comparison.
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Figure 9. DP process.

The RBC process is shown in Figure 10a, in which Pd and USOC are inputs, Pb is the output. Pb,avg

represents the average power delivered by LiB, Pb,char represents the complementary power supplied
from LiB to UC to maintain adequate energy for coming peak power demand. Both of them are tuned
and keep constant for all driving cycles. Hysteresis control is shown in Figure 10b, which is designed
for preventing USOC from frequent fluctuation round the bounds. The USOC range for hysteresis
control is determined based on the UC capacity. As the capacity increases exponentially with USOC,
the upper range could be set smaller compared with the lower range. Besides, considering the DC bus
voltage constraint, the upper range is chosen as [0.9, 0.92], the lower range is chosen as [0.54, 0.59].
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4.3.2. EMSs Results Comparison

Figure 11 shows the AMPC result under UDDS. From Figure 11a, when the HESS power
demand is negative (charging), the UC absorbs almost all the braking energy, which is exactly what
the AMPC expect. When the demand is positive (discharging), Vub frequently reaches the lower
bound. This situation is dealt with by AMPC very softly, for Vub lower bound isn’t allowed to be
violated. In addition, the AMPC operational mechanism of dealing with hard constraints is shown
in Figure 11b,c, which are a zoom from 450 s to 470 s of Figure 11a,d, respectively. We can see from
Figure 11b that at about 453 s, when Vub is around 1.65 V and Pd is 20 kW, Pb starts to increase, while
Pu gradually decreases to cope with the upcoming lower bound of Vub. After about 10 s, Vub reaches
the lower bound softly without going beyond it. By this means, AMPC avoids any hard constraints
violation. This mechanism is essential to Ah-throughput minimization, as each violation of Vub will
cause an extra charging process from LiB to UC, which significantly increases LiB Ah-throughput.
Besides, pulse power in Pu is observed when transient power demand comes across, as mentioned
in introduction. This phenomenon happens several times in Figure 11b, and would inevitably cause
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damage to LiB if it’s passive, which is exactly what the HESS tries to avoid. Hence, designing LiB as
the controlled component is reasonable and necessary.
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The results of AMPC, DP and RBC are shown in Figure 12, in which 12b and 12c are zooms of 12a.
Figure 12b shows ib of three EMSs under a continuous peak power demand which lasts for about 20 s.
With the peak demand, optimal ib of DP changes gradually and magnitude is satisfactory, for peak
power demand is known in advance. While, ib of AMPC is almost 0 at first to avoid the increase of
LiB Ah-throughput, and gradually increases when USOC is about to fall to the lower bound to avoid
violation. Though the ib of AMPC is relatively larger, the duration is shortened significantly by QP
solver compared with DP and RBC, and the LiB Ah-throughput is reduced through the simulation
greatly, indicating excellent flexibility and adaptation of AMPC. LiB current ib of RBC keeps nearly
constant at first for Pb keeps at Pb,avg to maintain USOC. At about 200 s, a sudden change in ib appears
when USOC reaches the lower bound, as shown in Figure 12e. This indicates that RBC is rigid in
handling operation mode transitions caused by constraints, and adjustment of USOC by constant
Pb,avg is poor. In Figure 12a, ib of DP and AMPC remain nonnegative, while with RBC, LiB charges
several times. One of the phenomena is shown in Figure 12c. Referring to Figure 12e, and we can find
that the situation appears due to USOC reaches upper bound, again indicating that constant Pb,avg

can’t adjust USOC flexibly to leave a margin for the braking energy. Consequently, frequent charge
obviously increases LiB Ah-throughput, as shown in Figure 12d. As AMPC minimizes ib, energy in UC
is always utilized firstly, and USOC always leaves a margin for braking energy, charging to LiB hardly
appear. When the power demand is 0, LiB outputs a very small current to UC with DP, which adjusts
USOC to deal with peak power demand. Though RBC designs Pb,avg to simulate this action, Pb,avg

of RBC can’t be real-time optimized based on future demand as well as control target. In Figure 12e,
USOC of AMPC fluctuates mainly at the bottom of the range, whereas USOC of RBC fluctuates mainly
at the top of the range, again revealing that with AMPC, HESS can take better advantage of UC as a
buffer, and absorb more braking energy to reduce LiB Ah-throughput. As a result, when encountering
changing driving conditions, AMPC makes the best use of UC as a buffer, while ensuring UC voltage
remains within its range, revealing considerable flexibility and adaptivity. Conversely, RBC is rigid
in managing bound problems, meanwhile Pb,avg can’t be adjusted for real-time, RBC adaptability is
poorer and the result is not optimal compared with AMPC.
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AMPC is tested under four other typical driving cycles to further verify its adaptation to driving
condition uncertainty. Both the structures and parameters of three EMSs remain constant during
the test, and the results are shown in Table 6. Among the cycles, UDDS, Federal Test Procedure
75(FTP75), and India urban are urban cycles with frequent acceleration and deceleration, while New
European Drive Cycle (NEDC) and Highway Fuel Economy Test (HWFET) have more continuous
acceleration/deceleration or high-speed cruise. Under urban cycles, the AMPC results differ from
DP results by about 5%, and reduce by about 17% compared to RBC results. The results reveal that
receding optimization process of AMPC effectively resists disturbance uncertainty caused by varying
driving condition, while different cycles have different characteristics and constant RBC parameters
can’t adapt to cycle change. Under highway cycles, the superiority of AMPC over RBC is not evident,
for when the vehicle is accelerating continuously or cruising at high speed, HESS will first exhaust
the energy stored in UC. After that, as there is no braking energy for a long time, the UC can’t fully
utilized as a buffer. Yet, the AMPC results are still a little better than those of RBC for its optimality and
adaptivity. DP results are relatively superior to those of AMPC and RBC, indicating that it’s difficult to
obtain the optimal results in highway roads by online EMSs.

Table 6. LiB Ah-throughput of different EMSs.

Ah-Throughput/As AMPC DP Difference RBC Reduce

UDDS 387 371 4.3% 461 16.1%
FTP75 635 594 6.9% 718 11.6%

India_urban 462 438 5.5% 601 23.1%
NEDC 605 561 7.8% 635 4.7%

HWFET 850 786 8.1% 861 1.3%
Hybrid 1870 1762 6.1% 2000 6.5%
average / / 6.5% / 10.6%

A hybrid cycle composed of UDDS, NEDC and HWFET is created, and three EMSs are simulated,
in which RBC parameters are adjusted to obtain best performance. The results of three EMSs are listed
at the bottom of Table 6. AMPC result is satisfactory compared with DP result without any adjustment.
While, even parameters are adjusted to optimal, the adaptivity of RBC is worse than AMPC when
facing complex driving conditions. Finally, LiB Ah-throughput of AMPC differ from that of DP by



Energies 2017, 10, 1063 18 of 21

only an average of 6.5%, and educes by an average of 10.6% compared to that of RBC, further revealing
the superior optimality as well as adaptivity to driving condition uncertainty of AMPC.

4.4. Weights

When ib and ∆ib are to minimize simultaneously, w2 and w7 should be adjusted. Fix w2 at 1, and
set w7 as 1, 5, 10 and 20, simulation results are shown in Figure 13. From Figure 13a we can see that,
weight adjustment significantly influences the AMPC control performance. When w7 increases, ib
changes more and more slowly, LiB Ah-throughput increases for this reason and accumulative ∆ib
absolute reduces, as shown in Figure 13b,d, while, when w7 is 20, the trend has been broken. As shown
in Figure 13a,c, ib fluctuates severely at 100 s~500 s, ∆ib absolute inevitably increases. As a result, both
Ah-throughput and accumulative ∆ib absolute significantly increase during this period, as shown in
Figure 13b,d. The accumulative ∆ib absolute when w7 is 20 is nearly the same with that when w7 is
5, which is conflicting with the original target of increasing the weight. The situation arises for two
reasons: (1) to suppress ib change; (2) to provide energy to UC so that UC could face huge power
demand fluctuation. To satisfy two conditions simultaneously, ib absolute has to retain high magnitude
and changes drastically between positive and negative. As a result, when w7 is too big, it’s difficult to
obtain optimal solution within all constraints.
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Define kw = w7/w2, simulation results under different w2 and kw are listed in Tables 7 and 8.
No matter how much w2 is, when kw remains unchanged, LiB Ah-throughput and accumulated ∆ib are
always the same, indicating that kw is the only decision variable no matter how w2 and w7 change.

Table 7. LiB Ah-throughput under different kw and w2.

Ah-Throughput/As w2

1 10 20

kw

0.1 387 387 387
1 388 388 388
5 407 407 407

10 570 570 570
15 761 761 761
20 989 989 989
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Table 8. LiB accumulated ∆ib under different kw and w2.

Accumulated ∆ib/A w2

1 10 20

kw

0.1 236 236 236
1 217 217 217
5 136 136 136

10 82 82 82
15 82 82 82
20 122 122 122

Furthermore, when kw increases from 0.1 to 20, LiB Ah-throughput increases gradually as well,
while accumulated ∆ib first decreases then increases, and the minimum value appears when kw is
10 or 15. As LiB Ah-throughput when kw is 10 is significantly smaller than that when kw is 15, we
can conclude that kw should not exceed 10 when both goals are optimized. Based on analysis above,
when setting w2 as 1, and if the ∆ib is to taken into account, w7 should be set between 5 and 10
(e.g., kw range is between 5 and 10). The proposed AMPC is capable of optimizing multiple objects
simultaneously by appropriate weighting, and it’s suitable for designing EMS of HESS which usually
includes various targets.

5. Conclusions

In this paper, an AMPC-based EMS for the semi-active HESS is proposed, which minimizes
LiB Ah-throughput to extend its life as well as ensures HESS operation within the specified ranges.
In contrast to standard MPC, the AMPC solves the control action by calculating a QP problem in
which prediction model matrices are updated online and model states are estimated by TVKF. In this
way, the control action accuracy is significantly improved and LiB Ah-throughput is effectively
minimized. The proposed EMS is implemented and verified on the Matlab/Simulink platform, and the
simulation results show that compared with SMPC, TVKF reduces the estimation error by 1~3 orders of
magnitude, and AMPC reduces LiB Ah-throughput by 4.3% under UDDS. Furthermore, all HESS states
are operating within specified ranges, indicating superior model adaptivity. The LiB Ah-throughput of
AMPC under six classical driving cycles differs from that of DP by only an average of 6.5%, and is
reduced by an average of 10.6% compared to that of RBC, revealing excellent optimality and adaptation
to driving condition uncertainty. This method is ideal for managing nonlinear optimization problems
with unpredictable disturbances as well as engineering constraints, and can be extended to EMSs for
other nonlinear multi-source systems of new energy vehicles.
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