Supporting Information: Highly Efficient 3rd Generation Multi-Junction Solar Cells Using Silicon Heterojunction and Perovskite Tandem: Prospective Life Cycle Environmental Impacts

René Itten and Matthias Stucki

1. Life Cycle Inventory: solar cells

Tab. 1.1: Electricity demand of the different production steps in the crystalline-silicon supply chain and perovskite (or silicon heterojunction) layer deposition according to Serrano-Lujan et al. [1], Espinosa et al. [2], Gong et al. [3], Celik et al. [4], Baldassari et al. [5], Espinosa et al. [6], ecoinvent [7], IEA-PVPS [8], Louwen et al. [9], and Lunardi et al. [10]

	Electricity demand 1 m2	kWh	Cell production	PSC layer (or SHJ layer)	Wafer production	Mono-Si production	Polysilicon production	Metallurgical Si production	Total
		Serrano-Lujan et al. (2015)		116'880.0					116'880.0
		Espinosa et al. (2015), VD excl back electrode		1'240.6					1'240.6
Lab		Espinosa et al. (2015), SC excl back electrode		862.5					862.5
		Gong et al. (2015), TiO2		7.8					7.8
	PSC	Gong et al. (2015), ZnO		4.6					4.6
		Celik et al. (2016), HTL free, excl back electrode		108.8					108.8
Lab to fab		Celik et al. (2016), solution based, excl back electrode		138.7					138.7
		Celik et al. (2016), vacuum based excl back electrode		181.6					181.6
Ind		This study (Baldassari et al. 2016 / ecoinvent v3.3 2016)	14.4	17.1					35.5
Lab		OPV, Espinosa et al. (2011)	7.5						7.5
Ind	Mono Si	Celik et al. (2016) / ecoinvent v3.3	30.2		8.5	80.3	110.5	12.5	247.0
ina	1010-31	IEA PVPS (2015)	14.4		26.5	111.2	140.1	15.8	311.9
Ind	SHJ	Louwen et al. (2015) excl back electrode	20.2	13.9	5.7	53.6	73.6	8.3	175.2
Lab		Lunardi et al. (2017)	14.4	876.4	26.5	111.2	140.1	15.8	1'184.3
Ind	510-130	This study (Baldassari et al. 2016 / Louwen et al. 2015)	14.4	23.7	26.5	111.2	140.1	15.8	335.6

1.1 Perovskite single junction solar cell

Tab. 1.2: Life cycle inventory of the non-bifacial single-junction organometallic halide perovskite cell (PSC) per square meter of PSC module based on Bush et al. [11], Werner et al. [12], You et al. [13], Zhu et al. [14], IEA PVPS [8], ecoinvent [7], Espinosa et al. [6], Gong et al. [3], and SimaPro [15].

	Material	Function	Application	Unit	Inputs	Utilisati on rate	Reference	Name SimaPro
Sing	Single-junction perovskite solar module (framed)		m²	1			Photovoltaic panel, monolithic tandem SHJ-PSC, 2Terminal {RER} PV2050 Alloc Rec, U	
0	Substrate, cell & m	odule						
	Glass	Substrate		kg	1.64		Bush et al. (2017), Werner et al. (2016), You et al. (2016), Zhu et al. (2016)	Solar glass, low-iron {RER} production Alloc Rec, U
	Solar cell production	Front and Back Contacts	Screen printing	m²	0.935		IEA-PVPS LCI Report (Frischknecht et al. 2015) with adjustments for wafer	photovoltaic cell, single-Si, with glass substrate instead of Si wafer, at plant/m2/RER U PV2050
	Module production (panel)	cell inter- connection		m²	1		IEA-PVPS LCI Report (Frischknecht et al. 2015) with adjustments for wafer	photovoltaic panel, single-Si, without wafer input via cell, at regional storage/m2/RER/I U
1	Top contact layer, S	puttering, indiur	n tin oxide, fo	r liquid cr	ystal displa	y {RER} p	processing Alloc Rec, U	Top contact layer
	Indium tin oxide	Top contact layer	p contact yer Sputtering m ³ 1.12E-07 0.15 Bush et al. (2017), Werner et al. (2016), You et al. (2016), Zhu et al. (2016), ITO sputtering process ecoinvent v3.3 (2016)		Sputtering, indium tin oxide, for liquid crystal display {RER} processing Alloc Rec, U			
2	Electron transport	layer, Sputtering,	tin oxide SnO	2, for per	ovskite sola	ar cell (PS	C) {RER} processing PV2050	Electron transport layer
	Tin oxide	Electron transport layer	Sputtering	m³	9.35E-09	0.15	Bush et al. (2017), Werner et al. (2016), You et al. (2016), Zhu et al. (2016), SnO2 sputtering based on ITO sputtering ecoinvent v3.3 (2016), own calculations for SnO2	Sputtering, tin oxide SnO2, for perovskite solar cell (PSC) {RER}} processing PV2050
3a	Perovskite layer, Thermal evaporation, lead iodide, Pbl2, physical vapour deposition, utilisation rate 20% {RER} PV2050			Perovskite layer				
	Lead-lodide	Absorber layer	Thermal evaporation	m³	2.34E-07	0.2	Bush et al. (2017), Werner et al. (2016), You et al. (2016), Zhu et al. (2016), electricity demand and emissions based on physical vapour deposition process (ecoinvent v3.3 2016), Pbl2 based on Gong et al. (2015)	Thermal evaporation, lead iodide, Pbl2, physical vapour deposition, utilisation rate 20% {RER} PV2050
3a	Perovskite layer, Sl	ot die coating, M	ethyl-Ammon	ium-lodie	d (MAI), CH	13NH3I, fo	or perovskite solar cell (PSC) {RER} processing PV2050	Perovskite layer
	Methl-ammonium- iodide	Absorber layer	Slot die coating	m²	9.35E-01	0.2	Bush et al. (2017), Werner et al. (2016), You et al. (2016), Zhu et al. (2016), electricity demand based on Espinosa et al. (2011), MAI based on Gong et al. (2015)	Slot die coating, Methyl-Ammonium-Iodied (MAI), CH3NH3I, for perovskite solar cell (PSC) {RER} processing PV2050
4	4 Hole transport material, Sputtering, nickel oxide NiOx, for perovskite solar cell (PSC) {RER} processing PV2050					Hole transport material		
	Nickel oxide	Hole transport layer	Sputtering	m³	9.35E-09	0.15	Bush et al. (2017), Werner et al. (2016), You et al. (2016), Zhu et al. (2016), NiOx sputtering based on ITO sputtering ecoinvent v3.3 (2016), own calculations for NiOx	Sputtering, nickel oxide NiOx, for perovskite solar cell (PSC) {RER} processing PV2050

1.2 Monolithic silicon heterojunction perovskite tandem solar cell

Tab. 1.3: Life cycle inventory of the non-bifacial monolithic 2-terminal tandem cell using an organometallic halide perovskite layer and silicon heterojunction solar cell per square meter of module based on Bush et al. [11], Werner et al. [12], You et al. [13], Zhu et al. [14], IEA PVPS [8], ecoinvent [7], Espinosa et al. [6], Gong et al. [3], Louwen et al. [9], and SimaPro [15].

Energies **2017**, *10*, x FOR PEER REVIEW

	Material	Function	Application	Unit	Amount	Utilisation rate	Reference	Name SimaPro
Mo	Monolithic tandem module silicon heterojunction		m ²	1			Photovoltaic panel, monolithic tandem SHJ-PSC, 2Terminal	
per	perovskite				-			{RER} PV2050 Alloc Rec, U
0	Substrate, cell & mo	dule		3				
	Mono-Si wafer	Substrate	6	m	0.875			
	production	Front and Back Contacts	Screen printing	m²	0.93541		2015)	pnotovoitaic panei, single-si, at regional storage/m2/REK/I U
	Module production	cell interconnection		m²	1		IEA-PVPS LCI Report (Frischknecht et al. 2015)	photovoltaic panel, single-Si, at regional storage/m2/RER/I U
1	Top contact layer, in	dium tin oxide (l	то)					
	Indium tin oxide	Top contact layer	Sputtering	m³	7.48E-08	0.15	Bush et al. (2017), Werner et al. (2016), You et al. (2016), Zhu et al. (2016), ITO sputtering process ecoinvent v3.3 (2016)	Sputtering, indium tin oxide, for liquid crystal display {RER} processing Alloc Rec, U
2	Hole transport layer	, nickel oxide (Ni	Dx)				-	
	Nickel oxide	Hole transport material	Sputtering	m³	9.35E-09	0.15	Bush et al. (2017), Werner et al. (2016), You et al. (2016), Zhu et al. (2016), NiOx sputtering based on ITO sputtering ecoinvent v3.3 (2016), own calculations for NiOx	Sputtering, tin oxide SnO2, for perovskite solar cell (PSC) {RER} processing PV2050
3	Perovskite layer, Me	thylammonium-	Lead-lodide (MA	PI), CH3N	H3PbI3		•	
	Lead-lodide	Absorber layer	Thermal evaporation	m³	2.34E-07	0.2	Bush et al. (2017), Werner et al. (2016), You et al. (2016), Zhu et al. (2016), electricity demand and emissions based on physical vapour deposition process (ecoinvent v3.3 2016), Pbl2 based on Gong et al. (2015)	thermal evaporation, lead iodide, PbI2, 250 nm, utilisation rate 20% {RER} PV2050
	Methyl-ammonium- iodide	Absorber layer	Slot die coating	m²	9.35E-01	0.2	Bush et al. (2017), Werner et al. (2016), You et al. (2016), Zhu et al. (2016), electricity demand based on Espinosa et al. (2011), MAI based on Gong et al. (2015)	Slot die coating, Methyl-Ammonium-Iodied (MAI), CH3NH3I, for perovskite solar cell (PSC) {RER} processing PV2050
4	Electron transport la	Electron transport layer Tin oxide (SnO2)				-		
	Tin oxide	Electron transport layer	Sputtering	m³	9.35E-09	0.15	Bush et al. (2017), Werner et al. (2016), You et al. (2016), Zhu et al. (2016), SnO2 sputtering based on ITO sputtering ecoinvent v3.3 (2016), own calculations for SnO2	Sputtering, tin oxide SnO2, for perovskite solar cell (PSC) {RER} processing PV2050
5	Emitter and Passivat	tion a-Si		0			1	
	a-Si	Texturing and cleaning		m²	9.35E-01		Louwen et al. (2015)	texturing and cleaning, photovoltaic cell, silicon heterojunction SHJ {RER} PV2050 Alloc Rec, U
	a-Si	Thinfilm depositon a-Si	PECVD	m²	9.35E-01		Louwen et al. (2015)	Thinfilm deposition, a-SI, Plasma enhanced vapour deposition, PECVD, photovoltaic cell, silicon heterojunction SHJ {RER} PV2050 Alloc Rec, U
	a-Si	Curing		m²	9.35E-01		Louwen et al. (2015)	curing, photovoltaic cell, silicon heterojunction SHJ {RER} PV2050 Alloc Rec, U
	a-Si	Gas abatement		m²	9.35E-01		Louwen et al. (2015)	gas abatement, photovoltaic cell, silicon heterojunction SHJ {RER} PV2050 Alloc Rec, U
6	Back contract layer i	ndium tin oxide (ITO)					
	Indium tin oxide	Back contact layer	Sputtering	m³	9.35E-08	0.15	Bush et al. (2017), Werner et al. (2016), You et al. (2016), Zhu et al. (2016), ITO sputtering process ecoinvent v3.3 (2016)	Sputtering, indium tin oxide, for liquid crystal display {RER} processing Alloc Rec, U

2. Life Cycle Inventory: deposition process

2.1 Nickel oxide

Tab. 2.1: Life cycle inventory of the nickel oxide production based on ecoinvent v3.3 [7], SimaPro [15], and our own calculations.

Name SimaPro	Unit	Amount	Comment and references
Nickel oxide, NiO {GLO}	kg	1	
Resources			
Ovugen in sir	ka	0.225	based on stochiometric principles.
Oxygen in air	kg 0.225		Process efficiency assumed 95%.
Water, cooling, unspecified natural origin, GLO	m³	2.40E-02	Estimation.
Material			
Chemical factory, organics {GLO} market for Alloc Rec, U	р	8.00E-10	Estimation.
Nickel 00 EV (CLO) market for Alles Dec.	ka	0 205 01	based on stochiometric principles.
Nickel, 99.5% {GLO} Inarket for Alloc Rec, O	кg	0.205-01	Process efficiency assumed 95%.
Isopropanol {GLO} market for Alloc Rec, U	kg	2.07E-03	
Energy			
Heat, in chemical industry {RER} market for Alloc Rec, U	MJ	5.28E-01	
Heat, in chemical industry {RoW} market for Alloc Rec. U	MJ	2.67E+00	Estimation.
Emissions to air			
Water/m3	m³	9.30E-03	
Emissions to water			
Water, GLO	m³	1.47E-02	

2.2 Sputtering tin dioxide

Tab. 2.2: Life cycle inventory of tin oxide sputtering process based on Classen et al. [16], Hischier et al. [17], ecoinvent v3.3 [7], SimaPro [15], and our own calculations.

Name SimaPro	Unit	Amount	Comment and references
Sputtering, tin oxide SnO2, for perovskite solar cell (PSC) {RER}	m³	1	
Material			
Building, multi-storey {GLO} market for Alloc Rec, U	m³	1.47E+02	
Tin dioxide {GLO} market for Alloc Rec, U	kg	4.54E+04	sputteting target utilisation rate 15% as in sputtering ITO, Dichte Sno2 6850 kg / m3
Chemical factory {GLO} market for Alloc Rec, U	kg	5.88E+02	
Energy			
Electricity, medium voltage {ENTSO-E} market group for Alloc Rec, U	kWh	2.93E+07	same electricity demand as ITO sputtering

2.3 Sputtering nickel oxide

Tab. 2.3: Life cycle inventory of nickel oxide sputtering process based on Classen et al. [16], Hischier et al. [17], ecoinvent v3.3 [7], SimaPro [15], and our own calculations.

Name SimaPro	Unit	Amount	Comment and references
Sputtering, nickel oxide NiOx, for perovskite solar cell (PSC)	m³	1	
Material			
Building, multi-storey {GLO} market for Alloc Rec, U	m³	1.47E+02	
Nickel oxide, NiO {GLO}	kg	4.45E+04	sputteting target utilisation rate 15% as in sputtering ITO, density NiO 6670 kg/m3
Chemical factory {GLO} market for Alloc Rec, U	kg	5.88E+02	
Energy			
Electricity, medium voltage {ENTSO-E} market group for Alloc Rec, U	kWh	2.93E+07	same electricity demand as ITO sputtering

2.4 Thermal evaporation lead iodide

Tab. 2.4: Life cycle inventory for the thermal evaporation of lead iodide based on Classen et al. [16], Hischier et al. [17], ecoinvent v3.3 [7], SimaPro [15], and our own calculations.

Name SimaPro	Unit	Amount	Comment and references
Thermal evaporation, lead iodide, PbI2, physical vapour deposition {RER} PV2050	m³	1	
Resources			
Water, unspecified natural origin, RER	m³	2.25E+05	
Material			
Metal coating facility {GLO} market for Alloc Rec, U	р	4.10E-03	
Oxygen, liquid {RER} market for Alloc Rec, U	kg	1.12E+04	Assumption
Lead-II-iodide, PbI2, perovskit layer, PSC {RER}	kg	1.23E+04	Utilisation ration 50%, density Pbl2 6160 kg/m3
Nitrogen, liquid {RER} market for Alloc Rec, U	kg	2.24E+04	
Energy			
Electricity, medium voltage {ENTSO-E} market group for Alloc Rec, U	kWh	1.48E+07	
Emissions to air			
Water/m3	m³	1.34E+04	
Emissions to water			
Water, RER	m³	7.58E+04	

2.5 Slot die coating methyl ammonium iodide

Tab. 2.5: Life cycle inventory for the slot die coating of methyl ammonium iodide based on ecoinvent v3.3 [7], SimaPro [15], Espinosa et al. [6], and our own calculations.

Name SimaPro	Unit	Amount	Comment and references
Slot die coating, Methyl-Ammonium-Iodied (MAI), CH3NH3I, for perovskite solar cell (PSC) {RER}	m²	1	
Material			
methylammonium-iodide, MAI, CH3NH3I, perovskit layer, PSC{RER}	kg	6.60E-04	stoichiometric calculation, 0.000528 kg MAI in CH3NH3PI3; Density 4119 kg/m3, layer thickness 500 nm, utilisation rate 80%, Density MAI: 1100 kg/m3
Photovoltaic panel factory {GLO} market for Alloc Rec, U	р	4.00E-06	Assumption
Nitrogen, liquid {RER} market for Alloc Rec, U	kg	1.57E+01	Assumption
Isopropanol {GLO} market for Alloc Rec, U	kg	1.03E-02	6wt-% solution MAI in isopropanol / 2 propanol
Energy			
electricity, medium voltage, production ENTSO, at grid/ENTSO U	kWh	2.64E+00	Espinsoa et al. (2011) preparation 1.48 Wh, slot die 455.37Wh, Drying 2185 Wh
Emissions to air			
Heat, waste	MJ	9.50E+00	calculated
2-Propanol	kg	4.14E-02	calculated

Literature

- Serrano-Lujan, L.; Espinosa, N.; Larsen-Olsen, T. T.; Abad, J.; Urbina, A.; Krebs, F. C. Tin- and Lead-Based Perovskite Solar Cells under Scrutiny: An Environmental Perspective. *Adv. Energy Mater.* 2015, *5*, n/a-n/a, doi:10.1002/aenm.201501119.
- Espinosa, N.; Serrano-Luján, L.; Urbina, A.; Krebs, F. C. Solution and vapour deposited lead perovskite solar cells: Ecotoxicity from a life cycle assessment perspective. *Sol. Energy Mater. Sol. Cells* 2015, 137, 303– 310, doi:10.1016/j.solmat.2015.02.013.
- 3. Gong, J.; Darling, S. B.; You, F. Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. *Energy Environ. Sci.* **2015**, 953, doi:0.1039/C5EE00615E.
- 4. Celik, I.; Song, Z.; Cimaroli, A. J.; Yan, Y.; Heben, M. J.; Apul, D. Life Cycle Assessment (LCA) of perovskite PV cells projected from lab to fab. *Sol. Energy Mater. Sol. Cells* **2016**, doi:10.1016/j.solmat.2016.04.037.
- 5. Baldassarri, C.; Shehabi, A.; Asdrubali, F.; Masanet, E. Energy and emissions analysis of next generation electrochromic devices. *Life Cycle Environ. Ecol. Impact Anal. Sol. Technol.* **2016**, *156*, 170–181, doi:10.1016/j.solmat.2015.12.017.
- Espinosa, N.; García-Valverde, R.; Urbina, A.; Krebs, F. C. A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions. *Spec. Issue 3rd Int. Summit OPV Stab.* 2011, 95, 1293–1302, doi:10.1016/j.solmat.2010.08.020.
- 7. ecoinvent Centre ecoinvent data v3.3, Swiss Centre for Life Cycle Inventories; Zürich, 2016;
- Frischknecht, R.; Itten, R.; Sinha, P.; de Wild-Scholten, M.; Zhang, J.; Fthenakis, V.; Kim, H. C.; Raugei, M.; Stucki, M. Life Cycle Inventories and Life Cycle Assessments of Photovoltaic Systems; IEA PVPS Task 12, Subtask 2.0, LCA Report IEA-PVPS 12-04:2015; International Energy Agency (IEA) Photovoltaic Power Systems Program (PVPS) Task 12, 2015;
- 9. Louwen, A.; van Sark, W. G. J. H. M.; Schropp, R. E. I.; Turkenburg, W. C.; Faaij, A. P. C. Life-cycle greenhouse gas emissions and energy payback time of current and prospective silicon heterojunction solar cell designs. *Prog. Photovolt. Res. Appl.* **2015**, *23*, 1406–1428, doi:10.1002/pip.2540.
- Monteiro Lunardi, M.; Wing Yi Ho-Baillie, A.; Alvarez-Gaitan, J. P.; Moore, S.; Corkish, R. A life cycle assessment of perovskite/silicon tandem solar cells. *Prog. Photovolt. Res. Appl.* 2017, n/a-n/a, doi:10.1002/pip.2877.
- Bush, K. A.; Palmstrom, A. F.; Yu, Z. J.; Boccard, M.; Cheacharoen, R.; Mailoa, J. P.; McMeekin, D. P.; Hoye, R. L. Z.; Bailie, C. D.; Leijtens, T.; Peters, I. M.; Minichetti, M. C.; Rolston, N.; Prasanna, R.; Sofia, S.; Harwood, D.; Ma, W.; Moghadam, F.; Snaith, H. J.; Buonassisi, T.; Holman, Z. C.; Bent, S. F.; McGehee, M. D. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. *Nat. Energy* 2017, 2, 17009.

- Werner, J.; Barraud, L.; Walter, A.; Bräuninger, M.; Sahli, F.; Sacchetto, D.; Tétreault, N.; Paviet-Salomon, B.; Moon, S.-J.; Allebé, C.; Despeisse, M.; Nicolay, S.; De Wolf, S.; Niesen, B.; Ballif, C. Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells. ACS Energy Lett. 2016, 1, 474–480, doi:10.1021/acsenergylett.6b00254.
- 13. You, J.; Meng, L.; Song, T.-B.; Guo, T.-F.; Yang, Y. (Michael); Chang, W.-H.; Hong, Z.; Chen, H.; Zhou, H.; Chen, Q.; Liu, Y.; De Marco, N.; Yang, Y. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. *Nat. Nanontechnology* **2016**, *11*, 75–81, doi:10.1038/nnano.2015.230.
- 14. Zhu, Z.; Bai, Y.; Liu, X.; Chueh, C.-C.; Yang, S.; Jen, A. K.-Y. Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO2 Nanocrystals as the Robust Electron-Transporting Layer. *Adv. Mater.* **2016**, *28*, 6478–6484, doi:10.1002/adma.201600619.
- 15. PRé Consultants SimaPro 8.3 software; 2016;
- Classen, M.; Althaus, H.-J.; Blaser, S.; Scharnhorst, W.; Tuchschmid, M.; Jungbluth, N.; Faist Emmenegger, M. Life Cycle Inventories of Metals; 2009;
- 17. Hischier, R.; Classen, M.; Lehmann, M.; Scharnhorst, W. Life Cycle Inventories of Electric and Electronic Equipment Production, Use & Disposal; EMPA St. Gallen, Swiss Centre for Life Cycle Inventories: Dübendorf, CH, 2007;