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Abstract: The injection of CO2 as part of the water-alternating-gas (WAG) process has been widely
employed in many mature oil fields for effectively enhancing oil production and sequestrating carbon
permanently inside the reservoirs. In addition to simulations, the use of intelligent tools is of particular
interest for evaluating the uncertainties in the WAG process and predicting technical or economic
performance. This study proposed the comprehensive evaluations of a water-alternating-CO2 process
utilizing the artificial neural network (ANN) models that were initially generated from a qualified
numerical data set. Totally two uncertain reservoir parameters and three installed surface operating
factors were designed as input variables in each of the three-layer ANN models to predicting a
series of WAG production performances after 5, 15, 25, and 35 injection cycles. In terms of the
technical view point, the relationships among parameters and important outputs, including oil
recovery, CO2 production, and net CO2 storage were accurately reflected by integrating the generated
network models. More importantly, since the networks could simulate a series of injection processes,
the sequent variations of those technical issues were well presented, indicating the distinct application
of ANN in this study compared to previous works. The economic terms were also briefly introduced
for a given fiscal condition which included sufficient concerns for a general CO2 flooding project, in a
range of possible oil prices. Using the ANN models, the net present value (NPV) optimization results
for several specific cases apparently expressed the profitability of the present enhanced oil recovery
(EOR) project according to the unstable oil prices, and most importantly provided the most relevant
injection schedules corresponding with each different scenario. Obviously, the methodology of
applying traditional ANN as shown in this study can be adaptively adjusted for any other EOR project,
and in particular, since the models have demonstrated their flexible capacity for economic analyses,
the method can be promisingly developed to engage with other economic tools on comprehensively
assessing the project.

Keywords: water-alternating-gas (WAG); artificial neural network (ANN); estimation; CO2 storage;
enhanced oil recovery (EOR); critical performance

1. Introduction

Because large volumes of crude oil are normally left underground after primary and secondary
production phases and oil prices have remained low, enhanced oil recovery (EOR) technology has
attracted more interest recently to produce more profit before field abandonment [1]. Generally, thermal
recovery, chemical flooding, and gas flooding are most commonly utilized. However, the most effective
methods primarily depend on diverse factors, such as reservoir characterization, operation conditions,
fluid properties, and most importantly, economic conditions. Theoretically, the thermal method is
suitable for heavy oil as it reduces oil viscosity and makes crude oil moveable. Chemical flooding
involves the injections of surfactants, alkalis, and polymers to reduce the interfacial tension (IFT)
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between oil and water to an ultra-low value and improve sweep efficiency as a result of controlling the
displacing fluid mobility by increasing viscosity [2]. Gas flooding is applied to reservoirs still close to
production as the injected gas can be recycled from the producing gas. Reusing CO2 from anthropogenic
sources is globally incentivized, and gains the dual benefit of EOR and carbon storage, known as carbon
capture and storage (CCS) in the petroleum industry [3]. Not only utilized in the petroleum industry,
the larger scope of carbon application, defined by the Research Coordination Network as carbon
capture, utilization, and storage (CCUS), consists of all methods and technologies for removing CO2

from the emitted gas and atmosphere, followed by recycling this CO2 for use and determining safe
and permanent sequestration options. Compared to chemical flooding, the injection of CO2 is much
less expensive in terms of fluid employment if sufficient CO2 is available; however, relevant designs
for injection are still in dispute owing to the inevitable low sweep efficiency after gas breakthrough or
improper carbon storage caused by gas leakage. Due to these ongoing issues, it is important to verify
the comprehensive performance of gas flooding for EOR projects with various injection designs and
different reservoir characteristics. Furthermore, because CO2 storage underground is encouraged to
reduce atmospheric greenhouse carbon, which is represented by an incentive tax credit, balancing the
dual benefit (environment and oil production) needs to be prudently considered in any project.

Injected CO2 significantly reduces oil viscosity, swells trapped oil droplets, and finally mobilizes
oil. In particular, CO2-EOR has been demonstrated to increase oil mobility quickly when the complete
capillary number lies in the immediate range [4]. CO2 can be miscible or immiscible with crude oil
depending on reservoir pressure; however, asphaltene depositions that inevitably occur in a reservoir
can be problematic due to wettability alterations or formation plugging, lowering the ultimate oil
recovery as a consequence [5]. When reservoir pressure is higher than the minimum miscibility pressure
(MMP), the gas flooding miscibility scheme is guaranteed due to gas condensation, vaporization,
or both of these driving processes. Because miscible flooding has been proven to outperform the
immiscible flooding scheme [6], pressure changes in the reservoir should be continuously monitored
to ascertain the flooding processes and suitably adjust the operating conditions [7]. Ren et al.
proposed a microseismic monitoring program that has been successfully applied in the Jilin oilfield
in China to trace the anisotropic flow of CO2 and forecast the oil sweep efficiency of the flooding
processes [8]. According to the map created using this method, the obtained carbon migration in
the thin layer and essential profiles are in good agreement with CO2 production and the reservoir’s
petrophysical properties. In addition to pressure, other important reservoir characteristics, such as
depth, permeability, and scaling features need to be prudently addressed in order to efficiently deploy
an EOR project either technically or economically [9,10]. An example from the Yanchang oilfield has
demonstrated the limited application of CO2 flooding and storage for some depleted reservoirs; only 8
of 27 oil pools had the capacity to enhance oil production using CO2-EOR processes with a storage
coefficient of 0.185 [11]. Among the technologies for CO2 injection, the water-alternating-gas (WAG)
scheme appears to be most effective for controlling the mobility of the injected fluid as water and gas
are alternated in cycles [12,13]. However, Song et al. indicated that technical improvements in the
WAG process decline when the pay thickness is over 30 m [14]. From a well pattern aspect, they also
confirmed that a five-spot pattern is more effective in carrying out a WAG project compared to the
inverted nine-spot or inverted seven-spot patterns. Once the reservoir characterizations and proper
well installations have been addressed, the fiscal term needs to be prudently examined as critical
performance strongly depends on oil price, CO2 cost, project life, and other economic factors [15].

In most EOR projects, estimation issues are always a concern in minimizing risk and maximizing
production from either technical or economic perspectives. Ettehadtavakkol et al. [16] proposed a
screening tool to optimize two problem categories: fixed storage requirement and integrated asset
optimization. Promisingly, the suggested workflow can powerfully rank CO2-EOR candidates for
oilfield operators and governments. Ahmadi generated an artificial neural network (ANN) to predict
asphaltene precipitation in reservoirs under certain conditions. With a coefficient of determination larger
than 0.996, the model can be potentially combined with other software to speed up performance and
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increase prediction capacity [17]. By applying the response surface methodology integrated with Monte
Carlo simulations, Pan et al. [18] forecast and evaluated the uncertainty in cumulative oil production,
net CO2 storage, net water stored, and reservoir pressure at injection wells in different injection and
reservoir scenarios based on changing anisotropic permeability, WAG time ratio, and initial oil saturation.
An integrated framework developed by Dai et al. [19] also analyzed the response surface for water-oil
flow reactive transport to study the sensitivity and optimization of CO2-EOR performance. They
concluded that reservoir parameters, such as depth, porosity, and permeability are crucial to control net
CO2 storage, while well distance and the sequence of alternating water and CO2 injection are significant
operational parameters for process design. A newly developed intelligence tool was introduced by
Eshraghi et al. [20] for optimizing the miscible CO2 flooding process in terms of inter-well characterization
by employing a capacitance-resistance model coupled with Gentil fractional flow. From three heuristic
optimization methods, they verified the predominant performance similarity to an artificial bee colony
for particle swarm optimization and genetic algorithm methods to predict well transmissibility.

Understanding the relevant applications of the ANN model, this study attempts to generate and
justify neural networks for different targets to compute the output at multiple points of a WAG process.
Two reservoir parameters and three surface operation factors were designed as input parameters, and
three critical performances at 5, 15, 25 and 35 injection cycles were included in the output layer of each
ANN model. Because the networks have been successfully achieved, technical relationships among
parameters and optimizations were also evaluated to justify the quality of these models. The economic
aspects of the project are also evaluated using the net present value (NPV), which also demonstrates
the applicability of the networks. Generally, the generated networks can be employed in other cases
with similar site characteristics; in particular, the method using ANN can be used in other research
areas for different predictive purposes.

2. 3D Model Characteristics

2.1. Reservoir Descriptions

A 3D reservoir is modeled in GEM (CMG) (2016, Computer Modelling Group Ltd., Calgary, AB,
Canada) with a five-spot well pattern scale in which the reservoir characteristics are referenced from
the Morrow sandstone formation at the Farnsworth EOR target field [18]. The reservoir model is set
with a constant depth of the top layer at 2362 m and a pay thickness of 9.15 m, which originated from
the average depth and net pay at the Farnsworth field [21]. Other reservoir properties are presented
in Table 1; porosity and horizontal permeability are heterogeneous over the reservoir with a nearly
tenfold change between minimum and maximum values. Vertical permeability is represented by the
permeability ratio Kv/Kh, and an equal-distance between each injection and producing well is assigned
as an input variable in the network model. Water saturation and reservoir pressure are uniformly set
over the model domain; this is suitable for initialization, as the initial water saturation is also assigned
as a neuron metric in the ANN.

Table 1. Reservoir Parameters of the reservoir model at initial conditions.

Properties Values

Grid size (m3) 565.84 × 565.84 × 9.15

Cell size (m3) 10.48 × 10.48 × 1.52
Porosity 0.029–0.21

Absolute permeability -Kh (mD) 10–100
-Kv/Kh (base case) 0.5

Reservoir pressure (at bottom layer) (MPa) 31.026
Reservoir temperature (◦C) 58.75
Water saturation (base case) 0.63
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Because the critical CO2 condition is at 7.384 MPa and 31.1 ◦C, the reservoir condition is
appropriate for consideration as a carbon capture project because it always exists at the super critical
phase when injected into the reservoir. Dip angle usually occurs in most practical fields, and it partially
affects the movement of the injected gas due to gravity [22], but this factor is not considered in this
model. Salinity is also neglected in the CO2 injection process, as its influence on solubility is negligible.
The permeability curves for oil-water and liquid-gas in this rock system are shown in Figure 1 [7].
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2.2. Fluid Properties

In total, nine pseudo-hydrocarbon and non-hydrocarbon components of a referenced crude oil
are verified in WINPROP (CMG) to validate PVT testing data from laboratory measurements, as
shown in Table 2. The full, original components can be obtained from the literature [23]. The oil
specific gravity, gas oil ratio, oil viscosity, and oil formation volume factor are primarily measured in a
differential liberation test (DLT), while CO2 is assigned as the secondary component in a swelling test
(ST). The regression for all testing data is made on the basis of the Peng-Robinson equation of state [24]:

p =
RT

v− b
− a

v2 + 2vb− b2 (1)

where p, R, T, and v represent pressure, constant factor, temperature, and volume, respectively, and a
and b are calculated in terms of the critical properties and acentric factor as follows:

√
a =
√

acα (2)

With
√

ac =
√

ϑ1(RTc)/
√

pc and b = ϑ2RTc/pc.
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where α is an acentric factor, pc and Tc are the critical pressure and temperature, respectively, while
parameters ϑ1 and ϑ2 are constants with ϑ1 = 0.45724 and ϑ2 = 0.0778. Because the swelling test
regression has been accounted for in the simulation, multiple contact behaviors are then computed in
order to determine the MMP for CO2 and crude oil. Theoretically, there are some effective methods
integrated in the simulator to calculate MMP such as cell-to-cell, semi-analytical (key tie lines),
and multiple mixing cell methods. The traditional cell-to-cell method generates a pseudo-ternary
diagram from computations to help with interpreting results. In the semi-analytical method, the MMP
is determined based on the point that one of three key tie lines is tangent to the critical locus, and the
crossover tie line controls the development of miscibility [25,26]. A more simple but effective method
proposed by Ahmadi and Johns, known as the multiple mixing cell, also focuses on key tie lines,
but instead of finding all key tie lines, MMP can be determined by tracking only the shortest one [27].
As the final method is robust, the most accurate, and more stable than the others, this study uses it to
calculate the MMP for the CO2 injection process on the given crude oil.

Table 2. Pseudo-components and parameters of the crude oil used for simulation.

Components Mole Fraction Molecular Weight (g/gmol) Acentric Factors Pc (MPa) Tc (K)

CO2 0.0824 44.01 0.225 7.378 304.2
N2 to CH4 0.5166 16.12 0.008229 4.59 190.11

C2H6 0.0707 30.07 0.098 4.89 305.4
C3H8 0.0487 44.10 0.152 4.25 369.8

IC4 to NC5 0.0414 63.04 0.206198 3.62 436.27
C6 to C9 0.0656 104.24 0.337594 2.63 523.36

C10 to C14 0.0613 158.65 0.513651 2.6 659.97
C15 to C19 0.0371 232.97 0.715302 1.34 855.21

C20+ 0.0762 536 1.169989 0.852 885.57

The results of matching the given laboratory data for critical crude oil properties are presented
in Figure 2. First, the differential liberation testing (DLT) data match very well under the regression
scheme based on the Peng-Robinson equation of state, indicating the successful PVT analysis
simulation for the given crude oil and guaranteeing that the hydrocarbon properties are identical to
the testing data in the 3D dynamic simulation. Second, as illustrated in the figure, saturation pressure
points are excellently matched in the swelling test (ST) (CO2 was used as a secondary component),
while there are small deviations on swelling factor points. However, technically, the deviations are
acceptable, so the numerical transformations of hydrocarbon components caused by CO2 injection
can be approved for further processes. The MMP value is also predicted using the above-mentioned
multiple mixing-cell method with a starting pressure at 3.4 MPa. The prediction shows that multiple
contact miscibility can be achieved from 18.92 MPa under a back-forward condensing gas drive, much
less than the reservoir pressure. Therefore, the EOR will be under a miscible flooding scheme during
the injection process in the reservoir [28].
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3. Neural Network Model Generation

Multiple WAG cycles initialized by a water injection are designed for simulations. The producing
well is constrained with a minimum bottom hole pressure at 13.79 MPa. The four injection wells have the
same constraints, with maximum injection rates for water and CO2 at surface conditions. In detail, water
will be injected at 86.36 m3/day and cycled with CO2 injection at 5435.57 sm3/day. The well operation
conditions are unchanged during the simulation processes. The well distance between each injector and
producer (hereafter D) is considered from 200 m to 400 m at the same reservoir scale. Technically, increased
spacing between injection and producing wells helps postpone the gas breakthrough, improve diffusion
of gas in the reservoir, and store larger quantities of carbon underground. However, inappropriately-long
well distances reduce the amount of produced gas that can be re-injected into the reservoir, and increases
the cost of purchasing CO2. The WAG ratio is defined as the cumulative continuous CO2 injection time
divided by that of water in an injection cycle and varies from 0.5 to 3.5 as a critical factor in the neural
network model. Fundamentally, the increase in simultaneous CO2 injection extracts greater quantities
of oil from the pore volume in the swept regions, but it also causes early breakthrough, after which
both oil production and net CO2 storage are reduced [29]. In contrast, a bias toward water injection
significantly decreases the time CO2 is in contact with the hydrocarbon and lowers sweep efficiency
as a consequence. Furthermore, because CO2 solubility in water is also taken into consideration in the
simulation, an effective WAG ratio should be carefully designed in the process. For the injection scheme,
the duration of one cycle (hereafter T) is also considered in the network model, with a variation from
30 days to 90 days. The expression of the WAG ratio and T can fully represent the examination for the
WAG injection scheme of the project. The consequences of reservoir characteristics are also verified in the
network through vertical permeability and initial water saturation; these two parameters are uncertain
and variable in the reservoir. Vertical permeability is represented by the permeability ratio as previously
mentioned (Kv/Kh) and varies from 0.1 to 1, while the initial saturation (Sw) ranges from 0.6 to 0.725 in
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the network model. The consideration of reservoir properties substantially aids in determining the most
favorable reservoir capacity for managing a CO2-EOR process in terms of both oil production and net
CO2 storage, factors that directly affect the consistency of the injection designed parameters.

The oil recovery factor, cumulative gaseous CO2 production, and net CO2 storage (in mass) in a
reservoir are considered essential targets for flooding performance in the three distinguishable neural
networks. In particular, each target will be predicted after a series of injection cycles, including 5, 15, 25
and 35 cycles in a same network, representing four neurons in the output layer of the ANN architecture,
as illustrated in Figure 3. There are 10 neurons in a hidden layer of the structure connecting with other
forward and backward neurons of input and output layers. Because the sample data set is stable and
qualified for training, the design of one hidden layer is suitable and effective for learning purposes,
and also simpler to reuse in other spreadsheets.
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CO2 storage.

Systematically, the neurons of each layer connect with neurons of its forward layer and back layer
through weights and biases, indicating the contributory level of an individual neuron on the others.
As presented in Figure 3, each neuron in the hidden layer is connected to others in the input layer
through the activation formula:

Hj = tan sig
(

Zj + b1
j

)
, j = 1− 10 (3)

where Zj = ∑4
i=1[Xi × IWi,j], Xi represents the input components in the input layer (5 neurons), IWi,j

is the connection weight between the ith neuron in the input layer and the jth neuron in the hidden
layer, and bj

1 presents the bias value assigned to the jth neuron in the hidden layer. The tan-sigmoid
activation (or transfer) function is defined as:

tan sig(n) =
2

1 + e−2u − 1 (4)

A similar connection is performed between the jth neuron in the hidden layer and the kth neuron
in the output layer through the connection weights, LWj,k as Ok = ∑10

j=1[Hj × LWj,k] (k = 1− 4).
However, instead of a tag-sigmoid function, a linear link is introduced for the final transfer function
to connect each kth neuron with the bias bk

2 in the output layer. To avoid the effect of large values
on small values during training, normalization is introduced for all data points prior to the training
process as follows:
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X = 0.1 +
Xsam − Xmin
Xmax − Xmin

(5)

where X represents the normalized data points inserted in the training process, while Xsam, Xmin,
and Xmax are real sample data values; lower and upper constraints of these real data correspond to design
variables and targets, respectively. Theoretically, normalization helps support the training process and
does not affect the final results because all data will be easily converted to real values according to
the formula. As mentioned previously, a large range of values for each designed parameter has been
proposed, and broad differences between resulting targets can be achieved for further evaluation.

4. Results and Discussion

4.1. Simulation Results

The results of the first simulation should be validated first in terms of physically dynamic
performances before analyzing further procedures. The case is designed with an equal injection time
for water and gas in each 60 days of a single cycle for a well distance of 300 m in the pattern. The initial
water saturation and permeability ratio are respectively set to 0.67 and 0.5 for this case. Subsequently,
critical performances will be evaluated after 300, 900, 1500, and 2100 days of injection since initiation,
corresponding to 5, 15, 25 and 35 cycles, respectively. These performances are shown in Figure 4.
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rate; (b) cumulative CO2 production and net CO2 storage; and (c) global mole fraction profile of CO2

after 5.5 injection cycles.

As presented in Figure 4, approximately 22.5% oil in place (OIP) is recovered after 25 cycles and
an increment of nearly 1% after 10 more injection cycles. Practically, this oil recovery factor result is
acceptable compared to simulations processed for other real projects [30]. The gas breakthrough time
can be visualized through the change in slope of the net CO2 storage or cumulative gas production.
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Subsequently, gas breakthrough occurs prior to an additional 10 injection cycles; more precisely, it is
within the 5th cycle of flooding. This is confirmed in the profile of the global CO2 mole fraction after 5.5
injection cycles, as detected through the earliest approach of CO2 into the producing well. Even though
the unexpected gas breakthrough has been observed, the CO2 flow profile is obviously impacted by
gravity effects based on the large difference in CO2 concentration between the bottom and top layers,
causing a non-uniform swept area. The small increases in net CO2 sequestration after 15 cycles indicate
that CO2 storage has reached the highest capacity in the reservoir. Generally, these crucial performance
criteria can be improved by adjusting the injection scheme, such as the WAG ratio or maintenance time
of each cycle for a specific reservoir condition [31].

4.2. Neural Network Model Evaluations

In total, 263 simulation samples are collected for generating four ANN models. The results present
diversity in the critical objectives after each specific assigned injection cycle. As shown in Figure 5,
the ultimate oil recovery ranges from around 2% to less than 30% OIP; in some cases, the recovery
factor (RF) can be up to 18% after 5 cycles. However, oil recoveries do not improve considerably from
25 to 35 cycles. The total amount of CO2 stored underground is unpredictable after 15 cycles, as it
might decline or increase at 25 and 35 injection cycles, while the gas produced rises continuously from
the beginning of the process. Generally, the more complicated and diverse sample results correspond
to higher levels of representation achieved from successful models used for estimation.
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Using the MATLAB Network Toolbox, the ANN model for the previously described performances
is trained following a 50%-20%-30% training scheme corresponding to the percentage ratio of data used
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for the training validation test in the 263 numerical samples. More specifically, the generated model
from training is automatically applied to estimate 79 random blind data (30%) to ensure the avoidable
over-training phenomenon. The same training scheme is applied to the three different targets, but the
specific data points for the training processes, corresponding to dissimilar networks, are selected
differently owing to non-concurrent training. Mathematically, neural networks are trained under a
feed forward back propagation algorithm in which weights and biases are initially allocated in the
structure. Neurons in the output layer are first calculated based on the initial structure; an adjustment
is made for weights and biases thereafter based on errors between sampling and current computed
targets. These forward and backward computations are performed during training until the lowest
overall errors are obtained. The over-training phenomenon can occur in an unsuitable training scheme
ratio. Therefore, a higher percentage of data points used for blind testing assures more confidence in
the quality of the training and generated model.

Figure 6 shows the training performances of the three crucial objectives based on the number of
epochs and mean square errors during training. Principally, a successful training is only accomplished
when the best standing points correspond to the lowest errors in the validation, and test curves are not
very different in terms of the epoch number. Subsequently, all final training performances are definitely
qualified as optimized points in both validation and test curves when they are sufficiently close to
each other, with errors less than 0.001. The reasonably low errors in training presumably indicates the
high accuracy of the ANN models for forecasting targets for any input values within their constraints.
Indeed, the recomputed targets for the sample data show good agreement with the simulation results
in Figure 7, and the blind test data are also excellently matched during the injection processes.
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The quality of estimations is evaluated quantitatively using two decisive factors, known as the
coefficient of determination (R2) and the root mean square error (RMSE) from the formulae:

R2 = 1− ∑n
i−1(zi,sam − zi,ANN)

2

∑n
i−1(zi,sam − zi,sam)

2 (6)

RMSE =

√
1
n

n

∑
i−1

(zi,sam − zi,ANN)
2 (7)

where zi,sam, zi,ANN, and zi,sam represent data points from the samples, estimation by the network,
and average values of the sampling data, respectively. Theoretically, R2 values higher than 0.95 and
RMSE values less than 4% for regressions are acceptable for prediction. Therefore, the ANN models
are absolutely qualified, with most R2 values higher than 0.98 and RMSE values less than 3.2% in all
injection cycles (Table 3). This potentially opens the possibility of extending the number of neurons
in the output layer in future work to comprehensively estimate the flooding performance. Because



Energies 2017, 10, 842 12 of 20

the models have been successfully generated, they can be easily applied to any adequate spreadsheet
based on the weights and biases in the network structure.

Table 3. Coefficients of determination and root mean square errors (RMSE) of estimated values from
ANN models versus sample data for crucial targets.

Cycles
RF Gaseous CO2 Production

5 15 25 35 5 15 25 35

Training R2 0.990 0.991 0.996 0.994 0.989 0.996 0.998 0.998
RMSE (%) 2.52 2.14 1.51 1.74 2.33 1.51 0.93 1.12

Validation
R2 0.981 0.978 0.990 0.990 0.978 0.995 0.997 0.996

RMSE (%) 3.21 3.33 2.28 2.24 3.04 1.77 1.37 1.54

Test
R2 0.980 0.986 0.989 0.989 0.986 0.994 0.995 0.995

RMSE (%) 3.82 2.89 2.47 2.61 2.87 2.09 1.74 1.72

Overall
R2 0.985 0.987 0.992 0.991 0.986 0.995 0.997 0.997

RMSE (%) 3.10 2.65 2.0 2.14 2.66 1.75 1.31 1.42

Cycles
Net CO2 Storage

5 15 25 35

Training R2 0.988 0.986 0.993 0.991
RMSE (%) 2.40 2.50 1.92 2.19

Validation
R2 0.963 0.972 0.983 0.983

RMSE (%) 3.57 2.99 2.45 2.50

Test
R2 0.980 0.976 0.982 0.978

RMSE (%) 3.15 3.09 2.62 3.00

Overall
R2 0.982 0.981 0.988 0.986

RMSE (%) 2.90 2.79 2.26 2.52

The values from the three networks are fully presented in Table 4. Mathematically, the neural
networks are proven to accurately compute subjective targets within the design variables. However,
the technical relationships between variables also should be evaluated to validate the models and
determine if there is sufficient sample data coverage.

Table 4. Weights and biases of the ANN structure for RF and Net CO2 storage.

RF

b IW LW

b1 b2 D Sw Kv/Kh WAG T 5 15 25 35

0.120 −0.586 −0.207 −1.673 −0.280 −0.394 1.388 0.162 0.027 0.017 0.017
−3.651 −1.514 0.213 2.523 −0.113 −0.135 0.030 −0.639 0.381 0.700 0.895
−1.824 −1.000 0.339 0.049 −0.351 −0.109 −0.625 0.014 −1.920 −1.575 −1.234
−0.960 −0.556 0.680 −0.337 −0.753 −0.793 −1.100 −0.132 0.096 0.097 0.085
0.177 - 0.475 −1.441 −0.189 −0.489 0.175 0.152 0.313 0.324 0.330
−2.821 - 0.156 −2.591 −0.056 −0.815 0.590 0.553 0.265 0.216 0.203
1.413 - −0.010 0.089 1.570 0.388 −0.078 −0.273 −1.235 −1.553 −1.675
−0.963 - −0.146 2.437 −0.374 −1.161 −0.001 −0.963 −0.822 −0.854 −0.906
−1.787 - −0.226 −0.119 −1.654 −0.444 0.123 −0.189 −1.126 −1.500 −1.668
−0.721 - −0.114 2.403 −0.350 −1.512 −0.011 0.931 0.728 0.735 0.771

CO2 Production

b IW LW

b1 b2 D Sw Kv/Kh WAG T 5 15 25 35

2.210 −0.418 −0.273 0.033 −1.923 −0.269 −0.336 0.357 0.529 0.397 0.340
0.314 −0.653 −0.275 0.065 0.282 0.460 0.525 −1.999 0.277 0.793 0.947
0.142 −0.867 −0.523 0.164 0.447 1.466 0.644 0.375 0.063 −0.078 −0.135
1.204 −0.949 −0.295 0.051 −0.676 −0.363 −0.516 −0.522 −0.935 −0.727 −0.623
−0.174 - 0.370 0.018 −0.568 −0.076 −0.419 −0.852 −0.002 0.260 0.375
−0.768 - −0.133 0.074 −0.046 0.518 −0.413 0.055 −0.398 −0.459 −0.474
−1.388 - −0.712 −0.077 −0.690 −0.226 0.706 0.111 0.330 0.275 0.208
−1.780 - −0.195 0.054 0.066 −1.009 0.521 −1.014 −1.029 −1.031 −1.025
0.415 - −0.065 −0.105 0.105 0.470 0.780 0.827 0.065 0.078 0.135
−0.866 - −0.517 0.135 0.186 0.185 0.737 1.006 0.565 0.426 0.406
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Table 4. Cont.

Net CO2 Storage

b IW LW

b1 b2 D Sw Kv/Kh WAG T 5 15 25 35

−3.181 −1.218 0.894 0.058 −2.133 0.758 −0.060 0.034 0.312 0.356 0.308
−1.130 −1.758 0.543 −0.039 −0.051 −0.383 −0.411 −0.071 −1.229 −1.588 −1.487
−0.763 −1.575 0.359 −0.107 −0.167 −0.725 −0.552 −1.317 0.096 0.690 0.733
−0.202 −1.365 1.240 0.055 1.116 0.447 −0.708 −0.067 −0.207 −0.120 −0.029
−0.081 - 0.234 −0.187 −0.496 −0.389 0.102 0.422 0.319 0.429 0.547
0.120 - 0.520 −0.024 0.153 0.112 0.527 0.362 0.656 0.487 0.293
0.069 - 0.159 −0.042 −0.089 −1.081 0.032 0.784 0.403 0.169 0.117
−0.905 - −0.429 −0.061 −0.249 −0.711 0.079 −0.294 −0.887 −1.221 −1.366
1.142 - 0.039 −0.042 −0.072 −0.948 −1.268 −0.463 0.050 0.137 0.078
0.592 - 0.163 −0.092 −0.126 0.349 −0.718 0.903 0.577 0.184 0.046

4.3. Applicability of ANN Models

Conventionally, the oil recovery factor and capacity of carbon sequestration are primarily
concerned with CO2 flooding from the technical perspective, while the ultimate profitability is the
decisive factor for evaluating the success of the project economically. A large amount of oil production
might appear preferable, but as oil prices are unexpectedly low, purchasing CO2 needs to be taken
into consideration, particularly when the incentive tax credit is counted according to the total volume
of carbon sequestration in the reservoirs. Therefore, competent ANN models should tackle both the
technical and economic aspects of the problem.

Favorable reservoir properties are investigated first through initial water saturation and a
dimensional permeability ratio at the base case injection and well spacing design. As shown in
Figure 8, with a specific operation condition, the permeability ratio impacts the oil production
differently according to the injection cycle progress. In detail, after five cycles, this factor seems
to have no effect on RF, whereas RF has an inverse relationship with Kv/Kh after 25 injection cycles with
a deviation of approximately 5% in RF between the lower and upper permeability ratio thresholds.
This confirms that a high difference between vertical and horizontal permeability has an advantage
in extracting reservoir oil; reservoirs that have low vertically permeable flow capacity are preferable.
Physically, this result can be explained by the gravitational effect, associated with a heterogeneous
system, which inevitably occurs while injecting CO2 into the reservoir even though water is also used
for cycling.
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assessment for potential CO2-EOR using reservoir characteristics. 

In terms of surface control, the relevant injection designs should also be determined to address 
dependent performances according to different flooding schemes [32–34]. Fundamentally, an 
appropriate WAG injection design helps extend the contact time between gas and in situ 
hydrocarbon, mitigating viscous fingering and maximizing thoroughly swept areas. Depending on 
reservoir properties and initial fluid conditions, optimal designs for injecting gas and water might 
differ, however the basic technical relationships will presumably be identical for all system 
properties. Figure 9 illustrates the changes in the three subjective targets following various WAG 
ratio and duration time T designs, at reservoir conditions Kv/Kh = 0.5 and initial Sw = 0.67. Obviously, 
an increase in T enhances all targets at dissimilar magnitudes during the injection process, while 
rising RF and net CO2 storage stop at an optimal WAG ratio region before decreasing according to 
increases in this parameter. Specifically, WAG ratios around 1 maximize the recovery factor after 
either 15 or 35 cycles, whereas a ratio of 2:1 for the injection time for CO2 to water is most favorable 
for gas storage in the formation (Figure 9). 

15 cycles 35 cycles 
(a)

Figure 8. Relationships between reservoir parameters and flooding performances: (a) Sw and Kv/Kh
versus RF; (b) Sw and Kv/Kh versus net CO2 storage.

Regarding carbon sequestration, a system having Kv/Kh less than 0.5 proves to be the most
advantageous for initial fluid conditions and storing CO2 throughout the flooding process. Principally,
the gas can be trapped under various mechanisms in the geological formation, such as mineral trapping,
solubility trapping, or residual trapping. In particular, the amount of oil displaced is proportional
to the CO2 storage volume in the reservoir. This explains the increase in trapped gas following the
decrease in water saturation after either 5 or 25 cycles, as shown in Figure 8. Clearly, the dependence
of oil production and net CO2 storage on both reservoir factors implies an identical assessment for
potential CO2-EOR using reservoir characteristics.

In terms of surface control, the relevant injection designs should also be determined to address
dependent performances according to different flooding schemes [32–34]. Fundamentally, an appropriate
WAG injection design helps extend the contact time between gas and in situ hydrocarbon, mitigating
viscous fingering and maximizing thoroughly swept areas. Depending on reservoir properties and initial
fluid conditions, optimal designs for injecting gas and water might differ, however the basic technical
relationships will presumably be identical for all system properties. Figure 9 illustrates the changes in the
three subjective targets following various WAG ratio and duration time T designs, at reservoir conditions
Kv/Kh = 0.5 and initial Sw = 0.67. Obviously, an increase in T enhances all targets at dissimilar magnitudes
during the injection process, while rising RF and net CO2 storage stop at an optimal WAG ratio region
before decreasing according to increases in this parameter. Specifically, WAG ratios around 1 maximize
the recovery factor after either 15 or 35 cycles, whereas a ratio of 2:1 for the injection time for CO2 to water
is most favorable for gas storage in the formation (Figure 9).
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The continuous increase in gas injection might initially extract a significant amount of trapped oil, but
it causes an early breakthrough as a result of high mobility. In contrast, unsuitably low WAG ratios do not
guarantee sufficient contact between solvent and hydrocarbon due to a rapid overlap by the injected water.
As presented, the high RF is only achieved at a low WAG ratio (less than 1.5). Higher ratios up to 3.5 are
undesirable as the RF drops by approximately 5% at the upper WAG ratio. This is also clearly indicated by
the large gas production profile after 35 cycles and large incremental change from approximately 50,000
tons to more than 80,000 tons corresponding to a WAG ratio increase from 1 to 3.5 (Figure 9). Similarly,
inappropriately high WAG ratios undoubtedly lower the amount of CO2 sequestration, demonstrating
the CO2 storage limit in the reservoir corresponding to a specific operating condition, particularly when
oil is inefficiently displaced by the injected fluids. From the figure, it is clear that the WAG ratio is more
important than time T for injection design [35], even though T has a broad range (30 to 90 days).

The effects of well spacing on essential performances should also be examined using the network
models. Generally, the longer distance between an injector and producer results in a later time of gas
breakthrough observed at the producing well and higher oil volume recovered during the flooding process.
However, when the injected fluid ratio (CO2 to water) is sufficiently high, this spatial factor does not have
a significant impact on the WAG project success, for both the RF and other critical targets. As clearly
shown in Figure 10, with a WAG ratio at 0.5, the ultimate oil recovery can be improved from nearly 12% to
21% corresponding to an increase of 200 m in well distance. The increment is just 10% if the WAG ratio
is designed at 3.5. The deviations in the increment for net CO2 storage between these two WAG ratios
are also significant, with increases of approximately 5 kt and 13 kt at the upper and lower constraints of
the injecting ratio, respectively. Regarding CO2 production, this target is inversely related to well spacing,
but is impacted more by the WAG ratio compared to the spatial factor (Figure 10).
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The aforementioned technical verifications have validated the ANN models, not only for
forecasting mathematically, but also for providing viable evaluations for targets’ behavior with changes
in input parameters. Consequently, the models are flexible for other analyses, such as quantitative
optimization or economic feasibility studies. To clearly acknowledge these concerns, a specific fiscal
condition is assumed in this work, taking into account the important factors for economic analysis.
The detailed expenditure components corresponding to the five-spot well pattern are listed in Table 5,
as referenced from the literature [15,36]. Among these, the predicted oil prices from 35 $/bbl to 65
$/bbl are investigated; uncertainty in the crude oil market remarkably influences any oil production
project. The encouragement for storing CO2 underground is reflected through an additional incentive
term. Furthermore, assuming that all CO2 produced is re-injected in addition to the purchased amount,
the cost is ~30% less than if all gas is purchased for injection.

Table 5. Specific fiscal conditions for a WAG flooding project.

Components Values

Oil price 35–65 ($/bbl)
CO2 purchase cost 17.5 ($/ton)
CO2 recycling cost 12 ($/ton)

CO2 gathering system 30,000 ($/pattern)
Operating costs 60,000 ($/year/pattern)

Additional incentives 3.5 ($/ton CO2 storage)
Discount rate 12%

Income tax 35%

In total, six reservoir cases with interchanging Sw (0.6 and 0.7) and Kv/Kh (0.1, 0.5 and 1) are
optimized for NPV by selecting the most favorable injection design and well distance. The procedure
is a simple iterative scheme in which the variables are divided into intervals within their constraints.
In detail, the well distance has an increment of 20 m from 200 m, and the WAG ratio and T are
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examined in 0.15 and 5 day intervals, respectively. Subsequently, the maximal NPV is chosen for each
reservoir case at 25 injection cycles, and the optimal variables are obtained concurrently. Presumably,
the optimized results will be different according to reservoir categories, and the maximized profit and
recovery factor might not be achieved with the same parameter values.

Indeed, as presented in Table 6, the most dominant well distance and duration time obtained
are dissimilar among the six cases, while the most favorable injected fluid ratio is proposed as 0.5 for
most cases. It is clear that although the upper threshold of T is suggested for maximum recovery of
the crude oil and CO2 storage underground, a parameter value from 30 to 60 days produces the most
economic benefit for the project. In addition, despite the fact that the WAG ratio essentially determines
the technical success of the flooding process, a lower value is more preferable for project feasibility
and profitability. Clearly, positive NPV values show the profitability of this CO2-EOR project after
25 cycles at a specific oil price (45 $/bbl). However, the project needs to be verified in the context of
various market forces to aid in scheduling and evaluating the process.

Table 6. Optimal injection designs and well distances for different Sw and Kv/Kh values in terms of
NPV (oil price at 45 $/bbl).

Sw = 0.6
Kv/Kh = 0.1 Kv/Kh = 0.5 Kv/Kh = 1

25 Cycles 25 Cycles 25 Cycles

RF (%) 25.18 19.40 17.67
NPV ($MM) 1.993 1.846 1.665
D (m) 400 280 300
WAG 0.5 0.5 0.5
T (days) 50 30 30

Sw = 0.7
Kv/Kh = 0.1 Kv/Kh = 0.5 Kv/Kh = 1

25 Cycles 25 Cycles 25 Cycles

RF (%) 17.43 11.94 7.89
NPV ($MM) 0.834 0.546 0.387
D (m) 400 400 400
WAG 0.5 0.5 0.5
T (days) 60 55 40

The comprehensive profits for the six cases are illustrated in Figure 11. As described, oil price
changes significantly affect the NPV, particularly when reservoir conditions are favorable for deploying
the project. However, all cases indicate a positive profit even at the lowest oil price (35 $/bbl),
indicating that the project is feasible over a wide range of market conditions. Furthermore, the figure
also indicates an unstable trend of progressing NPV following injection cycles among cases and oil
prices. In detail, the profits all peak prior to 35 cycles, and in some cases have the highest NPV at
15 cycles. Subsequently, the project maintains a maximum NPV until 25 cycles, but the economic
performance does not improve further. These trends depend not only on the reservoir case, but also
on the variation in oil price, indicating the important contribution of market factors to the project.
The results definitely confirm the excellent applicability of network models for analyzing the economic
feasibility of a project. The implications and conclusions will be undoubtedly different given other
fiscal conditions, but these ANN models will remain helpful for evaluating project economic benefits.
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Clearly, the models in this work can be reused in other similarly constrained flooding projects;
in particular, this methodology can be utilized in CO2-EOR projects and even other research areas.
While this study investigated a five-spot pattern, the method should be scalable to larger reservoirs
and different patterns.

5. Conclusions

Three ANN models representing three critical targets of the CO2 injection process have been
successfully generated and verified in terms of technical relationships. Using a suitable training scheme
of 50%-20%-30% corresponding to a training-validation-test data ratio, the models show excellent
regressions on the sample data, with overall errors less than 3.2%. Therefore, they can be used to predict
any input data within the assigned constraints. Possible computations were conducted for a series of
performances after 5, 15, 25 and 35 injection cycles. The networks proved to be extremely reliable in
both estimating quantities, and in accurately providing project timing, which aids in determining an
injection schedule and flexibly managing economic conditions.

The technical relationships between input parameters and targets have also been properly
evaluated to validate the generated models. For a specific fiscal condition and possible range in
oil prices, the ANN models are used to optimize the NPV for six different reservoir cases; the models
perform well and provide an evaluation in terms of profitability, feasibility, and the project schedule
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proposal. As the NPV progression depends on injection conditions and oil prices, the neural networks
are extremely powerful models for engaging with other economic tools to comprehensively assess
the project.

The networks in this study can be applied to other identical reservoir conditions; moreover,
this method of utilizing traditional neural networks can also be directly considered or modified for
application to other EOR projects for forecasting purposes.
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