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Abstract: Many previous contributions to methods of forecasting the performance of polymer
flooding using artificial neural networks (ANNs) have been made by numerous researchers previously.
In most of those forecasting cases, only a single polymer slug was employed to meet the objective
of the study. The intent of this manuscript is to propose an efficient recovery factor prediction tool
at different injection stages of two polymer slugs during polymer flooding using an ANN. In this
regard, a back-propagation algorithm was coupled with six input parameters to predict three output
parameters via a hidden layer composed of 10 neurons. Evaluation of the ANN model performance
was made with multiple linear regression. With an acceptable correlation coefficient, the proposed
ANN tool was able to predict the recovery factor with errors of <1%. In addition, to understand
the influence of each parameter on the output parameters, a sensitivity analysis was applied to the
input parameters. The results showed less impact from the second polymer concentration, owing to
changes in permeability after the injection of the first polymer slug.
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1. Introduction

With ever-increasing energy consumption demand and a declining trend in the discovery of
significant new oil fields, redevelopment of mature oil wells has gained great attention in the oil and
gas industry. It is estimated that two-thirds of the oil originally in place are left after the primary and
secondary recovery stages [1]. This remaining amount of oil has focused the attention of industries
and researchers on developing new techniques referred to as tertiary oil recovery methods [2]. These
techniques can be classified into three distinct methods: miscible oil recovery, thermal oil recovery,
and chemical oil recovery.

Chemical oil recovery is applied to reservoirs as a tertiary method when waterflooding has
reached its recovery efficiency limit, which is estimated to be approximately 30–50% of the original oil
in place (OOIP) [3,4]. It is an effective method to recover the residual oil trapped by capillary forces after
waterflooding. To do so, chemical materials are injected into the reservoirs to change the wettability
of the fluids, increase the sweep efficiency, or decrease the interfacial tension between water and oil.
Three essential processes are related to it: surfactant flooding, alkaline flooding, and polymer flooding.

With more than four decades of application in different oil wells [5], polymer flooding, according
to Sheng and Alsofi, is a mature technology and the most applied chemical flooding method, with
significant successes mainly in China where it has become the main technique applied to recover oil
from the Daqinq and Shengli oilfields [6–8]. Basically, injecting a polymer can reduce the mobility
ratio of the aqueous phase between oil and water, leading to a smooth movement of oil toward the
producing well(s) by increasing the viscosity of the injected water and reducing the permeability of
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the aqueous phase. However, the recovery of incremental oil compared to waterflooding represents an
economic incentive for applying polymer flooding. Recovering oil using this method is a challenging
task if the water-to-polymer mobility ratio is unfavorable. To avoid such a situation, assessment of
the performance of polymer flooding must be conducted to predict the recovery factor or cumulative
production resulting from the operation.

Conventional methods have been used to evaluate the performance of polymer flooding by
predicting the recovery factor and/or the cumulative production, the bearing on enhanced oil
recovery’s (EOR) efficiency on the effects of capillary pressure, polymer on viscosity, interfacial tensions,
and the wave structures associated in two space dimensions resulting in fingering; these include
the use of reservoir numerical simulations [9–11] fractional flow theory [12,13], and mathematical
methods [14,15]. These methods have numerous drawbacks, such as the requirement of a substantial
amount of data related to the geology and geometry of the reservoir, or the fluids and rock properties.
The processing of this data is a time-consuming operation, resulting in inaccurate results owing to
multiple errors. Developing a simple, fast, and accurate prediction tool to evaluate polymer flooding
performance is strongly needed.

There are numerous studies available in the literature where artificial neural networks workflow
has been developed to tackle problems of different nature in petroleum engineering. Based on the
ability of ANNs in solving identification problems, Masoudi et al. [16] were able to determine the net
pay zones of two reservoirs, a carbonate reservoir of Mishrif and a sandy reservoir of Burgan in Iran,
obtaining a classification correctness rate >85%. Despite the large abundance of wireline logs in most
drilled oilfield wells, the core data essential to the determination of water saturation are only available in
few wells. Because of that lack, Al-Bulushi et al. [17] designed an ANN which with a R2 of 0.91 and a
root mean square error (RMSE) of 2.5 was able to predict water saturation by later applying sensitivity
analyses to confirm the robustness of the model used. ANNs have also been applied in prediction of
oil recovery factors and cumulative oil production. By using higher-order neural networks (HONNs),
Chithra Chakra et al. [18] were able to predict petroleum oil production without requiring sufficient
training data. Mohammadi et al. [19] however put the emphasis of their studies on the prediction of
oil recovery factors in CO2 injection. The result was mainly appreciable regarding the RMSE, which
was evaluated to be 0.396%. For EOR processes and especially chemical enhanced oil recovery (CEOR),
a number of studies have been dedicated to the utilization of ANN. By applying ANN to the viscosity
estimator of Flopaam™ 3330S, Flopaam™ 3630S and AN-125, Kang et al. [20] came to the conclusion that
ANN model has higher polymer viscosity prediction accuracy compared to the conventional prediction
model known as the Carreau model. Al-Dousari et al. predicted the recovery factor of surfactant polymer
flooding. In the first case, the prediction was made at three different pore volumes (0.75, 1.5, 2.25) by
applying a blind-test on 125 data sets, which gave an average absolute error of 3% [21].

In this study, we predicted the recovery factor (RF) during polymer flooding using a neural
network at three different periods: after waterflooding (RF1), after the injection of the first polymer
slug (RF2), and after the injection of the second polymer slug (RF3). The results of this study can serve
as an example to show the capacity of an ANN in predicting the performance of the injection of two or
more polymer slugs during polymer flooding. Furthermore, a sensitivity analysis can be applied to the
input parameters for finding the best-performing parameters to maximize the recovery factor.

2. Methodology

2.1. Data Gathering and Polymer Flooding Simulation

Reservoir data and polymer concentrations were gathered from previous attempted studies in
which polymer flooding had been simulated [10,22]. Reservoir simulations coupled with polymer
concentrations were conducted to obtain a bank of polymer flooding data.

The study consisted of a sandstone reservoir with a five-spot well pattern composed of four producer
wells and one injector well discretized into 30 × 30 × 5 grid blocks. The producer wells were located
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1450 ft from each other and 1025.3 ft away from the injector well as sketched in Figure 1, with all wells
designed using CMG’s STARS simulator (Computer Modeling Group Ltd, Calgary, AB, Canada).
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Figure 1. Representation of the five-spot well pattern reservoir model.

As depicted in Table 1, the permeability and porosity over the five layers were assumed to be
constant with initial oil saturation (Soi) and viscosity (µ) estimated to be, respectively, 0.75 and 20 cp.

Table 1. Description of the reservoir properties.

Reservoir Properties

System dimensions of one cell (ft3) 50 × 50 × 4
Formation depth (ft) 4985

Formation temperature (◦F) 148
Initial oil saturation 0.75

Connate water 0.25
Residual oil to saturation 0.22

Porosity (%) 30
Oil viscosity (cp) 20

Absolute permeability (darcy) 1
Kro at connate water 0.9

Krw at residual oil 0.3

The uniformity of the five layers in terms of porosity and permeability were set up to allow better
flooding performance. According to the in situ oil viscosity and reservoir temperature from Table 1,
for an effective viscosity ratio to sweep oil during polymer flooding, the viscosity of Polymer Slug 1
should be at least 20 cp. Therefore, a range of polymer viscosities were chosen, with the lowest value
being 10.8 cp, as listed in Table 2.

Table 2. Polymer viscosity and polymer concentration parameters.

Viscosity (cp) Concentration (wt.%)

10.8 0.1503
13 0.16
18 0.1802

21.7 0.2427
29.1 0.3413
38.2 0.4048
38.3 0.4055
51.8 0.499
76 0.5644
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During polymer flooding, the injected polymer after a certain time contributed to the changes in
the viscosity of the injected water. The water phase viscosity (µp) in centipoise is then a function of
polymer concentration (cp) in weight percent and can be determined using the following equation:

up = µw

(
1 + 10cp + 102cp

2 + 103cp
3
)

, (1)

where µw = 1 cp is water viscosity [23]. Based on the new water viscosity estimated by using
Equation (1), the chosen polymer viscosity as shown previously in Table 2 could thus be confirmed by
determining their mobility ratio as proceeded in Table 3.

Table 3. Mobility ratio determination based on water viscosity as a function of polymer concentration.

Viscosity (cp) Concentration (wt.%) Water Viscosity (cp) M

10.8 0.1503 8.157 0.817
13 0.16 9.256 0.720
18 0.1802 11.901 0.560

21.7 0.2427 23.613 0.282
29.1 0.3413 55.818 0.119
38.2 0.4048 87.766 0.076
38.3 0.4055 88.174 0.076
51.8 0.499 155.142 0.043
76 0.5644 218.287 0.031

M pertains to the mobility ratio and can be calculated using:

M =

Krw
µp

Kro
µo

, (2)

where Krw = 0.3 and Kro = 0.9 are respectively the water relative permeability and the oil relative
permeability as shown in Figure 2, µp the calculated water viscosity based on Equation (1), and finally
µo = 20 cp the oil viscosity. During polymer flooding, floods presenting a mobility ratio <1 are
considered as stable, thus leading to better recovery, while on the other hands floods with a mobility
ratio >1 are considered as unstable [24].
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The reservoir was then subjected to simulated polymer flooding. The simulation consisted of running
25 distinct cases separately for a certain period of time from 30 to 72 months, as listed in Table 4.
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Table 4. Range of variables in the dataset.

Parameters Unit Type Minimum Average Maximum

Polymer Slug Size 1 (A) month Input 12 24 36
Drive Water Slug Size (B) month Input 9 13 18
Polymer Slug Size 2 (C) month Input 9 13 18

Concentration of Polymer Slug Size 1 (P1) wt.% Input 0.2427 0.4033 0.5644
Concentration of Polymer Slug Size 2 (P2) wt.% Input 0.1503 0.3581 0.5644

Injection Rate (Q) bbl Input 5000 6000 7000
Recovery Factor 1 (RF1) % Output 5.146853 7.346445 9.713352
Recovery Factor 2 (RF2) % Output 10.15411 15.65818 26.94706
Recovery Factor 3 (RF3) % Output 15.03236 25.319596 43.2764

The cases studies were selected randomly from among a thousand possibilities based on the
characteristics of four out of six parameters screened, namely, A, B, C, P1, P2, and Q. To enhance
the first injection of the polymer, a pre-flush operation was completed for a period of six months
following the recommendation available in the literature for a successful pre-flush period to meet
a water cut not being ≤92% [6]. In addition, to avoid obtaining a uniform polymer slug, the water
drive slug (B) was implemented for a period between nine and 18 months with the first polymer being
injected for a maximum time of 36 months and a minimum time of 12 months. The second polymer,
however, was injected for a shorter time (between nine and 18 months) and was also followed by
a post-flush period fixed to 18 months. The time between the different operations was crucial for
successful implementation of the two slugs. The two polymers had different concentrations.

After the results of the 25 cases were obtained, an extensive simulation was completed under
CMOST of CMG, focusing on concentration alteration. P1 and P2 were fluctuated from their lowest
values to their highest values and so forth. For each simulation result obtained using STARS,
15 extensive results were obtained with distinct outcomes under CMOST. A set of 400 simulations
results were thus obtained for testing with the ANN process.

2.2. ANN Structure and Model

The use of ANNs in the petroleum industry has gained considerable interest for its usefulness
in correlating specific solutions based on the broad range of data used. ANNs do not rely on
mathematical equations or a pre-prepared program to estimate accurate solutions. Instead, ANNs
process information by miming the procedure used by the human brain, which consists of learning the
relationship between the data gathered and the data obtained. This is a complicated nonlinear task
completed throughout a network composed of numerous layers, which include input layers, output
layers, and hidden layers.

The designed ANN feed-forward back-propagation model applied has been demonstrated to be
an effective learning schemer. The back-propagation algorithm is considered as the most widely used
algorithm [17]. Associated with the feed-forward ANN architecture, this consists of propagating a
signal from input to output, and updating the whole cycle retrospectively after obtaining the error
value resulting in the comparison of the calculated value(s) to the real value(s). This process can
be completed in three steps. The first step, or the feed-forward computation, consists of obtaining
the value(s) of the hidden layers through pushing the input value into the hidden layer node by
multiplying the weight connecting the node. Once obtained, the hidden layer value is computed
through the sigmoid function to obtain the output value using the following equation:

f (x) =
1.0

1.0 + e−x , (3)

The backward propagation, or the second step, is a two level computation. The first level is the
propagation to the output layers, which consists of obtaining the error value between the calculated
value and real value. Once known, it is sent backwards to adjust or update the weight. This is then
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followed by the final step, or the backward propagation of the hidden layer. The product of the new
weight and the error rate at the output will give the error rate at the hidden node. Once obtained,
the error rate between hidden node and input node will be evaluated as well, and the cycle will
proceed so forth from the first input to the last one.

Six input parameters were used in the input layers: polymer slug size 1 (A), drive water slug
size (B), polymer slug size 2 (C), concentration of polymer slug size 1 (P1), concentration of polymer
slug size 2 (P2), and injection rate (Q). The recovery factor was the main parameter in the output
layer and was divided into three distinct phases: recovery factor 1 (RF1), recovery factor 2 (RF2),
and recovery factor 3 (RF3). The hidden layer, however, was composed of 10 neurons. Figure 3 depicts
the architecture of the ANN model.

The generated data from the simulation results were used to model the ANN network under a
MATLAB environment. The database was divided into three distinct parts for training (180), validating
(80), and testing (140) purposes, based on the ratios 45:20:35. The training and testing processes were
allocated the greatest size. These particular allocations were chosen to best appraise and confirm the
general performance of the ANN and to obtain a higher degree of confidence in the obtained results [25].
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To reduce data redundancy, avoid the effects of magnitude differences, and improve the integrity
of the training performance of the ANN model, the simulated data were normalized. Ahmadloo et
al. [26] define data normalization as the process of standardizing the possible range of the input data.
In our study, the possible range was set by constant values falling between 0.1 and 1.1 obtained after
calculation using:

Xn =
Xs − Xmin

Xmax − Xmin
+ 0.1, (4)

where Xn, Xs, Xmin, and Xmax are, respectively, the normalized value, the value obtained from
simulation, the minimum value, and the maximum value. To assess the fitness and prediction accuracy
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of the results obtained, two statistical parameters were considered: the root mean square error (RMSE)
and the correlation coefficient (R2). Their values were obtained using:

RMSE =

√
1
N ∑ (X s − Xp

)2 (5)

and R2 = 1 − ∑
(X s − Xp

)2

(X s − Xs
)2 , (6)

where the parameters N, Xp, Xs, and Xs are, respectively, the number of parameters, the predicted
value obtained by the ANN, the simulated value, and the average simulated value.

3. Results and Discussion

The simulated recovery factor data obtained from STARS were used to develop the neural
network model. In total, 400 data points were used for this process, and these were divided into three
distinct categories based on the ratios 45:20:35. The Levenberg–Marquardt back-propagation algorithm
function (trainlm) was used for training the proposed network to generate a network that had the
capability to generalize accurately and perform a prediction with approximately no errors.

Figure 4 shows the simulated data against the predicted data obtained during the training process
by the ANN for RF1, RF2, and RF3. It illustrates an almost perfect linear fit. This assumption was
confirmed by a correlation coefficient with an overall value of 0.999 for the recovery factor.
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Figure 5. Correlation of recovery factor (RF) values between the simulated data and ANN prediction
for (a) RF1, (b) RF2, and (c) RF3.

To train the ANN model, the Levenberg–Marquardt back-propagation algorithm was associated
with the 10 neurons in the hidden layer. This combination led to a good prediction, giving an RMSE
value of <1% (0.31%) during the validation test. In addition, the results obtained from validating
the data confirmed what was learned in the training process. The R2 values governing the output
prediction obtained during the validation of the trained model were 0.999. Figures A1–A4 illustrate
the simulated data against the predicted data for the validating and testing process along with a
graphical representation of the correlation. Table 5 lists a comparison of the validating results of RF1,
RF2, and RF3 obtained from the ANN model with multiple linear regression (MLR).

Table 5. Comparison of ANN results versus multiple linear regression (MLR).

Output Method R2 RMSE

RF1
ANN 0.999 0.11

MLR 0.993 2.37

RF2
ANN 0.999 0.37

MLR 0.929 6.24

RF3
ANN 0.999 0.36

MLR 0.959 4.58

Comparing the results with other methods was very important for examining the reliability of our
modeled ANN predictions against those obtained from smooth techniques before testing the whole
model. Multiple linear regression (MLR) was chosen to compare the results obtained using ANN because
unlike ANN, which has prediction calculations based on the nonlinearity of variables, MLR uses a linear
relationship between input variables and objectives. The determination of the results of R2 and RMSE was
made possible by using the function denoted in Figure 6 under the MATLAB environment.
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It was clearly be discerned that R2 and RMSE are different. The prediction results obtained from MLR
for RF1 were exceptional, demonstrating great accuracy for the prediction model. Although the result of
the correlation obtained from MLR for RF1 was expectations with R2 = 0.993 and RMSE = 2.37%, while
the ANN R2 and RMSE for RF1 were 0.999 and 0.11%, respectively, the ANN model still obtained better
results for RF2 and RF3 (0.999 and 0.999, respectively) compared to MLR. This was also supported by the
RMSE results. The MLR model gave RMSE results for RF2 and RF3 that were higher than those of the
ANN (6.24% and 4.58%, respectively), but they were not better because they are not as close to zero as the
model resulting from the ANN. Therefore, the prediction made by using the ANN was more precise.

Based on these results, we conclude that the predicted data precisely followed the simulated data
with almost perfect accuracy. The same architecture applied for the validating process was extended to
the testing process. The R2 value of the parameters was 0.999.

Table 6 presents R2 and RMSE values for the different processes, including the overall dataset,
while Figure 7 illustrates the correlation for the overall processes.

Table 6. Performance of ANN modeling in all processes.

Type of Data Set Measures RF1 RF2 RF3

Training Set R2 0.999 0.999 0.999
RMSE 0.001 0.003 0.002

Validation Set
R2 0.999 0.999 0.999

RMSE 0.001 0.003 0.004

Testing Set R2 0.999 0.999 0.999
RMSE 0.001 0.004 0.003

Overall
R2 0.999 0.999 0.999

RMSE 0.001 0.003 0.003
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Although the ANN model had never been used on the validation and testing dataset, it was
able to give precise and accurate prediction for the recovery factor. Thus, the dataset used during the
training step was new. During the validation and testing processes, the errors were <1%. It was more
than acceptable to have such an error range to authenticate the capability of the ANN for modeling
two-slug polymer flooding.

A sensitivity analysis to determine the most significant parameters influencing the two-slug
polymer flooding was performed on the input parameters. This analysis was conducted in two
steps, first by taking only a single parameter into consideration, and then by taking two parameters
into consideration.

In the first set, there were six factors investigated for RF2 and RF3, as depicted in the Pareto chart
(Figure 8).
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For RF2, the chart clearly indicates that the polymer slug 1 size (A) and the injection rate (Q) made
important contributions to the fluctuation of RF2, with a contribution of >15%, while the remaining four
parameters were below that range. Polymer slug size 2 (C), the water drive (B), and the concentration
of polymer slug size 1 (P1) showed poor performances. The concentration of polymer slug size 2
(P2), however, made no significant contribution to RF2, which could be explained by the fact that RF2

corresponded to the period of applicability of the first polymer concentration while P2 represented the
concentration of the second polymer. Based on that, the interaction effects of AQ versus RF2, and AP1

versus RF2 were investigated, even though P1’s contribution was judged to be poor. Figure 9a shows
the interaction between polymer slug 1 size and injection rate. As can be seen, larger polymer slugs
and higher injection rates yielded better recovery factors. In addition, even though it was not directly
noticeable, the injection rate played a key role in the amelioration of final recovery. The interaction
between A and P1 was also investigated, as depicted in Figure 9b. For periods of <20 months, the figure
showed that the interaction was not effective, but starting when the slug size was >20 months, a good
recovery factor was reached when both parameters were at their maxima. This clearly indicates that
the effectiveness of the polymer concentration is linked with the size of the slug. A small slug size
would bring poor results, even with effective design of the polymer concentration.
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Primarily, attention was given to parameters showing a contribution of >23%. Among these, Q,
P1, and A were judged in order of significance to fulfill this criterion. P2 in this case did perform poorly
while C and B gave good results, but this was below the limitation range. The poor performance of P2

can be linked to the reduction of permeability after the injection of P1. Basically, injecting polymer to
recover more oil changed the permeability of the reservoir. If the concentration of the injected polymer
is high, the permeability of the reservoir will be reduced, lowering the efficiency of a second polymer
if it would be injected. To tackle this, a slightly high polymer viscosity compared to the oil’s viscosity
should be chosen for the first polymer slug to allow the second polymer slug to also be effective. Plots
of AP1 versus RF3 and AQ versus RF3 (Figure 11) showed appreciable rises in recovery factor (>30%),
indicating a strong interaction between these parameters.
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Figure 11. Description of the interactive effect of (a) polymer slug 1 size and the polymer slug 1
concentration on RF3 and (b) polymer slug 1 size and the injection rate on RF3.

Other parameters supposed to influence RF3 were C and P2. It was noticeable that their
contributions to RF3 were >26%. Coupling AC showed that, to lead to better results, both slugs
1 and 2 must either be injected for a longer period or, if C is not large, A must be large, or vice versa.
CP1, however, showed a contribution of up to 26% and a good interaction between C and P1, showing
significant changes when the parameters were higher. Figure 12 shows a summary of the coupled
parameter results.
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Figure 12. Summary of the results of the sensitivity analysis of coupled parameters on RF3 showing
the significance of each variable.

The parameters highlighted during the sensitivity analysis can then be optimized to lead to better
results than those obtained during this study to minimize costs if the net present value is considered.

4. Conclusions

A simulation study and artificial neural network modeling of polymer flooding composed of
two polymers slugs were performed to predict the recovery factor at three distinct periods (RF1,
RF2, and RF3) in which the input data were polymer slug size 1 (A), water drive (B), polymer slug
size 2 (C), concentration of polymer slug size 1 (P1), concentration of polymer slug size 2 (P2), and
injection rate (Q). The modeling of the ANN algorithm was divided into three processes—training,
validating, and testing—with data allocated to each in the ratios of 45:20:35. To reach accurate results,
the data were normalized to be in the same range between 0.1 and 1.1. The overall correlations for the
training, validating, and testing processes between the simulated results and the ANN predictions
were 0.999. RMSE values were also reported to be 0.11%, 0.37%, and 0.36% for the recovery factor at
the three distinct times. During the validation process, the results obtained from the ANN model were
compared to those from MLR. This comparison showed that the ANN had better performance, and this
was confirmed by test results in which the prediction followed with high accuracy compared to the
simulated results. To conclude, a sensitivity analysis was completed to gain a better understanding of
the parameters influencing the recovery factor. A first sensitivity analysis was conducted on single
parameters and another analysis on coupled parameters. The results clearly showed that the injection
rate and concentration of polymer slug size 1 and polymer slug size 2, and water drive size were the
most significant parameters. However, the concentration of polymer slug size 2 did not play a key
role in this process. This was confirmed in the MLR prediction, showing a p value >0.005. However,
polymer slug size 2 had a major impact in the final recovery factor. The sensitivity study on coupled
parameters showed that the coupled parameters with the most influence were in the following order
of importance: AP1, AQ, P1Q, AB, AC, AP2, BP2, and CP1. Other coupled parameters not present in
this list showed a final recovery factory of <26%. This study showed the capability of the proposed
ANN model for predicting the recovery factor in polymer flooding with two polymers slugs with
good accuracy.

Author Contributions: All authors have worked on this manuscript together and all authors have read and
approved the final manuscript.
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