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Abstract: The search for new energy resources is a crucial task nowadays. Research on the use of solar
energy is growing every year. The aim is the design of devices that can produce a considerable amount
of energy using the Sun’s radiation. The modeling of solar cells (SCs) is based on the estimation of
the intrinsic parameters of electrical circuits that simulate their behavior based on the current vs.
voltage characteristics. The problem of SC design is defined by highly nonlinear and multimodal
objective functions. Most of the algorithms proposed to find the best solutions become trapped
into local solutions. This paper introduces the Chaotic Improved Artificial Bee Colony (CIABC)
algorithm for the estimation of SC parameters. It combines the use of chaotic maps instead random
variables with the search capabilities of the Artificial Bee Colony approach. CIABC has also been
modified to avoid the generation of new random solutions, preserving the information of previous
iterations. In comparison with similar optimization methods, CIABC is able to find the global solution
of complex and multimodal objective functions. Experimental results and comparisons prove that
the proposed technique can design SCs, even with the presence of noise.
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1. Introduction

The world is constantly changing, and societies demand energy to continue growing and living.
New resources are necessary in order to avoid an energetic crisis. This fact is particularly true since
fossil fuels have been overexploited for decades. In this sense, it is a need to find and explore new
energy sources that can maintain a balance between price and cleanness. Solar energy (also called
photovoltaic (PV) energy (PVE)) has attracted the attention of the scientific community because it is
present all over the world. PV modules are applied to transform solar radiation into electrical energy,
and in the last decades, the use of such modules has increased based on the features of PVE. The main
advantages of using PVE instead other sources are that it is emission-free, available all over the world
and easy to install [1]. However, since PVE use is focused on domestic purposes, the installation cost is
expensive and also the cost of maintenance is higher. These situations occur primarily because the
technology is not completely developed. Another cause is the outdoors environment that directly
affects the solar modules making necessary their frequent replacement [2]. In the same context, the
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efficiency of photovoltaic modules (or PV cells) depends on environmental factors such as temperature
or radiation that cannot be controlled [3–5]. This situation can be solved by including energy storage
systems that increase the cost of the PV system.

Based on the drawbacks described above it is necessary to generate new alternative methods that
help to increase the use of PVE. For example, to improve the performance of SCs requires an accurate
method for design and modeling them. This situation has attracted the attention of researchers that
are looking for new approaches that contribute to the design of efficient PV modules. This task is not
trivial, but it is helpful for modeling, testing, control and simulation of PV systems [6–9].

The design process of SCs requires the definition of a relationship between the current (I) and
voltage (V) considering the internal parameters of the cells. A mathematical model is then used to
generate a representation of the elements that conforms this device, in practical terms, here is simulated
the desired output of current vs. voltage (I–V). In the related literature, two approaches are used
for to generate this output, (1) the single diode (SD) model and (2) the double diode (DD) model.
Such methods involve electrical circuits that define the PV modules. The SD has five parameters, and
the DD has seven parameters [1], their values are unknown, and their proper calibration defines the
performance of the SC. In this context, it is necessary to estimate the diode saturation current, the series
resistance, and the diode ideality factor for both circuits. Considering this fact, the biggest problem
could be summarized as developing a mechanism able to find the best configuration of the parameters
that approximate the results to the experimental data from the real SC [1].

The identification of the best parameter of PV cells can be formulated as an optimization problem.
Considering the Root Mean Squared Error (RMSE) as an objective function is possible to define
an algorithm to search the optimal values for the SD or DD model. The aim of using RMSE is to
reduce the difference between the output of the mathematical model and an experimental dataset.
It is important to notice that the experimental data is commonly obtained from measurements that
involve imprecision that is reflected as noise. As a result, the optimization problem is established in
a multimodal search space that contains several suboptimal solutions increasing its complexity [10,11].
To affront the problems of solar cells design, the use of classical deterministic methodologies has been
proposed. Some of the most important approaches are:

• The least squares (Newton-based approach) [12],
• The Lambert W-functions [13],
• The iterative curve fitting [14].

Moreover, other interesting approaches like the one proposed in [15] consider the diode models as
dynamic systems to estimate the best values. The use of this kind of methods implies some drawbacks,
for example, the application of differentiability and convexity [16]. Moreover, the initialization of the
candidate solutions affects their convergence, and they can be trapped in suboptimal solutions [16].

On the other hand, stochastic techniques are a good alternative to overcome the disadvantages
that the deterministic methods present. Heuristic and metaheuristic algorithms are part of stochastic
approaches. They are robust techniques able to explore complex search spaces and accurately find
the best solutions considering simple initial conditions [1,17,18]. Some examples of these algorithms
applied to modelling SCs are the following:

• Particle Swarm Optimization (PSO) [19,20],
• Artificial Bee Colony (ABC) [21],
• Harmony Search (HS) [1],
• Bacterial Foraging Algorithm (BFA) [22],
• Simplified Teaching-Learning Based Optimization (STBLO) [23],
• Cat Swarm Optimization (CSO) [2].

These algorithms are a good alternative to finding the best parameter configuration of SC diode
models. However, based on the No-Free-Lunch (NFL) theorem a single metaheuristic algorithm
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cannot be used to solve all the optimization problems [24]. In other words, depending on the
complexity of the search space, the search techniques could fall into local optima. This fact affects the
performance and convergence in the iterative process. However, even with these limits, metaheuristic
approaches have higher probabilities of obtaining a global solution in the SC design in comparison to
deterministic methods.

The Artificial Bee Colony (ABC) is a metaheuristic algorithm that mimics the behavior of honey
bees [25]. Different studies about the performance of the ABC algorithm show that it is able to obtain
optimal solutions to various real-life problems [26–30]. The main advantage of ABC is the absence
of a local search strategy in the iterative process. Under the ABC perspective, there exist food source
positions, nectar amount and different kinds of honeybees. The food sources are positions in the search
space; each food source has a nectar amount value that determines its quality. The nectar amount is
defined by the fitness function. ABC employs three different operators that are capable of avoiding
local optimal values in complex problems. Each operator represents one of the various kinds of bees
that are used on the ABC. They are the worker bees, the onlooker bees, and the scout bees. The bees
represent the entire optimization process that involves the exploration and exploitation of the search
space. However, like other similar approaches, ABC has some parameters that must be carefully
defined to obtain a good performance [31]. The main three parameters of ABC are the number of
food sources, the limit value to determine the abandoned solutions and the number of foraging cycles.
Such parameters are not random values, and they are selected depending on the implementation
and problem. Considering this fact, the correct setting of these parameters is a complex task that is
performed by the designer. In addition, the ABC applies the exploitation process in its search space by
using onlookers and worker bees. The onlooker bee phase starts after finishing the worker bee phase
depending on a probability value. In this context, the exploitation process is performed depending
on this value, and it changes in each foraging cycle. In our study, we found that the selection of the
probability value is a challenge and should be done carefully. Therefore, this paper uses a chaotic map
to control this value.

On the other hand, non-linear dynamic systems define chaos as the behavior of a complex system,
where small changes in the starting conditions can lead to very significant changes over time. Such
changes can be random and unpredictable. The properties of chaotic systems have been applied to
several optimization techniques to improve the accuracy of the optimization algorithm or to escape
from local minima. The use of chaos instead random signals in metaheuristics considerably improve
their performance [32]. In most of the cases the chaotic versions of these optimization methods, increase
the diversity of the solution and the capability to avoid local solutions in the search space.

This paper introduces the Chaotic Improved Artificial Bee Colony (CIABC) for the problem of
solar cell design. In this context this article has two main goals, (1) generate an enhanced version
of the ABC (CIABC); (2) apply CIABC for the parameter estimation of solar cells and photovoltaic
modules. The standard ABC has been previously used for parameter estimation of SC [21]. However,
considering that SC modeling is a complex optimization problem and according to the NFL. The use
of ABC does not represent the most accurate solution. CIABC employs chaotic maps instead of the
random values on the onlooker bee step of the optimization process. Moreover, another improvement
is introduced in the scout bee phase. It permits the use of the best solution so far to generate new
elements of the population, instead of the use of random values. Based on such modifications the
CIABC perseveres the information of the best option at each iteration and also enhance its performance
converge using chaos. In this sense, the aim of this paper is to present an alternative improved method
that accurately estimates the parameters that define the output of SC and photovoltaic (PV) panels.
In this implementation, a selected dataset of measurements and the CIABC is applied over the diode
models to minimize the Root Mean Squared Error (RMSE) [33,34]. The RMSE is the fitness function,
and for this problem, it determines if the values of the SC or the PV panels designed by CIABC is close
to the values from the dataset.
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For experimental purposes two datasets are used in this paper. The first one is for single
SC, and it was extracted for the datasheet provided by the manufacturer. The second dataset
corresponds to experimental information extracted from real PV modules [35]. The aim of using
two information sources is to provide evidence of the capabilities of the CIABC for benchmark and
real data. In addition, the use of the second dataset provides evidence that the proposed algorithm
can work with models that include a different amount of diodes. The property of the standard ABC
to work with multi-dimensional search spaces is also contained in the CIABC. An increment on the
number of diodes in the model is reflected in the number of dimensions of the optimization problem.
On the other hand, to show the proficiency of the CIABC, several experiments are performed and
comparisons with similar algorithms selected from the state-of-the-art. Some statistical comparisons
have also been conducted in order to verify the efficacy of the improvements included in the ABC.
In addition, the computational effort of the CIABC is compared with the standard version of ABC.
Experimental evidence indicates that CIABC is practically immune to the sensitivity generated by
noisy conditions and it has a high performance regarding accuracy, robustness and preserving low
computational requirements.

The remainder of the paper is organized as follows: Section 2 describes the Preliminaries, and
the problem of solar cell modeling, the standard ABC, and the chaotic map concept are introduced.
In Section 3 the proposed chaotic improved ABC is introduced. Section 4 discusses the results of the
proposed algorithm. The conclusions and the future works are examined in Section 5.

2. Preliminaries

2.1. Photovoltaic Models

In the process of solar cell design, it is crucial to define a mathematical model that is used
to estimate the internal parameters of the SC. Commonly electronic circuits help to set this model;
in this sense, the single diode (SD) and double diode (DD) method are widely employed for describe
SCs [36]. This section introduces both SD and DD that are also adapted to be considered as
an optimization problem.

2.1.1. Single Diode Model

The single diode model is presented in Figure 1. The equivalent circuit contains one diode that
shunts the photo-generated current source Iph. This diode is configured as a rectifier and to model
its non-physical ideality; the SD model considers an extra parameter [1,17,37]. The SD is commonly
used in the related literature for PV modeling. This circuit is very easy to implement and has only five
parameters to estimate.

Figure 1. Single diode model of a solar cell.
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From Figure 1, the current of the solar cell is obtained using Equation (1):

It = Iph − Isd − Ish, (1)

In Equation (1), It is the terminal current, Iph the photo-generated current, Isd is the diode current.
Meanwhile Ish is the shunt resistor current. To obtain a more accurate model of the PV cells, it is used
the Shockley diode equation. Therefore Equation (1) is rewritten as shown in Equation (2):

It = Iph − Isd

[
exp

(
q(Vt + Rs · It)

n · k · T

)
− 1
]
− Vt + Rs · It

Rsh
(2)

The internal parameters of the diode are included in Equation (2), where Isd is the diode saturation
current. Vt is the terminal voltage whereas the series and shunt resistances are represented by Rs

and Rsh respectively. n is a non-physical ideality factor. Some parameters are also considered for the
Shockley diode equation, some of them are constants extensively used in semiconductors physics.
The magnitude of charge on an electron q = 1.602× 10−19 C (coulombs), the Boltzmann constant
k = 1.380× 10−23 (J/◦K) and T that is the cell temperature (◦K). In Equation (2), the parameters to be
estimated are Rs, Rsh, Iph, Isd, and n. The estimation or identification of such values is reflected in the
performance of SC, for that reason, this task is critical in PV systems.

2.1.2. Double Diode Model

Considering the double diode (DD) model equivalent circuit presented in Figure 2, the two diodes
are used to shunt the photo-generated current source Iph. The first diode is configured as a rectifier.
Meanwhile, the second diode represents the recombination current and other non-idealities of PV
cells [1].

Figure 2. Double diode model of a solar cell.

From Figure 2, the current of the solar cell is obtained using a modified version of Equation (1),
defined as follows:

It = Iph − Id1 − Id2 − Ish, (3)

The parameters of Equation (3) are similar to Equation (1), the main difference is that Id1 and
Id2 correspond to the first and second diode currents, respectively. In Equation (4) an accurate
approximation of the DD obtained using the Shockley diode equation to include the internal parameter
of the diode is presented:

It = Iph − Isd1

[
exp

(
q(Vt + Rs · It)

n1 · k · T

)
− 1
]
− Isd2

[
exp

(
q(Vt + Rs · It)

n2 · k · T

)
− 1
]
− Vt + Rs · It

Rsh
, (4)
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where Isd1 and Isd2 are the diffusion and saturation current, respectively. Meanwhile, the diffusion and
recombination diode ideality factors are represented using n1 and n2. The rest of the parameters have
the same definition as in Equation (2). In this context, in the DD model, seven unknown parameters
should be properly estimated, such elements are Rs, Rsh, Iph, Isd1, Isd2, n1 and n2.

On the other hand, Table 1 shows the ranges of SD and DD parameters. The values of Isd1 and
Isd2 in the DD are the same that Isd in the SD model. This situation also occurs for the intrinsic diode
parameters. In this paper, the values of Table 1 are selected due that they are extensively used in the
related literature [13,38–40]. However, a good definition of the limits of each variable is desired in
order to obtain a solution with real physical meaning [41]. Laudani et al. proposed an interesting
analysis of the maximum and minimum values that have a physical meaning [41]. However, since
the aim of this paper is to address the parameter estimation as an optimization problem, the values of
Table 1 possess some tolerances that permit us to create a feasible search space.

Table 1. The range of the solar cell parameters.

Parameter Lower Value Upper Value

Rs(Ω) 0 0.5
Rsh(Ω) 0 100
Iph(A) 0 1

Isd(µA) 0 1
n 1 2

2.2. Solar Cells Design as an Optimization Problem

In the mathematical definition of both the SD and DD circuits described previously, there exist
a different number of parameters that should be estimated. Using Equations (2) and (4) is possible to
define an objective function that measures the quality of the estimated set of parameters (candidate
solution). This equation defines if a set of parameters produce an accurate approximation between
the output of the model and the measurements from the real SC. The error function for SD has then
defined as:

fSD(Vt, It, x) = It − x3 + x4

[
exp

(
q(Vt + x1 · It)

x5 · k · T

)
− 1
]
+

Vt + x1 · It

x2
(5)

and for the DD model we have:

fDD(Vt, It, x) = It − x3 + x4

[
exp

(
q(Vt+x1·It)

x6·k·T

)
− 1
]
+ x5

[
exp

(
q(Vt+x1·It)

x7·k·T

)
− 1
]
+ Vt+x1·It

x2
, (6)

From Equations (5) and (6) the values of Vt and It are measurements from the real CS, meanwhile,
x is a vector with the parameters of the model, and it is defined as: x =

[
Rs, Rsh, Iph, Isd, n

]
for the

single diode circuit and x =
[

Rs, Rsh, Iph, Isd1, Isd2, n1, n2

]
for the double diode circuit. The terms fSD

and fDD are used to evaluate the grade of similarity of the current values computed using the estimated
parameters (x) and a model with the real values defined by It. The optimization process defined for
this problem requires the minimization of the difference between the output that is modified at each
iteration the values estimated by x. In this context using a dataset of NE elements, the selected objective
function is the Root Mean Square Error (RMSE), and it is defined in Equation (7):

RMSE(x) =

√√√√ 1
N

NE

∑
c=1

(
f c
M(Vc

t , Ic
t , x)

)2, (7)

From Equation (7), M is used to select the model DD o SD. The dataset used in the estimation could
be extracted from a commercial PV cell provided by the manufactured in a datasheet or generated by
experimental measurements. Here is important to mention that in most of the cases, the data is not
accurate and contains a certain degree of noise. Such imprecisions are reflected in the search space
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where the parameters and the objective function are defined. The affectations are multi-modality and
noisy features that also implies bad performance for the used search strategies [10,11,42].

2.3. Standard Artificial Bee Colony

The Artificial Bee Colony (ABC) is a swarm intelligence metaheuristic algorithm inspired by
foraging behavior of real honey bees’ colony in nature; it was firstly proposed by Karaboga in 2005 [25].
This algorithm contains three groups of bees; the first one is the worker bees. This kind of bees
searches for new sources of food around other food locations in their memory. The information about
this process is passed to a second group that includes the onlooker bees. The bees of this group are
used to select a food source depending on the information provided by the first group. The third
consists of scout bees which randomly search for a food source. The entire process of the standard
ABC is described step by step in Algorithm 1, and an explanation of its operators is also provided in
this subsection.

Algorithm 1: Standard ABC

1. Define the max iteration, bounds, number of bees, dimension, and trial limit values.
2. Generate the population randomly and evaluate it.
3. C = 0.
4. While c < max iteration do
5. Generate new solutions for the worker bees by using Equation (8).
6. Evaluate worker bees, then perform the greedy selection.
7. Compute the probability values by Equation (9).
8. t = 0, and compute the probability
9. While t<number of onlooker bees
10. If probability of food source > rand value
11. Generate new solutions for the onlooker bees and evaluate them.
12. Perform the greedy selection process for the onlookers.
13. t = t + 1;
14. End IF
15. End While
16. In the scout bee phase, determine the abandoned solution, and generate a new one randomly.
17. Update the best solution obtained.
18. c = c + 1
19. End while
20. Return the best solution.

Firstly, the ABC algorithm creates a random population of N solutions that represents the first
group (employed bees)

(
xi ∈ Rd, i = 1, 2, . . . , N

)
. Each new solution vi can be created based on xi as

follows [30]:
vij = xij + ϕij

(
xij − xkj

)
, k = int(rand× N), j = 1, . . . , d (8)

where xk is a neighbor employed bee of xi, ϕij ∈ [−1, 1] and it is generated randomly.
The fitness function value for f (xi) and f (vi) is calculated for xi and vi respectively; then if f (xi) >

f (vi) the solution xi is cleared from the memory of the first group and vi is added. The fitness function
value f (xi) which is obtained from the worker bee group is passed to the second group (onlooker
bees). Then the roulette wheel selection method is applied to choose the xi that has a higher probability
of fitness function Pi that is determined as:

Pi =
f iti

N
∑

i=1
f iti

, f iti =

{
1

1+ f (xi)
if f (xi) > 0

1 + abs( f (xi)) otherwhise
(9)
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Each one of the onlooker bees is updating its solution by the same method used by the worker
bees. The onlooker bees also check the new solution and old one to determine whether the old solution
will be cleared from the memory or not. If there is no improvement in the solutions after a specific
number of repetitions, these solutions are rejected; then the scout bee group searching for a new
solution to update xj as:

xij = xmin
j +

(
xmax

j − xmin
j

)
× δ (10)

where xij is a parameter to be optimized for the i-th worker bee, xmax
j and xmin

j are the upper and
lower bounds for xij respectively, and δ is a random number. After a new solution xij is created, then it
becomes a worker bee. where xij is a parameter to be optimized for the i-th worker bee, xmax

j and xmin
j

are the upper and lower bounds for xij respectively, and δ is a random number. After a new solution
xij is created, then it becomes a worker bee.

2.4. Chaotic Maps

A chaotic map is defined as a method that generates non-repetitive numbers which have some
properties such as stochastically intrinsic and showing irregular conduct that is also sensitive to the
initial values [43]. The behavior of a non-linear system is changed widely whenever the initial values
present a small difference. According to these properties, the population variety can be maintained,
improve the performance of determining the global optimum and escape from local optima [44,45].
The chaos can be determined as a discrete-time dynamical system defined as:

cpi
k+1 = f

(
cpi

k

)
, i = 1, 2, 3, . . . , tmax (11)

where tmax is the dimension of the map (the number of iterations in this study). Meanwhile, f
(
cpi

k
)

is the function that generates the chaotic model and it is described using one of the maps presented
in Equation (12). Such maps are widely used in the related literature [44,45]. They are many types
of chaotic maps such as Sinusoidal, Logistic, Singer or Tent. In this paper, the Tent map is selected,
since its performance is better than other maps according to our study and this will be illustrated in
Section 4.3. The Tent map is then defined as:

pk+1 = G(pk), G(p) =

{ p
0.7 , p < 0.7
1

0.3 p(1− p) otherwise
(12)

3. Chaotic Improved Artificial Bee Colony

The proposed algorithm Chaotic Improved Artificial Bee Colony (CIABC) is introduced in this
section. The improvement of the standard ABC can be explained in two steps defined as follows:

(1) The use of a chaotic map. The Tent chaotic map is combined with ABC to improve the “onlooker
bee” phase, which works to select a food source depending on the information provided by the
first group as shown in Equation (9). The Tent map is used instead of the random number which
is applied to start this phase. This modification makes ABC inherit the strengths of chaos such as
the ergodic and non-repetition properties. This will help in improving the exploitation process
as well as reduce the computational time that may occur if the random value is less than the
probability for a long time.

(2) Updating the solution if there is no improvement occurs with the onlooker bee. When the trial counter
exceeds the limit of improving the solution in the “onlooker bee” phase, the standard ABC
applies Equation (10) to generate a new solution randomly by the “scout bee” group. Whereas,
the CIABC uses the best solution obtained so far to update the “scout bee” group’s solution
instead of Equation (10), that makes the CIABC searches around the best solution rather than
random solutions.
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Figure 3 illustrates the entire CIABC sequence. It starts by defining the standard ABC parameters
and initializing the population. Also, it generates the matrix of a chaotic map. Then the main cycle of
the algorithm starts by dealing with each of worker bees, after that, the probabilities of food sources
are calculated. The onlooker bees cycle is started by checking the probability with the chaotic map
(CM) value and if it greater than CM the position and fitness values will be updated. Then, if there is
no improvement in the solutions after a specific number of repetitions, these solutions are rejected,
and scout bee group generates a new solution using the best solution obtained. Finally, this cycle is
repeated until the satisfied condition is met.

Figure 3. The CIABC algorithm.

4. Results and Discussion

This section presents the result obtained after applying the CIABC to the problem of SC design.
The experiments performed are divided in two: (1) parameter estimation of a single solar cell using
and (2) parameter estimation of PV modules. In order to test the performance of the proposed method,
for a single SC, a set of experimental I–V data has been used [21]. Such data is applied to determine the
parameter of the photovoltaic model. For experimental purposes is considered a commercial silicon
solar cell (from the R.T.C. Company, Paris, France) with a diameter of 57 mm under standard test
conditions (STC). For the STC the solar cell (SC) works at 1 Sun (1000 W/m2) with a temperature
T = 33 ◦C.

Under the optimization context, the search domain for the SC parameters according to the related
literature [21] is presented in Table 1. On the other hand, Table 3 shows the values of the dataset;
it consists of 23 samples that are widely used in several approaches for the design of photovoltaic
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models [19,21]. The CIABC method is configured using a number of food sources N = 200. Meanwhile,
the maximum number of iterations is set to 10,000. The experiments were performed using “Matlab
2014b” under Windows 10, 64 bit on an Intel Core2 Duo CPU with 4 GB RAM.

The results of the CIABC are compared with similar optimization algorithms. These techniques are
chaos particle swarm optimization (CPSO) [19], simulated annealing (SA) [37], cat swarm optimization
(CSO) [2], simplified teaching-learning based optimization (STLBO) [23], generalize depositional
teaching learning-based optimization (GOTLBO) [46], artificial bee swarm optimization [6], harmony
search (IGHS) [1], artificial bee colony (ABC) [21] and modified artificial bee colony (MABC) [47].

4.1. Performance Measures

The performance of the proposed modified version of ABC is evaluated using different metrics;
they are listed in Table 2 [21].

Table 2. The measures used to calculate the performance.

Metric Formula

Relative Error Rerr
Itm−Ite

Ite
× 100

Normalized Rerr
Rerror

max(Ite)−min(It)

Mean Absolute Error (MAE)
NE

∑
i=1

|Itm−It|
NE

Normalized MAE(NMAE)
NE

∑
i=1

|Itm−Ite|/Ite
NE

Normalized RMSE RMSE
max(Ite)−min(Ite)

Mean Bias Error (MBE)
NE

∑
i=1

Itm−Ite
NE

Normalize MBE (NMBE) MBE
max(Ite)−min(Ite)

From Table 2, Itm is the measured value, Ite the estimated value, NE = 37 (the number of all
experiments). The min(Ite) and max(Ite) are the minimum and maximum values (respectively) of Ite

over NE.

4.2. Experimental Results of CIABC

Tables 3 and 4, as well as Figures 4 and 5 illustrate the results of the CIABC method in determining
the unknown parameters of SC using the single diode (SD) and the double diode (DD) models. Table 3
displays the Ite and Rerr for SD and DD models after estimating the parameters of them, in addition to
the original data. Table 4 shows the estimated values of the SD parameters which have been predicted
by the CIABC model. These values are also compared with those obtained by the other selected
algorithms. Comparisons illustrate that the RMSE value of the CIABC (9.8602× 10−4) is better than the
original ABC and the MABC (9.862 × 10−4 and 9.861 × 10−4 respectively), that indicates the CIABC
increased the performance of another version of ABC. Also, the RMSE of CIABC equals the values
obtained by STLBO and CSO. In addition, CIABC outperformed all other algorithms; however, the
worst value is 0.00139 for CPSO. Moreover, several methods are used to determine the parameters
of SD model and it uses does not depend on the swarm. For example, in [48] the authors proposed
a method which used the reduced forms. From reference [48], the results of the second case study
(since it used the same dataset) that is listed in Table 10 are 1.1388× 10−2, 8.8437× 10−4, 8.9605× 10−3

and 7.7301 × 10−4 for 2.A, 2.B, 2.C and 2.D respectively. By comparing these results with the obtained
using CIABC from in Table 4, it can be seen that the CIABC is better than 2.A and 2.C while it is less
accurate than two other cases.
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Figure 4. Convergence curve of CIABC for unknown parameter identification of (a) SD and
(b) DD models.

Figure 5. For the SD model: (a) Measured voltage vs. CABC-power at different temperatures;
(b) Measured voltage vs. CABC computed current for different temperatures; DD model: (c) Measured
voltage vs. CABC-power at different temperatures; (d) Measured voltage vs. CABC computed current
for different temperatures.
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Table 3. Terminal (Vtm − Itm) measurements and relative error values for double and single
diode models.

Experimental Data Single Diode Model CIABC Double Diode Model CIABC

Data Vtm(V) Itm(A) Ite(A) Rerr Ite(A) Rerr

1 −0.2057 0.7640 0.7641 −0.0001 0.7640 0.0000
2 −0.1291 0.7620 0.7627 −0.0007 0.7626 −0.0006
3 −0.0588 0.7605 0.7614 −0.0009 0.7613 −0.0008
4 0.0057 0.7605 0.7602 0.0003 0.7602 0.0003
5 0.0646 0.7600 0.7591 0.0009 0.7591 0.0009
6 0.1185 0.7590 0.7580 0.0010 0.7581 0.0009
7 0.1678 0.7570 0.7571 −0.0001 0.7572 −0.0002
8 0.2132 0.7570 0.7561 0.0009 0.7564 0.0006
9 0.2545 0.7555 0.7551 0.0004 0.7555 −0.0000
10 0.2924 0.7540 0.7537 0.0003 0.7547 −0.0007
11 0.3269 0.7505 0.7514 −0.0009 0.7537 −0.0032
12 0.3585 0.7465 0.7474 −0.0009 0.7526 −0.0061
13 0.3873 0.7385 0.7401 −0.0016 0.7512 −0.0127
14 0.4137 0.7280 0.7274 0.0006 0.7493 −0.0213
15 0.4373 0.7065 0.7070 −0.0005 0.7467 −0.0402
16 0.4590 0.6755 0.6753 0.0002 0.7434 −0.0679
17 0.4784 0.6320 0.6308 0.0012 0.7393 −0.1073
18 0.4960 0.5730 0.5719 0.0011 0.7343 −0.1613
19 0.5119 0.4990 0.4996 −0.0006 0.7287 −0.2297
20 0.5265 0.4130 0.4137 −0.0007 0.7225 −0.3095
21 0.5398 0.3165 0.3175 −0.0010 0.7159 −0.3994
22 0.5521 0.2120 0.2122 −0.0002 0.7090 −0.4970
23 0.5633 0.1035 0.1023 0.0012 0.7022 −0.5987
24 0.5736 −0.0100 −0.0087 −0.0013 0.6955 −0.7055
25 0.5833 −0.1230 −0.1254 0.0024 0.6886 −0.8116
26 0.5900 −0.2100 −0.2084 −0.0016 0.6839 −0.8939

Table 4. Estimated values of SD model and the corresponding RMSEusing different algorithms.

Parameter CIABC STLBO GOTLBO ABC IGHS ABSO CPSO CSO MABC

Iph(A) 0.760776 0.76078 0.76078 0.7608 0.7608 0.7608 0.7607 0.7608 0.760779
Isd(µA) 0.32302 0.32302 0.33155 0.3251 0.3435 0.3062 0.4000 0.3230 0.321323

n 1.48102 1.48114 1.48382 1.4817 1.4874 1.4758 1.5033 1.4812 1.481385
Rs(Ω) 0.036377 0.03638 0.03627 0.0364 0.0361 0.0366 0.0354 0.0364 0.036389
Rsh(Ω) 53.71867 53.7187 54.11543 53.6433 53.2845 52.2903 59.012 53.7185 53.39999

RMSE 9.8602
× 10−4

9.8602
× 10−4

9.87442
× 10−4

9.862 ×
10−4

9.9306
× 10−4

9.9124
× 10−4 0.0013 9.8602

× 10−4
9.861 ×

10−4

Table 5 illustrates the values and the corresponding RMSE obtained for the DD model parameters
by the CIABC and eight different algorithms. In this table, the RMSE value of the CIABC (9.8262× 10−4)
is smaller than those obtained by standard ABC and MABC which proves that the CIABC is indeed
still better than other ABC versions in both of SD and DD models. In addition, the CIABC obtains the
best performance compared with all algorithms except STLBO and CSO which yielded 9.8248 × 10−4

and 9.8252 × 10−4 respectively. Furthermore, in Table 6 the results of several performance metrics are
provided to analyze the accuracy of CIABC algorithm for both SD and DD models. These metrics are
the mean and the standard deviation (STD) of RMSE values over 40 runs; as well as, the NRMSEMAE,
NMAE, MBE and NMBE. These results prove that the CIABC algorithm is consistency and has a high
efficiency to determine unknown parameters of SD and DD models.

Furthermore, the convergence performance of CIABC for SD and DD models are illustrated in
Figure 4. From this figure can be observed that the CIABC, in both models, has fast convergence;
whereby it achieved an optimal value before 2000 iterations. In the same context, the proposed CIABC
requires less amount of time to achieve the optimal solutions, for a single run in SD it takes 1300 s
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and for DD 1500 s. Figure 5 shows the current vs. voltage and power vs. voltage at different five
temperatures (33 ◦C, 50 ◦C, 75 ◦C and 100 ◦C) for the DD and SD models. It demonstrates that when
the solutions yielded by CIABC are adopted, both solar cell models can accurately represent the
characteristics of the solar cell. It also indicates that CIABC obtained an accurate approximation for
Itm. However, the temperatures affect the current values in the CIABC and also in the power values.

Table 5. Estimated values of DD model and the corresponding RMSE using different algorithms.

Parameter CIABC STLBO GOTLBO ABC IGHS ABSO SA CSO MABC

Isd(µA) 0.760781 0.760780 0.760752 0.7608 0.76079 0.76078 0.7623 0.76078 0.76078
Isd1(µA) 0.227828 0.225660 0.800195 0.0407 0.9731 0.26713 0.4767 0.22732 0.63069
Isd2(µA) 0.647650 0.036740 0.036783 0.2874 0.16791 0.38191 0.01 0.72785 0.241029

n1 1.451623 1.450850 1.448974 1.4495 1.92126 1.46512 1.5172 1.45151 2.000005
n2 1.988343 2 1.999973 1.4885 1.42814 1.98152 2 1.99769 1.45685

Rs(Ω) 0.036728 0.752170 0.220462 0.0364 0.0369 0.03657 0.0345 0.036737 0.036712
Rsh(Ω) 55.378261 55.49200 56.075304 53.7804 56.8368 54.6219 43.1034 55.3z813 54.75500

RMSE 9.8262
× 10−4

9.8248
× 10−4

9.83177
× 10−4

9.861 ×
10−4

9.8635
× 10−4

9.8344
× 10−4 0.01664 9.8252

× 10−4
9.8276
× 10−4

Table 6. The performance metrics for SD and DD models over 40 runs.

Model Mean RMSE STD NRM MAE NMAE

Single 9.8603 × 10−4 6.7206 × 10−9 0.6282 8.3187 × 10−4 −0.0056
Double 9.82811 × 10−4 1.05485 × 10−7 0.5214 0.0022 −0.0129

4.3. Sensitivity Analysis

In this section the performance of Tent map is explained against different seven chaotic maps
such as Chebyshev, Circle, Gauss/mouse, Logistic, Piecewise, Sine and Sinusoidal [49]. Table 7 shows
the mean and standard deviation (STD) of the RMSE values obtained using CIABC based on eight
chaotic maps. From this table, is possible to conclude that Tent map has the lower mean RMSE (also
the STD) compared with other maps. Also, the circle map and Piecewise map is in the second rank for
dimension 5 and dimension 7, respectively.

Table 7. Comparison between Tent map and seven chaotic maps for both dimensions.

Chaotic Map
SD Model DD Model

Average STD Average STD

Chebyshev 0.000999928 1.86974 × 10−5 0.000982856 1.70529 × 10−7

Circle 0.000989398 4.86071 × 10−6 0.000982848 1.68879 × 10−7

Gauss/mouse 0.001347782 0.000543292 0.000982868 7.85493 × 10−8

Logistic 0.000997560 2.20587 × 10−5 0.000982892 1.41315 × 10−7

Piecewise 0.000989960 2.37263 × 10−6 0.000982820 8.03119 × 10−8

Sine 0.000997022 9.61685 × 10−6 0.000982772 5.71839 × 10−8

Sinusoidal 0.000990722 5.04149 × 10−6 0.000982920 6.63325 × 10−8

Tent 0.000986036 2.30217 × 10−8 0.000982702 5.31037 × 10−8

4.4. CIABC on PV Panels

In this experimental section, another two real datasets are used to further investigate the
performance of the proposed CIABC approach, where the CIABC is used to identify the parameters
of PV panels that namely, a polycrystalline and monocrystalline one [35]. In this experiment, the
parameters of SC are modified as Rsh = Rp and Ish = Ip in order to differentiate them from the single
cell experiments.
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In general, the PV panel contains M solar cells which are interconnected in series, as well as the
current of this panel (I) equals to IM. Assuming that the same level of photon flux is received by the
M cells, then the same current and voltage are generated from these cells [35]. The most of the related
literature the SD model is used for each element of the PV panel. According to this fact, to calculate
the I of the entire PV panel, the I-V relation introduced in Equation (2) can be written as:

Ite = Iph − Isd

[
exp

(
(Vt + M · Rs · Ite)

n · k · T ·M/q

)
− 1
]
− Vt + M · Rs · Ite

M · Rsh
(13)

Based on the values of the current (ISC) (when the cells are short-circuited) and the voltage (Voc)

(when the cells are open-circuited), the I-V data is computed from each panel. The results of the
proposed CIABC method are compared against two other methods called ABC and the results given
in [35].

4.4.1. The Polycrystalline PV Panel Description

For the experiments a commercial model STM6-120/36 solar panel manufactured by Schutten
Solar (Nanjing, Jiangsu, China) is considered which consists of 36 polycrystalline cells (of size
156 mm × 156 mm) in series form. For this solar panel different measures are taken that represent
the real data. This panel is formed by 22 points at a temperature of 55 ◦C; ISC = 7.48 A,
VOC = 19.21 V, VM = 14.93 V and IM = 6.83 A. The entire dataset is provided in the second
and third columns of Table 8.

Table 8. The calculated current and its Absolute Error (|Error|) results.

Data
Measured ABC CIABC Reference [35]

V (V) I (A) I (A) |Error| I(A) |Error| I (A) |Error|

1 17.65 3.83 3.7947 0.0353 3.8415 0.0115 3.836 0.006
2 17.41 4.29 4.2348 0.0552 4.2663 0.0237 4.28 0.01
3 17.25 4.56 4.5136 0.0464 4.5371 0.0229 4.5541 0.0059
4 17.1 4.79 4.7618 0.0282 4.7791 0.0109 4.794 0.004
5 16.9 5.07 5.0692 0.0008 5.0800 0.0100 5.093 0.023
6 16.76 5.27 5.2618 0.0082 5.2689 0.0011 5.287 0.017
7 16.34 5.75 5.7793 0.0293 5.7794 0.0294 5.794 0.044
8 16.08 6 6.0452 0.0452 6.0432 0.0432 6.055 0.055
9 15.71 6.36 6.3511 0.0089 6.3474 0.0126 6.3691 0.0091
10 15.39 6.58 6.5721 0.0079 6.5686 0.0114 6.5881 0.0081
11 14.93 6.83 6.8192 0.0108 6.8170 0.0130 6.8334 0.0034
12 14.58 6.97 6.9622 0.0078 6.9613 0.0087 6.9748 0.0048
13 14.17 7.1 7.0900 0.0100 7.0906 0.0094 7.1014 0.0014
14 13.59 7.23 7.2163 0.0137 7.2190 0.0110 7.2265 0.0035
15 13.16 7.29 7.2803 0.0097 7.2843 0.0057 7.2898 0.0002
16 12.74 7.34 7.3255 0.0145 7.3304 0.0096 7.3345 0.0055
17 12.36 7.37 7.3556 0.0144 7.3613 0.0087 7.3643 0.0057
18 11.81 7.38 7.3865 0.0065 7.3930 0.0130 7.3947 0.0147
19 11.17 7.41 7.4094 0.0006 7.4165 0.0065 7.4174 0.0074
20 10.32 7.44 7.4273 0.0127 7.4349 0.0051 7.4352 0.0048
21 9.74 7.42 7.4349 0.0149 7.4427 0.0227 7.4426 0.0226
22 9.06 7.45 7.4410 0.0090 7.4489 0.0011 7.4487 0.0013

On the other hand, Tables 8 and 9 illustrates the calculated current and the identified parameters
of the PV panel. From these tables, it can be observed that the results of [35] are better than the ABC
method. However, the proposed CIABC gives the best results. Also, we can find that the proposed
method is faster than the other algorithm which takes less time to reach the stable value. In other
words, the modification performed over the CIABC does not affect the computational effort of its
operators. Moreover, Figure 6 shows the estimated current and power of the three methods (ABC,
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CIABC, and [35]) and the measured data against the voltage. From this figure, it can be seen that the
curve of the proposed CIABC method is the closest curve to the curve of the measurement data.

Table 9. The results of the parameters estimation and their accuracy for a polycrystalline cell solar panel.

Parameter ABC CIABC Reference [35]

Rs(m) 0.00491 0.0051 4.9
Rp 9.70 9.89 9.745

Isd(µ) 7.476291 7.484126 7.4838
Ip 1.2 1.29 1.2
n 1.206992 1.214854 1.2072

MAE 0.0177 0.0132 0.0117
RMSE 0.019174 0.016286553 0.017879

averageTime 1370 s 1200 s -

Figure 6. The estimated (a) current and (b) power by the proposed CIABC method based on
polycrystalline cells.

4.4.2. The Monocrystalline PV Panel Description

In this experiment, another solar panel model which called STM6-40/36 manufactured by Schutten
Solar is used [35]. This panel contains 36 monocrystalline cells (with size 38 mm× 128 mm) configured
in series. Table 10 shows the data that measured at a temperature of 51 ◦C, with VM = 16.98 V,
ISC = 1.663 A, VOC = 21.02 V, IM = 1.50 A.

Tables 10 and 11 give the comparison results of the CIABC with the ABC and reference [35]
algorithms according to the estimated current with it absolute value for error (|Error|) and the
estimated parameters, respectively. From these tables, it can be observed that the CIABC has better
values in terms of |Error|, MAE and RMSE. Also, the ABC is better than the results of reference [35].
Also, regarding the time consumption, the CIABC need a smaller amount of time to estimate the
parameters than the other algorithms.

The estimated current and the estimated power, at a temperature of 51 ◦C, are plotted against the
voltage as in Figure 7. From this figure, it can be observed that the ABC and CIABC give better results
than reference [35].
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Table 10. The calculated current and the (|Error|) for monocrystalline PV panels.

Data
Measured ABC CIABC Reference [35]

V (V) I (A) I (A) |Error| I (A) |Error| I (A) |Error|

1 0.118 1.663 1.664 0.0007 1.664 0.0005 1.6627 0.0003
2 2.237 1.661 1.660 0.0011 1.660 0.0012 1.659 0.0020
3 5.434 1.653 1.654 0.0010 1.654 0.0010 1.6531 0.0001
4 7.26 1.65 1.650 0.0005 1.651 0.0006 1.6497 0.0003
5 9.68 1.645 1.645 0.0002 1.645 0.0004 1.6445 0.0005
6 11.59 1.64 1.639 0.0011 1.639 0.0008 1.6383 0.0017
7 12.6 1.636 1.633 0.0026 1.634 0.0024 1.633 0.0030
8 13.37 1.629 1.627 0.0019 1.627 0.0018 1.6267 0.0023
9 14.09 1.619 1.618 0.0008 1.618 0.0007 1.6171 0.0019

10 14.88 1.597 1.603 0.0061 1.603 0.0061 1.603 0.0060
11 15.59 1.581 1.582 0.0007 1.582 0.0006 1.582 0.0010
12 16.4 1.542 1.543 0.0005 1.542 0.0004 1.5432 0.0012
13 16.71 1.524 1.521 0.0026 1.521 0.0027 1.5225 0.0015
14 16.98 1.5 1.499 0.0006 1.499 0.0007 1.5006 0.0006
15 17.13 1.485 1.485 0.0005 1.485 0.0003 1.4867 0.0017
16 17.32 1.465 1.466 0.0008 1.466 0.0007 1.4674 0.0024
17 17.91 1.388 1.388 0.0004 1.388 0.0004 1.3897 0.0017
18 19.08 1.118 1.118 0.0001 1.118 0.0002 1.1208 0.0028

Figure 7. The Estimated (a) Current and (b) Power by the Proposed CIABC method based
on polycrystalline.

Table 11. The results of the parameters estimation and their accuracy for a monocrystalline solar panel

Parameter ABC CIABC Reference [35]

Rs(m) 4.99 4.40 4.879
Rp 15.206 15.617 15.419

Isd(µA) 1.6644 1.6760 1.4142
Ip 1.50 1.6642 1.6635
n 1.4866 1.4976 1.4986

MAE 0.001229 0.001206 0.001722
RMSE 0.0018379 0.001819 0.002181

Average Time 1300s 1240s -

5. Conclusions

This paper has proposed a new method to solve the photovoltaic cell design problem by estimating
the parameters of solar cells. The proposed algorithm is based on improving the Artificial Bee Colony
algorithm in two stages. Firstly, the chaotic Tent map is combined with the “onlooker bee” phase instead
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of the random number which is used to start this phase. This improvement makes ABC inherit the
strength of chaos such as the ergodic and non-repetition properties and saves the computational time
that may be needed if the random value is less than the probability for a long time. Secondly, instead
of generating a random population using the scout bees if no improvement is made, the best solution
obtained is used; that makes the ABC searche around the best value rather than random solutions.

The proposed algorithm is tested by using a dataset of experimental values. The CIABC results
have been compared with eight different algorithms used in the state of the art; these algorithms are
STLBO, GOTLBO, ABC, IGHS, ABSO, SA, CSO and MABC. The performance of the proposed algorithm
has been evaluated based on its robustness and accuracy. The results show that the performance of the
CIABC algorithm is close to the results of STLBO and CSO for SD and DD models, whereas, it is better
than all other algorithms. Moreover, the effects of chaotic Tent map are compared with other different
chaotic maps and its performance is better than other maps in both the SD and DD models.

In addition, the proposed CIABC was used to identify the parameters of PV panels based on
polycrystalline material, and it gives results better than two other methods. In future work, we will
implement other interesting models for solar cells. Also, some other modifications will be introduced,
extending the use of this optimization algorithm for renewable energy problems.
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