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Abstract: Herein, the nitridophosphate Na3V(PO3)3N is synthesized by solid state method.
X-ray diffraction (XRD) and Rietveld refinement confirm the cubic symmetry with P213 space group.
The material exhibits very good thermal stability and high operating voltage of 4.0 V vs. Na/Na+

due to V3+/V4+ redox couple. In situ X-ray diffraction studies confirm the two-phase (de-)sodiation
process to occur with very low volume changes. The refinement of the sodium occupancies reveal
the low accessibility of sodium cations in the Na2 and Na3 sites as the main origin for the lower
experimental capacity (0.38 eq. Na+, 28 mAh g−1) versus the theoretical one (1.0 eq. Na+, 74 mAh g−1).
These observations provide valuable information for the further optimization of this materials class
in order to access their theoretical electrochemical performance as a potentially interesting zero-strain
and safe high-voltage cathode material for sodium-ion batteries.
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1. Introduction

The growing demand for sustainable energy leads to an increasing interest in efficient energy
storage systems (EES). Among these, lithium-ion batteries (LIBs) have received strong scientific
attention and, indeed, have undergone rapid development since their commercialization in 1991 [1].
However, the fact of continued lithium resource consumption and its limited abundance in earth’s
crust has driven people to renew their interest in beyond-lithium chemistries [2]. Sodium ion batteries
(NIBs) have, therefore, been reconsidered as promising alternatives due to the low cost and high
abundance of Na resource, and good electrochemical performance [3,4]. The main challenge associated
with these systems is to optimize energy density, rate capability, and sustainability of the active
materials [5,6]. Since the energy of a battery is largely dependent on the gravimetric and volumetric
capacities and operating voltages of the electrode materials, exploration on suitable active materials
is highly-targeted.

In this pursuit, there have been intensive efforts on expanding the range of available structural
families. One strategy is to develop Na-containing host materials from lithium analogues. Such efforts
have resulted in tremendous successes in realizing some known polyanionic frameworks,
such as phosphate NaMPO4/Na3M2(PO4)3 [7,8], pyrophosphate Na2MP2O7 [9], fluorophosphate
NaMPO4F/Na3M2(PO4)2F3 [10,11], sulfate NaxM(SO4)2 [12], fluorosulfate NaMSO4F [13], silicate
Na2M(SiO4) [14], and mixed polyanionic Na4M3(PO4)2(P2O7) [15,16] compounds (where M represents
the transition metal ion). Basically, the electrochemical properties of anticipated polyanion electrode
materials, including the operating potential and specific capacity, rely on the Mn+/M(n+x)+ redox
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process and the natures of polyanionic frameworks, i.e., electronegativity and molecular weight [17].
Among these reported polyanion cathodes, the NASICON-type Na3V2(PO4)3 in a rhombohedral
structure with the space group R-3c attracts particular interest due to the vanadium redox couple,
enabling a relatively high working voltage of ~3.4 V (vs. Na+/Na), and the framework of PO4,
enabling superior thermal stability [8,18]. During the course of the investigation of the vanadium-based
phosphate family, it was found that doping with the more electronegative fluoride can enhance the
operating potential of electroactive materials. For example, the Na3V2(PO4)2F3 compound shows
promising potential improvement due to the high electronegativity of F ions [19,20].

Of particular interest are the members of a new compounds class with general formula
AI

2MII
2(PO3)3N, where A = Na or Li, M = Mg, Fe, Mn, and Co, which are addressed as potential

electrode materials for lithium ion batteries. In fact, the polyanionic structure with N3−, arising from
three PO3N tetrahedra sharing one N3−, can provide intriguing voltage as cathodes. The divalent
nitridophosphate analogue was firstly investigated as cathode for lithium ion batteries, with the
Fe2+/Fe3+ redox couple [21]. Due to the strong inductive effect of PO3N groups, Li2Fe2(PO3)3N
delivers a high potential, as high as 3.5 V (vs. Li+/Li), which is 0.1 V higher than the olivine LiFePO4,
and a high theoretical capacity of 142 mAh g−1, demonstrating the possibility to design high potential
cathode materials for Li-ion batteries. On the Na-ion battery side, cubic Na3Ti(PO3)3N exhibits good
reversibility for sodium ion (de-)insertion with extremely small volume changes during the sodiation
and desodiation process [22]. However, this material only exhibits an average working potential of
2.7 V vs. Na+/Na originating from the Ti3+/Ti4+ redox couple, and a theoretical capacity of 74 mAh g−1.
To maximize the energy density of this kind of materials, the most significant improvement lies in the
flexibility of increasing the open-circuit voltage by manipulation of the 3d-metal Mn+/M(n+1)+ redox
couple in the polyanionic framework.

Herein, we report for the first time, the electrochemical properties of cubic Na3V(PO3)3N as
cathodes for NIBs, with V3+/4+ redox activities. The nitridophosphate was synthesized by conventional
solid state method. As a cathode in non-aqueous NIBs, this material exhibits an average operating
potential around 4.0 V vs. Na+/Na, while 0.74 Na+ can be extracted from the host structure.

2. Materials and Methods

2.1. Mateirals Synthesis

The Na3V(PO3)3N powder was synthesized via a conventional one-step solid state method.
Typically, sodium polyphosphate ((NaPO3)n, pure, Acros Organics, Morris Plains, NJ, USA) and
vanadium oxide (V2O5, ≥99.6%, ~10 mesh, Alfa Aesar, Karlsruhe, Germany) in a molar ratio of 6:1
were manually ground with mortar and pestle at ambient temperature for 30 min. Then the yellow
powders were placed in an alumina crucible with excessive melamine (5 molar equivalents, C3H6N6,
Sigma Aldrich, ≥99%, St. Louis, MO, USA) as nitrogen sources, followed by a pre-heating treatment
at 200 ◦C for 3 h and final calcination at 700 ◦C for 10 h under extremely slow Ar flow (heating rate:
5 ◦C min−1).

2.2. Structural Characterization

X-ray diffraction analysis was performed in Bragg–Brentano geometry using a Bruker D8 Advance
diffractometer (Bruker, Karlsruhe, Germany). All diffractograms were recorded with CuKα radiation
(λ = 0.154 nm) in the 2θ range of 10–90◦ with a step size of 0.01◦ and a time per step of 0.5 s.
The structures were refined using the Rietveld method with the DIFFRAC PLUS TOPAS 4.2 software
(Bruker, Germany). Morphological characterization was conducted on ZEISS 1550VP Field Emission
SEM (Carl Zeiss, Jena, Germany). Thermal stability was determined by a thermogravimetric analyzer
(TGA-209F, Netzsch, Selb, Germany) from RT to 800 ◦C (heating rate = 5 ◦C min−1) under steady N2

and O2 flows (20 mL min−1), respectively. In situ XRD analyses, coupled with galvanostatic sodiation
and desodiation, were performed.
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2.3. Electrochemical Characterization

The electrochemical tests were performed using three electrode Swagelok-type cells assembled
in an argon-filled glove box. Sodium half-cells were assembled by using glass fiber (Whatman) as
separator, sodium metal (99.8%, Acros Organics) as counter and reference electrodes, and 1 M NaPF6
(99%, Alfa Aesar) in propylene carbonate (PC) with 2 wt.% fluoroethylene carbonate (FEC) (Battery
Grade, BASF, Ludwigshafen, Germany) as electrolyte. The working electrodes were prepared by
doctor-blade casting a slurry of 80 wt.% of active material, 10 wt.% of carbon black (Super C65,
IMERYS, Bodio, Switzerland) and 10 wt.% of polyvinylidenefluoride (6020 Solef, Arkema Group,
Paris, France) in N-methyl-2-pyrrolidone (anhydrous, Sigma-Aldrich, St Louis, MO, USA) on Al foil
as current collector. After drying, electrodes with a diameter of 12 mm were punched, pressed, and
dried at 120 ◦C in vacuum. The mass loading of the electrodes is ~3.5 mg cm−2. A Maccor 4000 Battery
system (Maccor, Tulsa, OK, USA) was used for the galvanostatic charge/discharge test at 10 mA g−1

and 20 mA g−1. Cyclic voltammetry was performed on a multichannel potentiostat/galvanostat
(VMP3, Biologic Science Instruments, Claix, France). All measurements were performed in climatic
chambers at a temperature of 20 ± 1 ◦C.

3. Results and Discussion

Pristine Na3V(PO3)3N powders were synthesized by conventional sold state method, but different
from other reports on the nitridophosphate analogues synthesis, without flowing ammonia gas [21–23].
The crystal structure of Na3V(PO3)3N was determined by X-ray diffraction (XRD, Figure 1),
including Rietveld refinement of the obtained XRD pattern. The results of the refinement confirm,
that Na3V(PO3)3N adopts a cubic structure (a = 9.440 (1) Å) with a space group of P213 and, thus,
is isostructural to Na3Ti(PO3)3N (ICSD: 172056) [22]. The refinement shows satisfactory agreement
factors (Rwp (weighted-profile R-factor) = 8.7%, GOF (goodness of fit) = 1.41). The diffractogram in
Figure 1 does not depict crystalline impurity phases, suggesting that the simplified synthesis method
herein used is successful to obtain pure cubic Na3M(PO3)3N phase. The refined cell parameters and
atomic occupancy values are summarized in Supplementary Materials Tables S1 and S2, respectively.
The SEM image (inset in Figure 1) shows that the synthesized powder is composed of irregular-shaped
microscale particles. The refined crystal structure and the connectivity of trimers of PO3N tetrahedra
with the local environments of Na and V atoms are shown in Figure 2. The structure of this
compound is composed of VO6 octahedra and PO3N tetrahedra. Three PO3N tetrahedra build
up a nitridotriphosphate group, (PO3)3N sharing a common N3−-anion. As shown in Figure 2b,
Na+ ions occupy three distinct sites. One Na+ ion is coordinated by six O atoms and one N atom
(Na1), while the other two Na+ cations are surrounded by six (Na2) and nine O anions (Na3: six more
long-distanced O atoms are not shown in the structure), respectively [24]. Based on the calculation
results on the Na3Ti(PO3)3N system, Na1 and Na3 sites show high mobility for Na migration, while Na2
site is inaccessible due to the high energy barrier. This cubic structure, bridged by trimers of PO3N
tetrahedra, offers a three-dimensional framework for Na-ion migration and contributes to the structural
stability [24].
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Figure 1. Rietveld refinement and powder X-ray diffraction (XRD) pattern for Na3V(PO3)3N 
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Figure 2. (a) Refined crystal structure of Na3V(PO3)3N and (b) the connectivity of trimers of PO3N 
tetrahedra with the local environments of Na, V atoms. 

Thermal gravimetric analysis (TGA) was used to assess the thermal stability of the material 
under both inert (N2) and oxygen (O2) atmospheres. The TGA curves in the temperature range of 
RT-800 °C are displayed in Figure S1 (see Supplementary Materials). It should be noted that there is 
no weight decrease under N2 flow up to 800 °C, indicating the superior thermal stability of the 
material. However, when exposed to O2, a weight increase starting from 400 °C is observed, 
resulting from the oxidation of V3+ to V5+ and V4+, which was also observed in Na3V2(PO4)3 system 
[25]. Apart from this oxidization process, it should be highlighted that no thermal decomposition is 
evident during heating, illustrating the excellent thermal stability, which is why Na3V(PO3)3N can be 
regarded as safe electrode materials in batteries. It should be noted that the melamine completely 
decomposes between 250–350 °C and does not introduce any additional carbon or impurities into 
the material, as indicated by the thermogravimetric analysis of pristine melamine in N2 atmosphere 
(Figure S1, Supplementary Materials). 

The electrochemical performance of pristine Na3V(PO3)3N electrode was investigated in T-type 
cells with Na-metal as counter and reference electrode. Cyclic voltammograms at various scan rates 
between 3.2–4.5 V vs. Na/Na+ are presented in Figure 3a. The CV sweeps reveal that the 
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Figure 2. (a) Refined crystal structure of Na3V(PO3)3N and (b) the connectivity of trimers of PO3N
tetrahedra with the local environments of Na, V atoms.

Thermal gravimetric analysis (TGA) was used to assess the thermal stability of the material
under both inert (N2) and oxygen (O2) atmospheres. The TGA curves in the temperature range of
RT-800 ◦C are displayed in Figure S1 (see Supplementary Materials). It should be noted that there is no
weight decrease under N2 flow up to 800 ◦C, indicating the superior thermal stability of the material.
However, when exposed to O2, a weight increase starting from 400 ◦C is observed, resulting from the
oxidation of V3+ to V5+ and V4+, which was also observed in Na3V2(PO4)3 system [25]. Apart from
this oxidization process, it should be highlighted that no thermal decomposition is evident during
heating, illustrating the excellent thermal stability, which is why Na3V(PO3)3N can be regarded as
safe electrode materials in batteries. It should be noted that the melamine completely decomposes
between 250–350 ◦C and does not introduce any additional carbon or impurities into the material,
as indicated by the thermogravimetric analysis of pristine melamine in N2 atmosphere (Figure S1,
Supplementary Materials).

The electrochemical performance of pristine Na3V(PO3)3N electrode was investigated in T-type
cells with Na-metal as counter and reference electrode. Cyclic voltammograms at various scan rates
between 3.2–4.5 V vs. Na/Na+ are presented in Figure 3a. The CV sweeps reveal that the Na3V(PO3)3N
electrode shows electrochemical activity centered at 4.0 V with only one pair of redox peaks associated
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to the V3+/4+ redox couple. Despite the slight cell polarization, the reversibility of the sodium insertion
is maintained at a higher scan rate. Figure 3b shows the first galvanostatic charge and discharge (GCD)
curve of the cell between 3.2 and 4.5 V at a current of 10 mA g−1. The electrode exhibits a single
plateau around 4.0 V in both charge and discharge. During the first charge to 4.5 V, 0.74 eq. of Na
(55 mAh g−1) are extracted from the host structure. However, only half (0.38 eq.) of the Na ions
were re-inserted, leading to a high irreversible capacity for the first cycle. The theoretical capacity
for the reversible shuttling of 1.0 eq. Na+ per each formula unit of Na3V(PO3)3N is 72 mAh g−1.
The lower charge capacity in the first cycle, hence, indicates that not all Na+ can be extracted from
the host structure. Increasing the current density to 20 mA g−1, this material delivers a discharge
capacity of 24 mAh g−1 (see Supplementary Materials Figure S2). It is worth mentioning that, although
the capacity is low, the measured discharge capacities are stable over 10 cycles, suggesting that
after optimization such electrodes could work with high cycling stability after the initial capacity
loss. For instance, nano-sizing [26], carbon coating [27], and doping [28] are promising strategies to
improve the rate capability due to shortened ion diffusion pathways and enhanced electronic and ionic
conductivities, respectively.
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of Na3V(PO3)3N.

The apparent Na+ diffusion coefficients may be derived from the CV profiles at various scan rates.
Indeed, if the charge transfer at the interface is fast enough, the relationship of the peak current and
the CV sweep rate can be described via the simplified Randles–Sevcik Equation (1) [25,29]

ip = k n3/2 A DNa+
1/2 CNa+ v1/2 (1)

where ip is the peak current (A), k is a constant value of 2.69 × 105 C mol−1 V−1/2 under
standard conditions (25 ◦C), n is the number of electrons (1), A is the contact area between
electrode and electrolyte (1.13 cm2), and CNa+ is the concentration of sodium ions in the material
(2.37 × 10−4 mol cm−3 in Na3V(PO3)3N), ν is the scan rate (V s−1). When plotting the peak current ip
versus the square root of the scan rate ν, a linear behavior is observed (see Figure S3). The apparent
Na+ diffusion coefficients are 1.15 × 10−12 cm2 s−1 (cathodic) and 7.13 × 10−13 cm2 s−1 (anodic),
respectively. These values are much lower than those for Na3Ti(PO3)3N but similar to those for
Na3V2(PO4)3 [22,25].

In situ XRD measurement was conducted to understand the structural changes during the initial
sodiation and desodiation processes. The XRD patterns (Figure 4b) were collected during the first cycle,
each after extraction or insertion of 0.025 eq. Na+ (in total: 44 diffraction patterns). The voltage profile
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resulting from the galvanostatic steps during the in situ characterization is presented in Figure 4a.
From Figure 4b, only imperceptible changes of the intensity and position of the reflections are observed.
This suggests that only small structural and volume changes occur upon (de-)sodiation and supports
a stable two-phase reaction (Na-poor and Na-rich), as also indicated by the flat charge-discharge
potential profiles [30]. The small intensity changes in the XRD powder patterns for the desodiated
and sodiated samples (Figure S3) are consistent with the observed electrochemical reversibility of
the system. To further investigate the desodiated and sodiated phases, Rietveld refinements of the
XRD patterns of electrodes in fully charged (4.5 V) and discharged (3.2 V) state were performed.
The according Na occupancies and lattice parameters are listed in Table 1. All diffractograms were
successfully refined with the space group P213, i.e., cubic lattice parameters. The results demonstrate
that Na+ ions at Na1 and Na3 sites are firstly extracted when charged to 4.5 V, resulting in a total amount
of about 0.7 eq. Na+. Na cations at these two sites are, therefore, more mobile. During the discharge
process, 0.3 eq. of Na+ cannot be electrochemically re-inserted into the host structure, which is in
agreement with the irreversible capacity in the first cycle as shown in Figure 3b. This preliminary result
indicates that less capacity contribution is from Na3 site resulting from the higher diffusion barrier for
Na3 than Na1, and there is almost no Na migration occurring at the Na2 site, in accordance with the
previous study on Na3Ti(PO3)3N [22]. However, the Na ion mobility at Na1 sites is highly reversible.
This insight may provide a strategy to improve the Na-migration by tuning the structural properties
via selective doping, for example. Moreover, the volume change (∆V/V), obtained from the calculated
cell volume difference before (OCV) and after (4.5 V) Na removal by Rietveld refinement, that occurs
on Na-ion removal is approximately 0.2%, a remarkably small volume shrinkage given the large ionic
radius of Na ions. This is contributed by the framework constructed of PO3N tetrahedra trimers.
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Figure 4. (a) Typical charge/discharge profile and (b) in situ X-ray diffraction patterns of Na3V(PO3)3N
electrode during the first cycle.

Table 1. Refined Na occupancies, lattice parameter, and cell volume extracted from the Rietveld
refinement of diffraction patterns from 10–45◦ 2θ of Na3V(PO3)3N electrodes at OCV, fully charged
and fully discharged state in the first cycle.

State Na1 occ Na2 occ Na3 occ a ( Å) V ( Å3) Rwp/% GOF

OCV 1.05 (3) 1.00 (2) 0.91 (3) 9.445 (1) 842.7 (2) 3.38 1.14
1st charge: 4.5 V 0.58 (4) 0.97 (2) 0.76 (3) 9.438 (1) 840.8 (3) 3.43 1.16

1st discharge: 3.2 V 0.85 (3) 1.01 (2) 0.80 (3) 9.440 (1) 841.4 (2) 3.27 1.10
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4. Conclusions

Summarizing, the nitridophosphate Na3V(PO3)3N with a cubic structure can be successfully
synthesized via a conventional solid-state method without flowing ammonia gas as nitrogen source.
This compound shows a high operating potential of 4.0 V vs. Na/Na+ due to V3+/4+ redox reactions.
In the first charge, 0.74 eq. Na+ can be extracted but only 0.38 eq. Na+ (i.e., 28 mAh g−1) can
be re-inserted into the framework and reversibly shuttled. It should be noted that the potential
of V3+/4+ in most polyanionic cathodes is lower than 4.0 V vs. Na/Na+. The nitridophosphate
Na3V(PO3)3N exhibits a V3+/4+ redox reaction at 4.0 V, higher than that of Na3V2(PO4)3 (3.4 V vs.
Na/Na+). Although this kind of compound offers a limited reversible capacity, room to improve
the performance and narrow the gap between the practical and theoretical capacities is existing.
The most obvious is to improve the conductivity and optimize the particle size with morphology control
via, e.g., nano-sizing and carbon-coating. However, the excellent thermal stability and very small
volume changes during (de)sodiation, i.e., “zero strain”, with high operating voltage, make this kind
of compounds a potentially interesting safe high-voltage cathode material for sodium-ion batteries.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1073/10/7/889/s1,
Table S1: Crystallographic data of Na3V(PO3)3N, Table S2: Atomic parameters for Na3V(PO3)3N, Figure S1: TG
curves of Na3V(PO3)3N and melamine under N2 and O2 flows of 20 mL min−1 within the temperature range
of 30–800 ◦C at 5 ◦C min−1 heating rate, Figure S2: Galvanostatic charge-discharge profiles of Na3V(PO3)3N at
current density of 10 mA g−1 and 20 mA g−1 for the 1st and 10th cycles, Figure S3: Peak current (Ip, A cm−2)
vs. square root of scan rate (v1/2, V1/2 s−1/2) and related linear fit corresponding to the V3+/4+ redox processes,
Figure S4: In situ X-ray diffraction patterns of Na3V(PO3)3N at OCV, after the 1st charge (4.5 V) and 1st discharge
state (3.2 V).
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