

Supplementary Materials:

Synthesis, Structure and Sodium Mobility of Sodium Vanadium Nitridophosphate: A Zero-Strain and Safe High Voltage Cathode Material for Sodium-ion Batteries

Huang Zhang, Daniel Buchholz and Stefano Passerini

	Value
Chemical formula	Na3V(PO3)3N
Crystal system, space group	Cubic, P213
R-bragg	9.7%
Cell mass	1483.3
Cell volume (Å ³)	841.3 (9)
Crystal density (g cm ⁻³)	2.9307 (3)
Temperature	~298 K (ambient)
Lattice parameters	-
a (Å)	9.440 (1)
Rwp	8.7%
Rp	6.7%
GOF	1.41
Radiation type	Cu K $_{\alpha}$, λ = 1.541(8) Å

Table S1. Crystallographic data of Na₃V(PO₃)₃N.

Table S2. Atomic	parameters f	for Na ₃ V(PO3)3N	J.

Site	x *	y *	z*		Occ*	Beq*	
Na1	-0.26140	0.73860	0.73860	Na⁺	1	0.0255	
Na2	0.14230	0.64230	0.85770	Na+	1	0.0181	
Na3	-0.05180	0.94820	0.94820	Na+	1	0.029	
V1	0.33070	0.83070	0.66930	V^{3+}	1	0.0109	
P1	0.00415	0.83568	0.58270	P^{5+}	1	0.0092	
N1	0.05150	0.94850	0.44850	N ³⁻	1	0.0087	
O1	-0.09860	0.72930	0.52000	O ²⁻	1	0.0154	
O2	0.13720	0.75680	0.62370	O ²⁻	1	0.0124	
O3	-0.06150	0.91810	0.70020	O ²⁻	1	0.017	

* fixed parameters

Figure S1. TG curves of Na₃V(PO₃)₃N under N₂ and O₂ flows and melamine under N₂ flow of 20 ml min⁻¹ within the temperature range of 30–800 °C at 5 °C min⁻¹ heating rate.

Figure S2. Galvanostatic charge-discharge profiles of Na₃V(PO₃)₃N at current density of 10 mA g^{-1} for the 1st and 10th cycles and 20 mA g^{-1} for 11th and 20th cycles.

Figure S3. Peak current (I_P, A cm⁻²) vs. square root of scan rate ($v^{1/2}$, $V^{1/2}$ s^{-1/2}) and related linear fit corresponding to the V^{3+/4+} redox processes.

Figure S4. In-situ X-ray diffraction patterns of Na₃V(PO₃)₃N at OCV, after the 1st charge (4.5 V) and 1st discharge state (3.2 V).

© 2017 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).