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Abstract: In order to improve the intelligent diagnosis level of an on-load tap-changer’s (OLTC)
mechanical condition, a feature extraction method based on variational mode decomposition (VMD)
and weight divergence was proposed. The harmony search (HS) algorithm was used to optimize
the parameter selection of the relevance vector machine (RVM). Firstly, the OLTC vibration signal
was decomposed into a series of finite-bandwidth intrinsic mode function (IMF) by VMD under
different working conditions. The weight divergence was extracted to characterize the complexity of
the vibration signal. Then, weight divergence was used as training and test samples of the harmony
search optimization-relevance vector machine (HS-RVM). The experimental results suggested that the
proposed integrated model has high fault diagnosis accuracy. This model can accurately extract the
characteristics of the mechanical condition, and provide a reference for the practical OLTC intelligent
fault diagnosis.

Keywords: on-load tap-changer; variational mode decomposition; relevance vector machine;
harmony search algorithm; mechanical condition

1. Introduction

Power transformers are important power transformation equipment, and their stable operation is
the premise of power system security. However, the on-load tap-changer (OLTC) has a high failure rate,
which has been a major threat to the health of transformers. According to statistics [1], OLTC failure,
accounting for more than 27% of the total transformer failure, is the main cause of transformer failure,
and the fault type is mostly mechanical failure, such as the operating mechanism jamming, gear
slipping, refusal to operate, and so on. Therefore, it has important theoretical and practical significance
to improve the on-line monitoring capability of OLTC mechanical status by seeking a more efficient
and suitable intelligent diagnosis algorithm.

In recent years, there have been a large number of experts and scholars engaged in OLTC on-line
monitoring and fault diagnosis. With the vibration, motor current, motor rotation angle, thermal noise
and arcing signals as preselected inputs, a variety of integrated fault diagnosis strategies for OLTC
have been proposed [2–5]. However, the disposals of vibration signals are the core of the integrated
fault diagnosis strategy, and the studies on the processing of OLTC vibration signals are still imperfect.
Consequently, finding a vibration signal processing algorithm, the key to improving the OLTC on-line
monitoring capability, was the focus of scholars’ research [6–8]. The OLTC vibration signals are
analyzed in the time domain by employing different wavelet analysis methods in the literature [9–11],
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but the traditional time–frequency analysis method is not suitable for non-stationary signals. Based
on empirical mode decomposition (EMD) and the Hilbert transform, the vibration signal is studied
in the literature [12]. However, the signal processing of the EMD algorithm has the phenomenon of
mode mixing, which leads to inaccurate results. Hong presents an OLTC fault diagnosis method based
on ensemble empirical mode decomposition (EEMD), which abates the phenomenon of the mode
mixing in the EMD algorithm [13]. Nevertheless, the EEMD algorithm suppresses the mode aliasing
by adding white noise. This method requires many EMD operations, resulting in a significant increase
in computation.

Variational mode decomposition (VMD) is a new adaptive and multi-resolution decomposition
technique; it not only retains the adaptive ability of EMD, but also avoids the problem of the mode
mixing. Compared with the EEMD algorithm, the VMD algorithm completely eliminates the problem
of modal aliasing and has small amount of computation [14].

A relevance vector machine (RVM) has the advantages of a support vector machine (SVM),
while breaking through the limitations of SVM. RVM, avoiding the complex parameter setting problem,
has better generalization performance and faster fault classification [15].

In summary, this paper presents an OLTC mechanical state diagnosis method based on
VMD-weight divergence and harmony search optimization-relevance vector machine (HS-RVM).
First, the OLTC vibration signal is decomposed into a series of finite-bandwidth intrinsic mode
functions (IMF) by VMD. Next, the Kullback-Leibler divergence (K-L divergence) of the IMF and
the original vibration signal is calculated, and then the weight divergence is used to characterize
the complexity of the vibration signal. According to the experiment, the RVM multi-classification
model is established, and the kernel function parameter of the RVM is optimized by the harmony
search algorithm, which can improve the classification accuracy of the RVM. Both the theoretical
analysis and experimental study have verified that the proposed fault diagnosis methodology is
feasible and effective.

2. Variational Mode Decomposition-Weight Divergence

2.1. The Principle of Variational Mode Decomposition

The key of VMD signal processing is to solve the variational problem. Firstly, a variational model
with constraints is constructed, and then the optimal solution of the model is searched to realize the
adaptive separation of signals [16].

Assuming a given input signal y, the y is decomposed into K intrinsic mode function uk(t), k = 1,
2, . . . , K:

uk(t) = Ak(t) cos([yellow]φk(t)) (1)

In Equation (1), Ak(t) is the instantaneous amplitude of uk(t), dφk(t)/d(t) = ωk(t), and ωk(t) is
the instantaneous frequency of uk(t).

Suppose that any uk(t) has a definite center frequency ωk and a finite bandwidth, the variational
problem is to seek K intrinsic mode functions under constraint conditions.

There are two constraints:

(1) The sum of modes is equal to the input signal.
(2) The sum of the estimated bandwidth of the intrinsic mode functions is the smallest.

The variational questions with constraints are as follows:
min

{uk},{ωk}

{
K
∑

k=1
‖∂t[(δ(t) +

j
πt )× uk(t)]e−jωkt‖

2
}

s.t.
K
∑

k=1
uk(t) = y(t)

(2)
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In order to obtain the optimal solution of the variational problem, the second penalty factor α and
the Lagrange multiplication operator λ(t) are introduced. The problem is transformed into a variational
problem with no constraints, as shown in Equation (3):

L({uk}, {ωk}, λ) = α∑
k
‖∂t

[(
δ(t) + j

πt

)
× uk(t)

]
e−jωkt‖

2

+‖y(t)−∑
k

uk(t)‖2

2
+

〈
λ(t), y(t)−∑

k
uk(t)

〉 (3)

The multiplication operator alternating direction method is used to solve the variational problem.
Update un+1

k , ωn+1
k and λn+1 to find the saddle point of Equation (3). The expression of un+1

k is:

un+1
k = argmin

uk∈X

{
α‖∂t

[(
δ(t) + j

πt

)
× uk(t)

]
e−jωkt‖2

2

+‖y(t)−∑
i

ui(t) +
λ(t)

2 ‖
2

2

} (4)

Equation (4) is converted to the frequency domain by using the Fourier equidistant transformation.
The problem of the central frequency is extended to the frequency domain. The update method of the
center frequency is obtained and the update of the λ is completed. Update expressions are as follows:

ûn+1
k (ω) =

ŷ(ω)− ∑
i 6=K

ûn
i (ω) + λ̂n(ω)

2

1 + 2α(ω−ωn
k )

2 (5)

ωn+1
k =

∫ ∞
0 ω|ûn

k(ω)|2dω∫ ∞
0 |ûn

k(ω)|2dω
(6)

λ̂n+1(ω)← λ̂n(ω) + τ(ŷ(ω)−∑
k

ûn+1
k (ω)) (7)

According to the above analysis, the solution of the variational problem can be simplified as
follows [17]:

(1) Initialize
{

ω1
k
}

,
{

u1
k
}

, {λ̂1}, and n.
(2) un+1

k (ω) and ωn+1
k are obtained according to Equations (5) and (6).

(3) Updating Lagrange multipliers according to Equation (7).
(4) Given discriminant accuracy e > 0. If Equation (8) is satisfied, the iteration of the algorithm will

be stopped, otherwise return to Step 2.

K

∑
k=1
‖ûn+1

k − ûn
k ‖

2
/‖ûn

k ‖
2
2 < e (8)

2.2. The Principle of Weight Divergence

In order to continue to discover the fault information that is contained in the OLTC vibration
signal, the concept of weight divergence is put forward on the basis of variational mode decomposition.
The weight divergence consists of the weight coefficient and the K-L divergence.

K-L divergence is also called relative entropy, which can be used to characterize the difference
between the two signals. The larger the divergence value, the larger the difference between the two
signals. Therefore, the K-L divergence was introduced to measure the difference between the IMF and
the original signal.

The K-L divergence principle and the solving process are described in the literature [18,19].
The solution of K-L divergence is simplified as follows:



Energies 2017, 10, 946 4 of 14

(1) Given the OLTC original vibration signal X = {x1, x2, . . . , xn} and IMF component Y = {y1, y2, . . . , yn}.
The probability distribution function of the two signals is assumed to be p(x) and q(y).

(2) The kernel density estimation of probability distribution function p(x) is given by Equation (9).
Similarly, q(y) can be obtained.

p(x) =
1

nh

n

∑
i=1

k
[

xi − x
h

]
, x ∈ R (9)

where k[*] is a Gaussian kernel function; h is a smoothing parameter.
(3) Calculate the K-L distance of two signals by Equation (10):

δ(p, q) = ∑
x∈N

p(x) log
p(x)
q(y)

(10)

(4) Finally, the K-L divergence is obtained by the Equation (11):

D(p, q) = δ(p, q) + δ(q, p) (11)

The IMF component Y = {y1, y2, . . . , yn} corresponds to a certain main frequency. The reciprocal
of the 1/104 of the IMF component is defined as the weight coefficient, and the weight coefficient is
multiplied by the K-L divergence to obtain the weight divergence. Weight divergence, which reveals
the distribution of the frequency in the signal, is an important criterion for detecting the operating
state of the OLTC.

3. Harmony Search Algorithm for Optimization of Multi-Classification Relevance
Vector Machine

3.1. The Principle of Relevance Vector Machine

Given a training sample set {xn, tn}N
n=1, xn ∈ Rd, classification number t ∈ {0, 1} [20]. The output

function of RVM is:

y(x; w) =
N

∑
i=1

ωiK(x, xi) + ω0 (12)

where K(x, xi) is the kernel function, and ωi is the coefficient.
The relationship between tn and xn is as shown in Equation (13):

tn = y(xn, w) + εn (13)

In Equation (13), εn is noise that obeys the Gaussian distribution.
The likelihood estimation function of the whole sample can be expressed as shown in Equation (14):

P(tn

∣∣∣w, δ2) = N(y(xi, wi), δ2) (14)

In the process of maximizing Equation (14), the maximum likelihood method is used to find w and
δ2. In order to prevent the phenomenon of over learning, the Gaussian prior probability distribution is
defined for the weight w to constrain the parameters:

p(w|α) =
N

∏
i=0

N(ωi|0, α−1
i ) (15)

In Equation (15), α is an N + 1 dimensional hyper parameter. In this way, the solution of w is
transformed into the solution of α. When α tends to infinity, w tends to 0.
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3.2. The Model of Multi-Classification Relevance Vector Machine

Compared with the traditional support vector machine, the relevance vector machine has unique
advantages. On the one hand, it avoids the problem of complex parameter setting; on the other hand,
its solution has a stronger sparseness. The traditional SVM method can only realize the qualitative
diagnosis of samples. RVM is able to quantitatively describe the diagnosis by Equation (13), and the
diagnostic results are more practical. However, RVM belongs to the binary classifier, and can only
output the probability of the two classification problems. OLTC fault classification belongs to the
multi-classification problem. Therefore, it is necessary to carry out the multi-classification extension of
RVM. In this paper, the binary tree model is used to solve the problem of RVM extension. According to
the experiments, the multi-classification model of OLTC mechanical failure is established as shown in
Figure 1. With the subsequent experiments, this model can be extended to achieve greater classification
of the OLTC fault. In Figure 1, RVM1 classifier separates normal and fault status, where 0 indicates
a normal condition, while 1 indicates the fault condition; the RVM2 classifier separates the jam fault
and looseness fault, where 0 indicates the jam fault, while 1 indicates the looseness fault; the RVM3
classifier separates the main spring looseness and the main contact looseness, where 0 indicates the
main spring looseness, while 1 indicates main contact looseness.
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3.3. Harmony Search Algorithm

The harmony search algorithm is proposed based on the principle of musical performance.
This algorithm has a strong global search ability and avoids the complex parameter setting problem.
In many optimization problems, the performance of HS is better than genetic algorithms (GA) and
simulated annealing (SA) algorithms [21,22]. In this paper, HS is used to optimize the kernel function
parameter selection of the RVM to improve the classification accuracy of the OLTC classification model.

3.4. Optimization of Relevance Vector Machine by the Harmony Search Algorithm

The selection of kernel function parameters of the relevance vector machine are optimized by HS.
The purpose is to choose the best kernel function parameters so that the relevance vector machine
has high accuracy of fault classification [23,24]. A Gaussian kernel function is selected as the kernel
function of the relevance vector machine, and the optimization process is as follows:

(1) Define the fitness function and harmony dimension. The objective is to optimize the kernel
function parameters of RVM1, RVM2, and RVM3. Therefore, the average value of the classification
accuracy of the three RVM is defined as the fitness function, and the harmony dimension is set to 3.
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(2) Initialize parameters. Parameters that need to be initialized include: harmony memory (HM),
harmony memory size (HMS), harmony memory considering rate (HMCR), pitch adjusting rate
(PAR), bandwidth (bw), and termination criterion.

(3) Initialize the HM. Generate HMS harmonies, which constitute the initial HM. Calculate the fitness
value of each individual in the HM by calling the relevance vector machine.

(4) Generate a new harmony. If rand1 < HMCR, an individual is selected from HM by Equation (16):

xnew
i =

{
xnew

i ∈ (x1
i , x2

i , ..., xHMS
i )

xnew
i ∈ Xi

if rand1 < HMCR
otherwise

(16)

Adjust the selected individuals by Equation (17); If rand1 < HMCR is not met, generate a new
solution in the scope of variables:

xnew
i =


xnew

i + rand2 ∗ bw if rand2 < PAR(continuity)
xi(k + m), m ∈ {−1, 1} if rand2 < PAR(dispersion)

xnew
i otherwise

(17)

(5) Update HM. Calculate the fitness of the new solution. The HM is updated according to the
following formula:

if f (x′) > f (xworst) = min
j=1,2,...,HMS

f (xj), then xworst = x′ (18)

(6) Termination criterion judgment. If the termination criterion is satisfied, the algorithm stops
running. Otherwise, the algorithm continues to execute from step 3.

The algorithm flow of HS-RVM model is shown in Figure 2.
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4. Experiment and Data Analysis

In the laboratory, a simulation experiment is carried out for a comprehensive-type OLTC by using
the piezoelectric acceleration sensor, a charge amplifier, and a Tektronix oscilloscope. Information
regarding the experimental equipment is shown in Table 1. The OLTC vibration test in the laboratory
is shown in Figure 3.

Table 1. Information regarding the experimental equipment.

Equipment Model Origin

OLTC SYJZZ Shanghai, China
Piezoelectric Acceleration Sensor YD70C Qinhuangdao, Hebei Province, China

Charge Amplifier DHF-10 Qinhuangdao, Hebei Province, China
Oscilloscope Tek 3034 Shenzhen, Guangdong Province, China
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Figure 3. Vibration test in the laboratory.

In this paper, three types of faults, including a mechanism jam, main spring looseness, and main
contact looseness, are simulated. Loosening the fixing screw of the main contact to simulate the main
contact looseness fault; one of the two main springs is disconnected to simulate the main spring
looseness fault; and the simulation of the jam fault is to tie a piece of wire into the instantaneous dial,
which affects the bite of the dial and the grooved wheel. The sampling frequency is set to 50 kHz
during the experiment.

The mechanical vibration signal waveform of OLTC operation is obtained under the four
conditions of normal, main spring looseness, main contact looseness and mechanism jam. In this
paper, 85 sets of experimental data of OLTC vibration signal are selected. The data of the main spring
looseness comprise of 24 groups, and the data under the mechanism jam comprise 21 groups. The data
under normal conditions comprise 20 groups, and the fault of the main contact is under the looseness
condition, which are the same as the 20 groups.

Four groups of typical vibration signals under different operating conditions are shown
in Figure 4.
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Figure 4. Vibration signals under different conditions.

4.1. The Decomposition Process of Variational Mode Decomposition

The main contact looseness signal in Figure 4 is decomposed to demonstrate the VMD process.
The original signal time–frequency diagram is shown in Figure 5.
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Figure 5. Time–frequency diagram of the main contact looseness signal.

The decomposition level K is identified by observing the center frequency and amplitude of the
IMF component. Different K values are used to decompose the signal to obtain the stationary signal.
Then, the center frequency of the IMF component and the corresponding FFT amplitude are read,
and the results are shown in Table 2.

Table 2. Decomposition results under different K values. The ×means nothing in Table 2.

Decomposition Level
Center Frequency/Hz

800 5000 5500 15,500 157,000 20,500

K = 2 0.09 × × × 0.052 ×
K = 3 0.09 × 0.1 0.052 × ×
K = 4 0.09 × 0.1 0.052 0.037 ×
K = 5 0.09 0.09 0.07 0.052 × 0.008
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As can be seen from Table 2, when the decomposition level K = 4, the center frequencies of IMF3
and IMF4 are too close, which is considered as the phenomenon of over decomposition. When the
decomposition level K = 5, not only the center frequencies are too close, but the amplitude of IMF5
is too low. Therefore, the decomposition level K = 3 is selected in this paper. We set the bandwidth
constraint α to 2000 and the fidelity to 0.3.

The results of decomposition are shown in Figure 6.
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Figure 6. Time–frequency diagram of IMF1–IMF3.

As shown in Figure 6, the three prominent peaks in Figure 5b are adaptively separated, and there
is only one dominant frequency in the spectrum analysis of the IMF.

The IMF components are reconstructed as shown in Figure 7. It can be seen from the figure that
the error between the reconstructed signal and the original signal is small. Thus, the decomposition
process is in accordance with the positive expectations.
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Figure 7. Comparison between the reconstructed signal and the original signal.

In order to illustrate the limitations of EMD and EEMD in the vibration signal processing of OLTC,
the data in Figure 5a is decomposed by EMD and EEMD, respectively. The time–frequency diagrams
of IMF1 obtained by EMD and EEMD are shown in Figures 8 and 9 separately.

As can be seen from Figure 8b, the phenomenon of mode mixing exists in the result of EMD. There
is no unique center frequency in the spectrum of IMF1, which contains a wide range of frequencies.
The phenomenon of modal aliasing is suppressed in Figure 9, while it is not completely eliminated.

The comprehensive comparison of three algorithms is given in Table 3. Compared with EMD,
there is no modal aliasing in VMD. Meanwhile, the operation time of VMD is shorter than EEMD.
Therefore, the VMD algorithm is more suitable for the analysis of OLTC mechanical vibration signals.
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Figure 8. Empirical mode decomposition (EMD) decomposition result.
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Figure 9. Ensemble empirical mode decomposition (EEMD) decomposition result.

Table 3. Comparison of three algorithms.

Algorithm Parameter Settings Operation Time The Degree of Modal Aliasing

EMD Default parameter 0.771265 s Graveness
EEMD Nstd = 0.8; NE = 100 55.799760 s Moderation
VMD α = 2000; tau = 0.3; K = 3 2.162024 s Absence

4.2. The Analysis of Weight Divergence

In order to reflect the difference in the frequency distribution, the method of weight divergence is
proposed to further extract the characteristics of the OLTC vibration signal. Firstly, the K-L divergence
of each IMF and the original signal is calculated, which can represent the components of each
frequency signal in the original signal. Then K-L divergence multiplied by the weight coefficient
(i.e., 104 multiplied by the reciprocal of the main frequency of the IMF component).

The distributions of 85 groups’ weight divergence of the OLTC vibration signal are shown
in Figure 10.

It can be seen from Figure 10 that the weight divergence of the normal signal and the fault
signal are significantly different. For the medium and low frequency signals, the main component
is the normal condition signal, thus, the normal signal’s weight divergence of IMF1 and IMF2 are
smaller than the fault, while the situations of high-frequency part are just the opposite. At the same
time, there is a consistency between the weight divergences of three kinds of different fault types.
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In conclusion, the VMD-weight divergence model can better characterize the distribution of signals in
different frequency bands, and it is easy to distinguish the fault signal from the normal one, while the
distinction between the different fault signals is not obvious.Energies 2017, 10, x 11 of 14 
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4.3. The Analysis of Harmony Search—Relevance Vector Machine

The 85 groups of weight divergence are used as the input of the classification model. The selections
of the training set and test set are shown in Table 4.

Table 4. The selections of training set and test set.

Classifier Condition of OLTC Number of Training Set Number of Test Set Total

HS-RVM

Normal Condition 10 10 20
Main Contact Looseness 10 10 20
Main Spring Looseness 10 14 24

Jam Fault 10 11 21

Total 40 45 85

Using the HS-RVM model to diagnose the training set and test set, the parameters are set as
follows: HM = 20, HMCR = 0.9, PARmin = 0.4, PARmax = 0.9, bwmin = 0.0001, bwmax = 1, Tmax = 200.
The results are shown in Table 5, and the fitness curve is shown in Figure 11. In the following sections,
Normal stands for Normal Condition; Fault I stands for Jam Fault; Fault II stands for Main spring
looseness; and Fault III stands for Main contact looseness.

Table 5. Diagnostic results of harmony search optimization-relevance vector machine (HS-RVM).

Data Set Condition of OLTC
Diagnosis Results

Accuracy
Normal Fault I Fault II Fault III

Training set

Normal 10 0 0 0

92.5%
Fault I 0 10 0 0
Fault II 0 1 8 1
Fault III 0 1 0 9

Test set

Normal 10 0 0 0

84.4%
Fault I 0 9 0 2
Fault II 0 1 11 2
Fault III 0 1 1 8
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It can be seen from Table 4 that the HS-RVM model has a strong ability to classify the weight
divergence, and the diagnostic accuracy of normal condition is very high. However, the diagnostic
accuracy is slightly lower when HS-RVM is used to diagnose the fault status. The reason is that the
three kinds of fault signals have higher similarity of weight divergence, but the weight divergence
between normal and fault status is quite different.
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As demonstrated in Figure 11, the harmony search algorithm effectively achieves the optimization
of the relevance vector machine. With the increase of iterations, the fitness value increases. Finally,
the fitness value is no longer changed, and the results of the kernel parameter’s selection are obtained.
The optimization performance of the harmony search algorithm is verified.

In order to illustrate the advantages of the HS-RVM model, the same data samples are classified
by simulated with an annealing algorithm for the optimal relevance vector machine (SA-RVM) and
RVM. The default values for RVM and SA-RVM parameters are used, and the comparisons of test set
diagnostic results are shown in Table 6.

Table 6. The comparisons of test set diagnostic results.

Classifier Condition of OLTC
Diagnosis Results

Accuracy
Normal Fault I Fault II Fault III

RVM

Normal 10 0 0 0

68.9%
Fault I 0 6 2 3
Fault II 0 1 10 3
Fault III 0 2 3 5

SA-RVM

Normal 10 0 0 0

77.8%
Fault I 0 7 2 2
Fault II 0 1 12 1
Fault III 0 1 3 6

HS-RVM

Normal 10 0 0 0

84.4%
Fault I 0 9 0 2
Fault II 0 1 11 2
Fault III 0 1 1 8

Compared with RVM, HS-RVM has greatly improved the performance of classification by
optimizing the parameters of the kernel function. Moreover, compared with the SA-RVM classification
model, the HS-RVM model has greater advantages in classification accuracy.



Energies 2017, 10, 946 13 of 14

4.4. Experimental Comparison of Overall Model

In order to fully illustrate the superiority of the model (i.e., VMD-weight divergence and HS-RVM),
the experiment was carried out by using the EMD-SVM model. Eighty-five groups of vibration signals
are decomposed by EMD, and then the data are diagnosed by SVM. The default values are used for
both the EMD and SVM parameters in the course of the experiment, and the diagnostic results are
shown in Table 7.

Table 7. Test set diagnostic results of the EMD-SVM model.

Model Number of Training Sets Number of Test Sets Number of Errors Accuracy

EMD-SVM 40 45 17 62.2%
HS-RVM 40 45 7 84.4%

The above processing results of OLTC vibration signal show that, compared with SA-RVM and
RVM, the fault diagnosis accuracy of HS-RVM is high; the selection of the kernel function parameters
can affect the accuracy of the fault diagnosis, and the harmony search algorithm can be used to
optimize the parameters selection. Compared with the EMD-SVM model, the HS-RVM model has
more advantages.

5. Conclusions

According to the current research situation of OLTC mechanical state diagnosis, a diagnostic
method based on VMD-weight divergence and HS-RVM was presented. The results of the experiments
and data analysis show that: The variational mode decomposition was applied to the decomposition of
an OLTC mechanical vibration signal, which can effectively avoid the phenomenon of modal aliasing
and enhance the accuracy of feature extraction. The weight divergence can effectively characterize the
complexity of vibration signals and describe the frequency distribution of different vibration signals.
The multi-classification model of the relevance vector machine was constructed by a binary tree, and
the kernel function parameters were optimized by a harmony search algorithm, which improved the
accuracy of the OLTC fault diagnosis. The HS-RVM model has high diagnostic accuracy and practical
engineering value. Furthermore, this model is not only suitable for the mechanical state diagnosis of
OLTC, but can also provide a reference for other engineering fields.

However, the model needs further improvement. In the next work, the research team will extend
the model according to the OLTC experimental situation, and optimize the decomposition process of
the VMD algorithm. Meanwhile, the operation speed of the model also needs to be optimized.
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