
energies

Article

Tracking Control with Zero Phase-Difference for
Linear Switched Reluctance Machines Network
Bo Zhang 1,2 , J.F. Pan 1, Jianping Yuan 2,*, Wufeng Rao 1,2, Li Qiu 1, Jianjun Luo 2 and
Honghua Dai 2

1 College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China;
zhangbo@szu.edu.cn (B.Z.); pjf@szu.edu.cn (J.F.P.); michaelmile@qq.com (W.R.); qiuli@szu.edu.cn (L.Q.)

2 Laboratory of Advanced Unmanned Systems Technology, Northwestern Polytechnical University,
Shenzhen 518060, China; jjluo@nwpu.edu.cn (J.L.); hhdai@nwpu.edu.cn (H.D.)

* Correspondence: jianpingyuan@yeah.net; Tel.: +86-755-2653-1066

Academic Editor: Gabriele Grandi
Received: 26 April 2017; Accepted: 4 July 2017; Published: 8 July 2017

Abstract: This paper discusses the control of the linear switched reluctance machines (LSRMs)
network for the zero phase-difference tracking to a sinusoidal reference. The dynamics of each
LSRM is derived by online system identification and modeled as a second-order linear system.
Accordingly, based on the coupled harmonic oscillators synchronization manner, a distributed control
strategy is proposed to synchronize each LSRM state to a virtual LSRM node representing the external
sinusoidal reference for tracking it with zero phase-difference. Subsequently, a simulation scenario
and an experimental platform with the identical parameter setup are designed to investigate the
tracking performance of the LSRMs network constructed by the proposed distributed control strategy.
Finally, the simulation and experimental results verify the effectiveness of the proposed LSRMs
network controller, and also prove that the coupled harmonic oscillators synchronization method can
improve the synchronization tracking performance and precision.

Keywords: linear switched reluctance machine (LSRM); coordinated network; distributed control;
synchronization tracking

1. Introduction

Linear tracking control systems based on direct drive linear machines are vastly used in the
manufacturing industry, such as parts assembly, printed circuit boarding (PCB) drilling and chip
processing, etc. In addition, there are many tasks that require a cooperation of many linear machines
to work harmonically. For example, in a multi-station PCB drilling machine, each linear machine acts
as one working unit. The board being processed requires the linear machines to track the command
position precisely and coordinates with each other to finish the whole drilling work. Therefore, each
linear machine often demands the state information from other machines, so as to work cooperatively
and synchronously. The overall motion control performance can be improved such as faster operation
time, more efficiency and the annihilation of accumulated errors, etc., compared to a traditional
sequenced working manner [1]. Furthermore, if multiple linear machines can be organized as a
coordinated and distributed motion tracking network and each machine has the position controller,
sensor and driver of its own, the ultimate global tracking control goal can be emerged by local
communications among the independent linear machine nodes with local controllers, without the
necessity of any global supervision or decision [2].

Among different types of linear machines, a linear switched reluctance motor (LSRM) has the
advantages of a simple and robust mechanical structure, low cost, high reliability and free of frequent
maintenance or adjustments [3]. Current motion tracking research on LSRMs mainly focuses on
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the control performance improvement for single machine based position control systems [4–7].
In [4], an adaptive position controller is inspected to compensate uncertain behaviors of a
double-sided LSRM. A nonlinear proportional differential (PD) tracking controller based on the
tracking differentiator is proposed for a real-time LSRM suspension system, to achieve a better
dynamic position response [5]. A sliding mode position control technique is investigated in [6] and a
passivity-based control algorithm is proposed for the LSRM position tracking system to overcome the
inherent nonlinear characteristics and ameliorate system robustness against uncertainties and bounded
disturbances [7]. From the latest development on the tracking control performance of LSRMs, the ratio
of an absolute dynamic tracking error to full range of 5% can be achieved in single LSRM position
control applications.

As mentioned above, by employing a multi-agent network formed by distributed control on
the same product line, all LSRMs can be coordinated to work together harmonically. Up until now,
the experiment and technique studies on the tracking control network based on LSRMs have gained
much attention, and related research is increasing [8,9]. Current analysis of motion coordinated
control of multi-agent networks mainly focuses on distributed control methods with multi-agent
networks [10–16], which provides a guidance to the LSRMs network. Reference [10] primarily
investigated the consensus for coordinated control of multi-agent networks, and established the
connections between structural properties and the performance of networks. Cao et al. [11] elaborated
the main results and the progress about coordinated control algorithms for multi-agent networks
and summarized the future directions of the distributed coordination of multi-agent. At present,
multi-agent network study has been classified into several major aspects, which include constrained or
imperfect communication [12], delay or switching information linkage [13,14], agents with nonlinear
dynamics [15], influence of noise [16], etc., Furthermore, the multi-agent networks bound by distributed
control algorithms have been exploited in the regime of spacecraft cluster [17], robot coordination [18],
and unmanned aerial vehicle formation [19].

It can be concluded from the above analysis that current theoretical work mainly concentrates on
distributed control methods to achieve the network synchronization under some network topology
constraint condition. The ultimate goal is to form a stable synchronized motion among the multiple
agents within the network employing distributed and networked control algorithms. However, in most
industry processes, multiple LSRMs composing a multi-agent network are not only required for motion
synchronization but also to track some specific desired trajectory [20]. In practice, directly controlling
every agent in a multi-agent network with a number of agents might be impossible or unnecessary.
Therefore, pinning control is regarded as a desirable method [21]. Accordingly, the multi-agent network
formed by the pinning control is defined as the leader-following network [2]. In a leader-following
network, a reference can be accessed directly by minority agents named as leaders only, and then
the rest of the agents named as followers are steered to implement the synchronized motion to the
common reference by the effect of the distributed control. Wang et al. [22] elaborately reviewed
advances in pinning control approaches, including the feasibility, stability and effectiveness of pinning
control and pinning-based consensus and flocking control of mobile multi-agent networked systems.
One of the challenges with a leader-following network is that the reference possesses different dynamic
characteristics from all agents. Cao et al. [23] proposed a distributed consensus tracking algorithm for
second-order dynamics guarantees global exponential tracking without acceleration measurements,
and the dynamic reference was modeled as the virtual leader with time-varying velocity. Especially, in
industrial processes, for implementing much of repetitive work, some periodic motion modes such as
sinusoid always were as the desired motion. Wang et al. [24] proposed an internal model controller
compensating the reference dynamics for output synchronization of more general heterogeneous
multi-agents systems. Wieland et al. [25] proved that an internal model principle is necessary and
sufficient for exponential synchronizability of the group to some common, non-trivial output trajectory,
bounded by a polynomial function in time, and also note that the internal model components may
give rise to the instability of the multi-agent network under the influence of parametric uncertainties.
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In this paper, the mathematical model of each LSRM is derived by the online system identification,
which is essentially modeled as a general second-order linear system. Second, inspired by coupled
harmonic oscillators [26,27], a distributed control is designed to track a sinusoidal reference with zero
phase-difference among each LSRM and the reference as virtual node, so as to improve the tracking
performance of the LSRMs network. Last, simulation and experimental verification is provided to
prove the effectiveness of the network controller design scheme.

The main contributions of this paper are threefold. First, for the convenience of the coordinated
motion control, the reference signal is modeled as a virtual LSRM node that has the same dynamic
characteristics as three motor nodes based on the proposed distributed tracking control strategy.
Second, three motor nodes and the virtual node can be realized by the synchronization control by
adopting the coupled harmonic oscillators method, so as to achieve for tracking the sinusoidal reference
signal with zero phase-difference. Finally, the distributed tracking control performance for the LSRMs
network is investigated by a simulation and experimental platform testing.

2. Model and Preliminaries

2.1. Mathematical Preliminaries

Notations: Let Rn and Rn×m indicate the n-dimensional Euclidean space and the set of n×m real
matrices, respectively. IN represents an N-dimension unit matrix. The Kronecker product of matrices
A ∈ Rn×m and B ∈ Rp×q satisfies the following properties as:

(A⊗ B)(C⊗ D) = AC⊗ BD, (1)

(A⊗ B)T = AT ⊗ BT ,

k(A⊗ B) = (kA)⊗ B = A⊗ (kB),

A⊗ (B1 + B2) = A⊗ B1 + A⊗ B2.

The interaction topology of the coordinated network building LSRMs network system is
represented using a directed graph G = (V , E), as shown in Figure 1, which is characterized by
an edge-linked node set V . It denotes N local closed-loop LSRM systems termed as LSRM node
Li, i = 1, . . . , N, formed by each LSRM and its local controller individually. An edge set E ∈ V × V
represents M communication linkages among all LSRM nodes, where an edge exists from LSRM
node Lj to Li if (j, i) ∈ E . If a set composed of LSRM nodes Lj satisfies (j, i) ∈ E , it is named as the
neighbor set Ni associated with the LSRM node Li. A directed graph contains a directed spanning
tree if there exists a node called root such that there is one or more than one directed path from
this node to every other node, such as L1 in Figure 1. A path from v1 to vk in G is formed by the
E subset {(vi, vi + 1)|i = 1, . . . , k − 1)}. A,L denote its adjacency matrix and Laplacian matrix of
G, respectively.

L1

��~~
L2 // L3

Figure 1. Topology of coodinated network.
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2.2. Model of Linear Switched Reluctance Machine Node

Any of the N three-phase LSRMs (indexed as i-th, i = 1, . . . , N) can be described in the voltage
equation as [4]:

uk,i = Rk,iik,i +
dλk,i

dt
, k = a, b, c, (2)

where uk,i, Rk,i and ik,i are terminal voltage, coil resistance and current, respectively. λk,i represents
the flux-linkage of the k-th winding. Each LSRM can also be depicted as the second-order dynamics
as follows:

mi
d2xi
dt2 + Bi

dxi
dt

+ f li = fi, (3)

where xi, Bi, mi, fi and f li represent position, friction coefficient, mass, total and load force of the
i-th LSRM, respectively. The second-order system as Equation (3) can be further represented in the
discrete-time form as [5]:

A(z−1)xi = B(z−1) fi + ei, (4)

where A(z−1) and B(z−1) are polynomials to be determined, z is the discrete-time operator, and ei
denotes stochastic disturbances of the i-th LSRM.The polynomials A(z−1) and B(z−1) corresponding
to the typical discrete-time form are depicted as:{

A(z−1) = 1 + a1z−1 + a2z−2,
B(z−1) = b0 + b1z−1.

(5)

The purpose of online system identification is to correctly estimate a1, a2, b0 and b1 that contain
all dynamic information of each LSRM. For the n-th estimation, Equation (4) can also be considered as
a typical least square form as follows:

xi(k) = ϕT(k− 1)θ + ei(k), (6)

where xi(k) is the i-th LSRM state including the position and velocity at time step k, and:
θ =

[
a1 a2 b0 b1

]T ,

ϕ(k− 1) =
[
− xi(k− 1) · · · − xi(k− n) fi(k) · · · fi(k− n)

]T ,
(7)

where θ is the vector to be estimated, and φ is the matrix that include the input and output information
of x and f . The parameters θ, φ described in Equation (7) can be estimated by the recursive least square
method as [29]: 

θ̂(k) = θ̂(k− 1) + R(k)ei(k),
R(k) = P(k− 1)ϕ(k− 1)

[
ρ + ϕT(k)P(k− 1)ϕ(k)

]−1,
P(k) = ρ−1[I − K(k)ϕT(k)

]
P(k− 1),

(8)

where P is the covariance matrix and R is the gain, K and I are, respectively, the gain matrix and an
identity matrix with compatible dimensions, and θ̂ represents the estimated value of θ through the
identification process. ρ is the forgetting factor that reflects the relationship between the converging
rate and tracking ability and it falls into 0 and 1. For the LSRM, ρ is chosen as 0.98 for moderate
converging ripples and a fast identification speed. For initial values, P(0) can be chosen as η · I4 with η

as a constant value of 50. Stochastic errors ei can be represented as:

ei(k) = xi(k)− ϕT(k)θ̂(k− 1). (9)



Energies 2017, 10, 949 5 of 15

If the relative error from the present to the last step is comparatively a small positive value ζ,
it can be regarded that the present estimated value is correct. Then, the termination criterion can be
represented as: ∣∣∣∣∣ θ̂(k + 1)− θ̂(k)

θ̂(k)

∣∣∣∣∣ < ζ. (10)

Any local LSRM control system is defined as an LSRM node in the LSRMs network. The control
block diagram for any LSRM node can be depicted as shown in Figure 2. The LSRM node Li receives
both the position feedback information from its linear encoder and the node Lj, and only the leader
node (i.e., the node located at the root of a certain spanning tree in a coordinated network topology)
accesses the external reference information, i.e., the input signal of the LSRMs network from outside.
Each LSRM node is composed of a local position controller, the multiphase excitation scheme with
look-up table linearization, current controllers and an LSRM, and the control scheme conforms to
the typical dual-loop architecture [28]. For the LSRM node Li, position error is decided from the
difference between reference (the leader only) and actual position ρi of the i-th LSRM, along with the
position information ρj from the LSRM node Lj. The position controller then calculates the control
input, and the multi-phase excitation with the look-up table linearizion scheme determines the current
command for the k-th phase of the i-th LSRM, according to the current position of the i-th LSRM.
Then, the current controller outputs the actual current to the k-th winding.

i

j

Figure 2. Control block diagram for the linear switched reluctance machine (LSRM) node.

Rearranging Equation (3) in the state-space form, we have:[
ρ̇i
ρ̈i

]
=

[
0 1
0 − Bi

mi

] [
ρi
ρ̇i

]
+

[
0
1

mi

]
ui, (11)

where ui = fi − f li is the control input of the i-th LSRM.

3. Synchronization Tracking Control Design

Since each LSRM is a mechatronic device fulfilling double-acting periodic line motion,
some sinusoidal signals or its combinatorial patterns are often applied as the predefined trajectory
planning some desired reciprocating motion for the LSRMs network. For this purpose, inspired by
coupled harmonic oscillators synchronization proposed in [26,27], the distributed control law can be
formulated as:

ui = −αρi + Bi ρ̇i − ∑
j∈Ni

Kd,i
[
ρ̇i(t)− ρ̇j(t)

]
, (12)

where α is a parameter associated with the angular frequency ω of the reference sinusoidal signal.
Substituting Equation (12) into Equation (11) , the LSRM node Li can be depicted as:[

ρ̇i
ρ̈i

]
=

{[
0 1
0 − Bi

mi

]
+

[
0 0
− α

mi

Bi
mi

]}[
ρi
ρ̇i

]
− ∑

j∈Ni

[
0

Kd,i
mi

] [
ρ̇i(t)− ρ̇j(t)

]
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=

[
0 1
− α

mi
0

] [
ρi
ρ̇i

]
− ∑

j∈Ni

[
0

Kd,i
mi

] [
ρ̇i(t)− ρ̇j(t)

]
. (13)

Let ω2 = α
mi

, kb =
Kd,i
mi

, ρ = [ρ1, . . . , ρN ]
T , the model of LSRMs network can be derived as:[

ρ̇

ρ̈

]
=

[
0N IN

−ω2 · IN −kb · L(G)

]
︸ ︷︷ ︸

S

[
ρ

ρ̇

]
. (14)

According to Equation (14), the LSRMs network can be reformulated as:

˙̃X = S X̃, (15)

where X̃ =
[
ρT , ρ̇T]T .

To prove the LSRMs network, Equation (15) has the ability to track a sinusoidal reference signal
r = M sin (ωt + θ) without phase disparity, and the following lemma is provided.

Lemma 1. Let Ψl,i, Ψr,i be the left and right eigenvectors of Laplacian matrix L associated to the i-th eigenvalue
ψi, i = 1, . . . , N, respectively. The eigenvalues of S in Equation (15) can thus be represented as:

λi± =
kbψi ±

√
k2

bψ2
i − 4ω2

2
,

and its left and right eigenvectors can be denoted as the following:

Λl,i± = [ΨT
l,i, λi±ΨT

l,i]
T , Λr,i± = [ΨT

r,i,−
λi±
ω2 ΨT

r,i]
T .

Proof of Lemma 1. We divide Λl,i±, Λr,i± in two parts, denoted as Λl,i± = [ΛT
l,u, ΛT

l,d]
T and

Λr,i± = [ΛT
r,u, ΛT

r,d]
T , respectively. For convenience, we omit the subscript index i or i±. For Λl,i±,

we have: [
ΛT

l,u ΛT
l,d

]
S = λ

[
ΛT

l,u ΛT
l,d

]
. (16)

Similarly, for Λr,i±, we have:

S
[

Λr,u

Λr,d

]
= λ

[
Λr,u

Λr,d

]
. (17)

From Equation (14), Equation (16) can be derived as:

ΛT
l,d = − λ

ω2 ·Λ
T
l,u, (18a)

ΛT
l,u − kbΛT

l,d · L = λ ·ΛT
l,d. (18b)

Likewise, we can obtain the equation as:

Λr,d = λ ·Λr,u, (19a)

−ω2 ·Λr,u − kb · LΛr,d = λ ·Λr,d. (19b)
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Substituting Equation (18a) into Equation (18b), we obtain:

ΛT
l,u +

kb
ω2 λ ·ΛT

l,u · L = − λ2

ω2 ·Λ
T
l,u (20)

−ΛT
l,u · L =

λ2 + ω2

kbλ
ΛT

l,u.

In addition, substituting Equation (19a) into Equation (19b), we have:

−ω2 ·Λr,u − kbλ · L ·Λr,u = λ2 ·Λr,u, (21a)

−L ·Λr,u =
λ2 + ω2

kbλ
·Λr,u. (21b)

According to Equation (21b), we notice ψ = − λ2+ω2

kbλ , Ψl = Λr,u are the eigenvalue and left
eigenvector of Laplacian matrix L, respectively. Therefore, we have:

λ2 + kbψλ + ω2 = 0. (22)

Equation (22) can thus be solved as:

λ± =
kbψ±

√
k2

bψ2 − 4ω2

2
. (23)

In addition, from Equations (18a) and (19a), we know Λl± = [ΨT
l ,− λ±

ω2 ΨT
l ], Λr± = [ΨT

r , λ±ΨT
r ]

T .
Lemma 1 is proved.

Theorem 1. If graph G describing the coordinated network includes a directed spanning tree, and the root
node can access to the reference position as sinusoidal signal r = sin (ωt + θ) such as shown in Figure 3a,
the LSRMs network in Equation (15) can track asymptotically the reference with zero phase-difference.

r // L1

��~~
L2 // L3

(a)

Lr // L1

��~~
L2 // L3

(b)

Figure 3. LSRMs network with the virtual LSRM modeling reference. (a) with reference; and (b) with
virtual node.

Proof of Theorem 1. According to [29], for a directed graph G with a spanning tree in the network
topology, its Laplacian matrix −L(G) has the left eigenvector Ψl,1 = pN and the right eigenvector
Ψr,1 = 1N . They correspond to a simple zero eigenvalue ψ1 = 0 of L, and all rest of eigenvalues
ψi, i = 2, . . . , N satisfy Re(ψi) < 0, where Re(·) is the real part of a complex number. Furthermore,
pN satisfies:

pN ≥ 0, (24)

pT
N1N = 1.

According to Lemma 1, the first two eigenvalues of S in Equation (15) are λ1± = ±ω,  is the
imaginary unit. Accordingly, the left eigenvector and right eigenvector are Λl,1± = [pT

N ,±ωpT
N ]

T ,
Λr,1± = [1T

N ,± 1
ω 1T

N ]
T , respectively. We have:

S = PMP , (25)
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where

P =
[

Λl,1±, . . . , Λl,N±
]
,P−1 =

[
Λr,1±, . . . , Λr,N±

]T
,M =

 ω 0 01×(2N−2)
0 −ω 01×(2N−2)

0(2N−2)×1 0(2N−2)×1 J(λk)

 .

Here, J(λk) is the Jordan block matrix associated to k = 2±, . . . , N±.
Since eS t = PeMtP−1, limt→∞ J(λk) = 0(2N−2)×(2N−2), it follows that:

lim
t→∞

eS t =[ΛT
l,1+, ΛT

l,1−]e
M1±t[ΛT

r,1+, ΛT
r,1−] (26)

=
1
2

eωt

[
1N

ω · 1N

] [
pN

1
ω pN

]T

+
1
2

e−ωt

[
1N

−ω · 1N

] [
pN
−1
ω pN

]T

=
[cos(ωt) +  sin(ωt)]

2

[
1N

ω · 1N

] [
pN

1
ω pN

]T

+
[cos (−ωt) +  sin (−ωt)]

2

[
1N

−ω · 1N

] [
pN
−1
ω pN

]T

=

[ cos (ωt)+ sin (ωt)
2

cos (ωt)+ sin (ωt)
2ω

ω[cos (ωt)+ sin (ωt)]
2

cos (ωt)+ sin (ωt)
2

]
⊗ 1NpT

N

+

[ cos (ωt)− sin (ωt)
2

− cos (ωt)+ sin (ωt)
2ω

ω[− cos (ωt)+ sin (ωt)]
2

cos (ωt)− sin (ωt)
2

]
⊗ 1NpT

N

=

[
cos (ωt) 1

ω sin(ωt)
−ω sin (ωt) cos (ωt)

]
⊗ 1NpT

N ,

where M1± =

[
ω 0
0 −ω

]
is a block matrix of M associated to λ1± = ±ω and the simple zero

eigenvalue of −L.
Let X̃ =

[
ρT , ρ̇T]T , the solution of LSRMs network in Equation (14) can be obtained as:

X̃(t) = eS tX̃(0). (27)

Moreover, according to Equation (26) :

lim
t→∞

X̃(t) = lim
t→∞

eS t · X̃(0) (28)

=

{[
cos (ωt) 1

ω sin(ωt)
−ω sin (ωt) cos (ωt)

]
⊗ 1NpT

N

}
X̃(0)

=

{[
cos (ωt) 1

ω sin(ωt)
−ω sin (ωt) cos (ωt)

]
⊗ 1N

}
·
[
12 ⊗ pT

N

]
X̃(0)

According to Equation (24), it can be seen that pN can be set as [1, 0T
N−1]

T in Equation (28).
Therefore, Equation (28) is derived as:

lim
t→∞

X̃(t) =

{[
cos (ωt) 1

ω sin(ωt)
−ω sin (ωt) cos (ωt)

]
⊗ 1N

}
x1(0), (29)
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where x1(0) is the initial value of the LSRM node L1 as the root of a directed spanning tree in the
coordinated network topology G, as shown in Figure 1. In addition, the states of LSRM nodes
Li, i = 2, . . . , N converge to the steady state as: ρi(t) = cos (ωt)ρ1(0) + 1

ω sin (ωt)ρ̇1(0),

ρ̇i(t) = −ω sin (ωt)ρ1(0) + cos (ωt)ρ̇1(0).
(30)

Obviously, the steady state values are determined by the initial values [ρ1(0), ρ̇1(0)] of root node
L1. Therefore, the states of other N − 1 LSRM nodes Li, i = 2, . . . , N converge to the state of root
without phase disparity. The fact verifies, under the effect of the coordinated control Equation (12),
that the states of LSRMs network can track the state of root node L1 represented as: ρ1(t) = cos (ωt)ρ1(0) + 1

ω sin (ωt)ρ̇1(0),

ρ̇1(t) = −ω sin (ωt)ρ1(0) + cos (ωt)ρ̇1(0).
(31)

Letting sin θ = ρ1(0), cos θ = 1
ω ρ̇1(0), Equation (31) is rewritten as: ρ1(t) = sin (ωt + θ),

ρ̇1(t) = ω cos (ωt + θ).
(32)

Accordingly, if the reference sinusoidal position signal r = sin (ωt + θ) in Figure 3a and its
derivative is regarded as the state [ρr, ρ̇r]T of a virtual root node Lr, as shown in Figure 3b, the sinusoidal
reference signal can be tracked asymptotically by the LSRMs network Equation (15) in a coupled
harmonic oscillators synchronization manner . Theorem 2 is proved.

Remark 1. By selecting appropriate initial values of virtual root node Lr, the LSRMs network Equation (15)
can converge to the specified sinusoidal reference, which has phase θ = arcsin(ρr(0)) and angular frequency
ω = ρ̇r(0)

cos θ .

4. Illustrative Examples

Example 1. The sinusoidal reference r is modeled as a virtual LSRM node Lr, and its initial phase and amplitude
are π

2 , 30 mm, respectively. In addition, the angular frequency of Lr is set as 2π to investigate the system control
feature tracking a higher frequency sine signal.

Each LSRM can be characterized by the second-order dynamics Equation (11). According to the
method proposed in [8], system matrices Ai and Bi (i = 1, 2, 3) can be obtained by the online least
squares identification [4] with a sampling time of T = 0.001 s, and they can be derived as:

Ai =

[
0 1
0 0.3333

]
, Bi =

[
0

0.6667

]
.

The initial positions of three LSRM nodes are set as ρ1(0) = 0, ρ2(0) = 0, ρ3(0) = −12, respectively,
and all velocities of three LSRM nodes are 0. The control gain kb is set as 0.25 empirically (according to
some parameter tuning experience). The topology of the LSRMs network is depicted as Figure 3.

The results of the state and position error responses are depicted in Figure 4a,b, respectively.
Figure 4a illustrates that the LSRMs network Equation (14) tracks the reference r = sin(2πt + π

2 ) in a
zero phase-difference and asymptotic manner by applying the proposed control law Equation (12).
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The position errors among all nodes including {Lr, L1, L2, L3} are illustrated in Figure 4b. The disparity
of position errors are eliminated for all LSRM nodes after about 0.9 s.
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Figure 4. (a) Position and velocity response and (b) relative position error response.

Example 2. To further verify the effectiveness of the proposed control strategy, a comparative study with
Example 1 is addressed. We locate the initial positions of three LSRM nodes at ρ1(0) = 0, ρ2(0) = 0, ρ3(0) = 12,
respectively, and three LSRM nodes start work from static state. We set the reference r initial phase as π

2 , and the
angular frequency are selected as π

4 to test the track feature to a lower frequency sine wave. The other systems
parameters, such as the control gain, etc., are given the identical values as in Example 1.
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Figure 5. (a) Position and velocity response and (b) relative position error response.

The simulation results are shown in Figure 5a,b, respectively. The control performance from
the proposed control method shows that a slower dynamic response can be achieved with a lower
frequency sinusoidal reference, and compared to Example 1 for the same system without considering
uncertain parameters and external disturbances. The results also demonstrate that the LSRMs network
has successfully achieved the stable state without phase-difference after 10s. Therefore, the proposed
tracking control scheme has certain superior stability.
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Remark 2. From two example comparative results, it is noted that the response effectiveness of Example 2 is
counterintuitive, since the state consensus process of Example 2 takes a longer time rather than Example 1, as
expected. The main cause is that the angular frequency of the reference sinusoidal signal strongly affects the
response rate of each LSRM node through Equation (12).

5. System Construction and Experimental Results

5.1. System Construction

The experimental platform on the LSRMs network is exhibited in Figure 6. The platform applies
an RT-LAB (OP5600) real-time digital simulator (Opal-RT Technologies, Montreal, Quebec, Canada)
as the distributed controllers on each LSRM node, and builds a virtual LSRM node Lr modeling
the specific sinusoidal reference r. The position state of each LSRM node is measured and collected
by a linear magnetic encoder and inspected by the host PC which is the management terminal
remotely. The sampling frequency of the position control loop is 1 kHz. The current drivers of each
LSRM node are connected to RT-LAB through the analog-to-digital converters. The current control
is realized by three commercial amplifiers that are capable of inner current regulation based on the
proportional-integral-differential algorithm with a switching frequency of 20 kHz. The sampling
frequency of the position control loop is 1 kHz. The proposed distributed tracking control algorithm
Equation (12) can be programmed under the MATLAB/Simulinkr (R2015a, MathWorks, Natick,
Massachusetts, USA) environment, and the developed algorithm can be downloaded to the digital
signal processor of RT-LAB. All control parameters can be modified online. The real time state
response waveforms of all LSRM nodes of the LSRMs network are monitored and recorded by the
host PC.

3

21

4

5

6

7

8

Figure 6. Experimental platform of LSRMs network. (1) LSRM 1; (2) LSRM 2; (3) LSRM 3; (4) linear
encoder; (5) RT-LAB; (6) current amplifier; (7) power supply; and (8) connection interface to RT-LAB.

The control objects of three LSRM nodes are three identical LSRMs that conform to the 6/4
switched reluctance machine structure. A double-sided machine arrangement guarantees a more stable
and reliable output performance and the asymmetry of the stators ensures a higher force-to-volume
ratio. The major machine specifications of the LSRM are demonstrated in Table 1 [28]. LSRM parameters
can be obtained as a1 = 0.3, a2 = 0.315, b0 = 0.026, b1 = 0.014, and through the online recursive least
square parameter identification scheme.
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Table 1. Main specifications of linear switched reluctance machine (LSRM).

Quantity Value

Mass of moving platform 3.8 kg
Mass of stator 5.0 kg
Pole pitch 12 mm
Pole width 6 mm
Air gap length 0.3 mm
Phase resistance 2 ohm
Number of turns 200
Stack length 50 mm
Rated power 250 W
Voltage 50 v
Encoder resolution 1 µm

5.2. Experimental Results

In order to validate the proposed control scheme based on coupled harmonic oscillators,
the experiment of the tracking control is implemented for the LSRMs network based on the designed
controller. Moreover, to compare with two aforementioned simulation examples, the system scenario
and its parameters, including initial states of the reference and LSRM nodes and its controller gain,
are given the same values as in Examples 1 and 2.

The tracking response waveforms for the three LSRMs node are shown in Figures 7 and 8.
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Figure 7. Position and velocity of reference and three LSRMs corresponding with Example 1.

Figure 7a illustrates that the tracking control of three LSRM nodes takes the zero phase-difference
effect at about the time of 0.4 s. From Figure 7b, the relative position errors among three LSRMs and
the reference fall into 1.2 mm in stable state after the transient time of 0.4 s.

Figure 8a illustrates the dynamic position response waveforms under tracking control of three
LSRM nodes. It is clear that the zero phase-difference effect is taken at about the time of 11 s. From the
dynamic error response profiles as Figure 8b, it is clear that the maximum error values fall into 0.5 mm
at the steady state. Figure 8c is the steady-state position response profiles under the distributed PD
control strategy [8]. It can be seen that the phase errors of the LSRMs network under the distributed
PD control is greater than the phase-difference response from the proposed control strategy.

According to the tracking profiles of the three LSRMs in Figures 7 and 8, the LSRMs network is
all capable of following the position reference signal in zero phase-difference manner. However, the
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control performance from the three LSRMs is in disagreement and fluctuating slightly, especially in
the steady state. This is mainly due to the imperfect manufacture and assembly of three LSRMs,
which results in the asymmetric control performance from the positive and negative transitions.
However, from Figures 4, 5, 7 and 8, it can be seen that the tracking control effect displays high
similarity to the aforementioned numerical simulative examples. It can be concluded that the proposed
control method is effective.
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Figure 8. Position and velocity of reference and three LSRMs corresponding with Example 2.

6. Conclusions

A distributed control strategy of the LSRMs network is proposed for tracking a sinusoidal
reference in a zero phase-difference manner. The dynamics of the LSRM nodes are modeled as general
second-order linear systems by online system identification. Subsequently, inspired by the coupled
harmonic oscillators synchronization, a distributed control is presented to track a sinusoidal reference
without the phase-difference among each LSRM and the reference. Simulation and experimental results
verify that the proposed control improves the synchronization and tracking accuracy performance of
the LSRMs network through eliminating the phase-difference among LSRM nodes and virtual node
modeling the sinusoidal reference. To further improve the tracking precision, it is suggested that the
advanced internal model compensation schemes are introduced into the feedback control design of the
LSRMs network. For the tracking control of some general periodical reference signals, the combined
frequency domain analysis is also recommended for better control schemes. Furthermore, future
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work will also focus on the methods to annihilate load influence on the entire systems, including load
influence on different topologies, dynamic load influence, etc.
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