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Abstract: The hygrothermal analysis of roofs is relevant due to the large areas exposed to a wide
range of weather conditions, these directly affecting the energy performance and thermal comfort of
buildings. However, after a long life service, the solar absorptivity coatings of roofs can be altered by
mould accumulation. Based on two well established mathematical models, one that adopts driving
potentials to calculate temperature, moist air pressure and water vapor pressure gradients, and
the other to estimate the mould growth risk on surfaces, this research introduces an approach to
predict mould growth considering a reduced computational effort and simulation time. By adopting
multiple MISO (Multiple-Input, Single-Output) Nonlinear AutoRegressive with eXogenous inputs
(NARX) models, a machine learning technique known as Least Squares Support Vector Machines
(LS-SVM), a maximum margin model based on structural risk minimization, was used to predict
vapor flux, sensible heat flux, latent heat flux, and mould growth risk on roof surfaces. The proposed
model was validated in terms of the Multiple Correlation Coefficient (R2), Mean Square Error (MSE)
and Mean Absolute Error (MAE) performance indices considering as input the weather file from
Curitiba city—Brazil, showing consistent precision when compared to the results of a validated
numerical model.

Keywords: support vector machines; machine learning; system identification; concrete tiles;
hygrothermal performance; mould growth

1. Introduction

Most recent studies in building physics focus on energy savings and/or thermal comfort. Taking
into account that a considerable amount of energy attributed to buildings is used to provide thermal
comfort, and that in modern societies people spend over 90% of their time indoors [1], buildings
became responsible for a considerable amount of energy demand worldwide [2,3]. In Brazil, residential
and commercial buildings are responsible for almost 45% of the country’s energy demand [4], which
progressively motivates energy conservation studies for promoting building energy efficiency.

The design of energy efficient buildings depends on a significant amount of variables, the required
indoor climate conditions, internal gains, the outdoor prevailing climatic conditions, and the
choice of building construction materials and insulation among other variables. Accurate methods
to predict hygrothermal performance of building envelopes became necessary, and software
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capable of performing whole-building energy simulation and analysis became available [5–9].
However, the complexity of considering moisture presence in this type of simulation requires both
time-consuming and complex computational codes [10–13]. However, an alternative way to evaluate
the influences of coupled heat and moisture transfer in building can be performed by adopting
computational intelligence and machine learning techniques [14]. Moreover, this type of technology
can be also used in the analysis of building energy demand and energy savings [15–17].

In warm climates, during clear sky conditions, up to about 1 kW/m2 of solar radiation can be
incident on a roof surface, and between 20% and 95% of this radiation is typically absorbed. The roof
color that is apparent from the reflected visible part of the solar radiation usually gives an indication
of the value of solar absorption [18]. In cases of high radiation incidence, the use of proper insulating
or higher roof solar reflectance can reduce the solar energy absorbed by the roof, providing economy
in the usage of air conditioning in warmer climate countries. Additionally, in cold weather, it can avoid
heat losses, by increasing the energy efficiency of the whole building. Due to these facts, the application
of different types of thermal insulation and special building materials significantly increased in recent
years [19] and became a valuable strategy for making buildings more sustainable [20–22].

In this context, reflective roof or insulation coatings have been utilized for increasing the energy
savings potential of building envelopes, and several studies can be found in the literature, such
as [18,19,23–27]. Nevertheless, due to the low cost, concrete or ceramic tiles are widely used in roofs
in Brazil. Those tiles enable mould or algae to grow and normally no paint layer or impermeable films
(Figure 1a) are provided. In asphalt roofing shingles found widely in European and North American
buildings, this phenomenon is commonly observed (Figure 1b). The mould growth decreases the tile
durability, worsens the aesthetic appearance of buildings and increases the solar absorptivity.
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roof performances, this article presents an approach combining a numerical computational code and 
an artificial intelligence method in order to predict the hygrothermal behavior of building roofs, 
focusing on the evaluation of mould growth risk on these structures. The main idea is to perform a 
nonlinear system identification by using data obtained from the results of the numerical model. In 
this manner, the main objectives are to reduce computational costs and to provide consistent 
approximation when compared to an already validated numerical model.  

SVMs (Support Vector Machines) have already proven to be a promising approach in nonlinear 
identification and modelling. This technique was developed based on statistical learning (details in 
[28]) and was originally created to solve classification problems. SVM refers to a kernel-based 
method, similar to artificial neural network (ANN) models, which constitute an approximate 
implementation of the structural risk minimization principle [29]. Considering structures called 
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Taking into account that the cost of both heating and cooling in buildings is directly affected by
roof performances, this article presents an approach combining a numerical computational code and an
artificial intelligence method in order to predict the hygrothermal behavior of building roofs, focusing
on the evaluation of mould growth risk on these structures. The main idea is to perform a nonlinear
system identification by using data obtained from the results of the numerical model. In this manner,
the main objectives are to reduce computational costs and to provide consistent approximation when
compared to an already validated numerical model.

SVMs (Support Vector Machines) have already proven to be a promising approach in nonlinear
identification and modelling. This technique was developed based on statistical learning (details in [28])
and was originally created to solve classification problems. SVM refers to a kernel-based method,
similar to artificial neural network (ANN) models, which constitute an approximate implementation of
the structural risk minimization principle [29]. Considering structures called nuclei (kernels), SVMs go
beyond the hyperplanes generated initially, been widely applied in classification [30–32] and nonlinear
regression [33–35] areas, mapping the input data in a space with characteristics of high dimensionality.
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A variation of SVMs, known as LS-SVMs (Least Squares Support Vector Machines), adopted
in this work, was proposed, evaluated, and compared to the classical version of SVMs [36,37] for
a regression/identification task. It involves the equality constraints only, where the solution is obtained
by solving a system of linear equations. In the application presented in this work, both sensible
and latent heat flows, vapor flow and mould growth risk on concrete tiles, which are constantly
adopted in Brazilian buildings, were predicted using the LS-SVM approach considering Multiple-Input,
Single-Output (MISO) models. The technique was selected by considering the learning capability of
the SVM, especially related to nonlinearities available in the system caused by moisture presence.

The next section of this article presents the data acquisition procedures, where a validated
mathematical model was adopted to generate data for the system identification procedures. The data
set analysis is presented in Section 3, followed by a detailed description of the LS-SVM technique
in Section 4. Section 5 presents and discusses both training and validation results found by the LS-SVM.
Finally, Section 6 addresses the conclusions and future work of this type of research.

2. Data Acquisition Procedures

This section presents the mathematical model adopted for data acquisition. In order to obtain
a consistent data set, simulation procedures indicated in this section were used for the system
identification procedures presented on Section 4 of the present study.

2.1. Mathematical Model

The model for the porous media domain (Figure 2) has been elaborated considering the differential
governing equations for moisture, air and energy balances [38]. The transient terms of each governing
equation have been written in terms of the driving potentials to take more advantage of the
Multitridiagonal-Matrix Algorithm (MTDMA) solution algorithm [39].
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2.2. Porous Element Domain

The model is based on averages taken over a representative elementary volume (REV).
The moisture transport has been divided into liquid and vapor flows as shown in Equation (1):

j = jl + jv, (1)

where j is the density of moisture flow rate (kg/m2.s), jl, the density of liquid flow rate (kg/m2.s) and,
jv, the density of vapor flow rate (kg/m2.s). The liquid transport calculation is based on the Darcy
equation:

jl = K(∇Psuc − ρlg), (2)

where K is the liquid water permeability (s), Psuc, the suction pressure (Pa), ρl , the liquid water density
(kg/m3) and g the gravity (m/s2).

The capillary suction pressure can be written as a function of temperature and moisture content
in the following form:

∇Psuc =
∂Psuc

∂T
∇T +

∂Psuc

∂Pv
∇Pv. (3)
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Similar to the liquid flow, the vapor flow is calculated from the Fick equation considering effects
of both vapor pressure and air pressure driving potentials:

jv = δv∇Pv − ρv
kkrg

µg
∇Pg, (4)

where δv is the vapor diffusive permeability (s), Pv, the partial vapor pressure (Pa), ρv, the vapor
density (kg/m3), k, the absolute permeability (m2), krg, the gas relative permeability, µg, the dynamic
viscosity (Pa.s) and, Pg, the gas pressure. The first term after the equality represents vapor diffusion,
and the second one vapor advection. The water mass conservation equation can be described as:

∂wm

∂t
∇.j, (5)

where wm is the moisture content (kg/m3).
This moisture content conservation equation—Equation (5)—can be written in terms of the three

driving potentials as:

∂wm

∂φ

∂φ

∂Pv

∂Pv

∂t
+

∂wm

∂φ

∂φ

∂T
∂T
∂t

= ∇.
[
−K

∂Psuc

∂T
∇T −

(
K

∂Psuc

∂Pv
− δv

)
∇Pv + ρv

kkrg

µg
∇Pg + Kρlg

]
. (6)

In the proposal model, the air transport is individually considered through the dry-air mass
balance. In this way, the dry-air conservation equation can be expressed as:

∂ρa

∂t
= ∇.ja, (7)

with the air flow calculated by the following expression:

ja = δv∇Pv − ρa
kkrg

µg
∇Pg, (8)

where ρa is the dry-air density (kg/m3), ja, the dry-air flow rate density (kg/m2.s) and, Pg, the gas
pressure (dry air pressure plus vapor pressure, in Pa). The first term after the equality represents air
diffusion, and the second one air convection. Therefore, the dry air transport can be described as a
function of the partial gas and vapor pressure driving potentials so that the air balance can be written as:

∂ρa

∂Pg

∂Pg

∂t
+

∂ρa

∂Pv

∂Pv

∂t
+

∂ρa

∂T
∂T
∂t

= ∇.
(
−δv∇Pv + ρa

kkrg

µg
∇Pg

)
. (9)

Due to the presence of low temperature gradients, heat transfer has been attributed to both
conductive and convective effects only. The conductive transport is calculated by Fourier’s law:

qcond = −λ∇T, (10)

while the convective transport can be written as:

qconv = jlcplT + jacpaT + jvL + jvcpvT, (11)

where λ is the thermal conductivity (W/(m.K)), cpa, the dry-air specific heat at constant pressure
(J/(kg.K)), cpl , the liquid water specific heat (J/(kg.K)), cpv, the vapor specific heat at constant pressure
(J/(kg.K)) and, L, the vaporization latent heat (J/kg). The terms after the equality represent liquid flow,
dry air flow, phase change, and vapor flow, respectively.
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The energy balance equation based on the first law of thermodynamics can be written in this case as:

cmρ0
∂T
∂t

= −∇.q, (12)

where cm is the specific heat of the structure (J/(kg.K)) and ρ0, the dry-basis material density (kg/m3).
In this way, assuming 0 ◦C as the reference temperature, the energy conservation equation can be
rewritten in terms of the three driving potentials as:

cmρ0
∂T
∂t

= −∇.


[
λ− K ∂Psuc

∂T cplT
]
∇T −

[
K ∂Psuc

∂Pv
cplT +−δv

(
L + cpvT

)]
∇Pv+[

ρa
kkrg
µg

cpaT + ρv
kkrg
µg

(
L + cpvT

)]
∇Pg + KρlcplTg

 (13)

2.3. Mould Growth Model

The mould growth prediction has been verified through the model presented in [40]. The mould
has been measured applying an existing standard index based on the visual appearance of the surface
under study. This model was initially presented in [41] considering the analysis in wood material,
and improved in a project carried out at VTT (Technical Research Center of Finland) and Tampere
University of Technology, where experiments included large sets of steady-state and dynamic laboratory
experiments for typical building materials. This mould index assumes the values presented in Table 1.

Table 1. Mould growth index (M) for experiments and modeling [40]. Reproduced with permission
from FEUP, 2011.

M Description of the Growth Rate

0 No growth
1 Small amounts of mould on surface (microscopic), initial stages of local growth
2 Several local mould growth colonies on surface (microscopic)
3 Visual findings of mould on surface, <10% coverage, or, <50% coverage of mould (microscopic)
4 Visual findings of mould on surface, 10–50% coverage, or, >50% coverage of mould (microscopic)
5 Plenty of growth on surface, >50% coverage (visual)
6 Heavy and tight growth, coverage about 100%

The index M is presumed to increase linearly in time:

dM
dt

=
1

7e(−0.68ln T−13.9lnφ+0.14W−0.33SQ+66.02)
k1k2, (14)

where k1 represents the intensity of growth, k2 is the moderation of the growth intensity when
the mould index (M) level approaches the maximum peak value, W is the timber species (0 = pine
and 1 = spruce) and SQ is the term for surface quality (SQ = 0 for sawn surface, SQ = 1 for kiln dried
quality), T is the temperature (◦C) and φ, the relative humidity (%). The terms k1 and k2 are modified
for other materials than wood and SQ = 0 is used. The idea is to compare the mould growth of other
materials to that of the pine sapwood (original work). More details can be seen in [40,42].

3. Simulation Using the Mathematical Model

This section describes the simulation procedures and the data set obtained and adopted for
the system identification using LS-SVM technique. The next subsection describes the roof composition
and parameters followed by explanations about the data set.

3.1. Simulation Procedures

The roof analyzed is composed of concrete tile (1.5 cm) and two rifters (2.5 cm) as shown in Figure 3.
The hygrothermal properties have been obtained from [43] for concrete and from IEA Annex 14
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Report [44] for timber (rifters). The internal emissivity was considered equal to 0.9 for both concrete
tile and timber roofs, and the solar absorptivity equal to 0.6 has been adopted.

In order to evaluate extremal conditions, where higher incidence of solar radiation is desired,
a flat roof at a horizontal angle has been considered during simulations. In terms of moisture transport,
this inclination also indicates extremal transport level as the flow is in the opposite direction of
the roof normal. Additionally, thermal insulation is not commonly adopted in many regions of Brazil
due to elevated costs. The building roof configuration presented in this work is typically adopted
residential buildings.

A regular 2-D mesh (2.5 mm2) for the discretization using the finite-volume method and a 30 s
constant time step have been applied for all simulations. The computational code was implemented
in C programming language in order to enable dynamic memory allocation, and the sample time for
data generation was set to 6 h. Due to high computational time consumption, the simulation using the
hygrothermal model was performed for almost 1 year and 8 months, when the index M = 3 was reached.

A temperature of 24 ◦C and a relative humidity of 50% (conditioned environment) were considered
for indoor conditions. The outdoor climate conditions were represented by the TRY (Test Reference
Year) weather data for the city of Curitiba—Brazil, which can be found in [45], and are presented
in Figure 3 for the first week of January (summer period), and in Figure 4 for the first week of July
(winter period). Constant convective heat transfer coefficients of 3 and 10 W/(m2.K) have been used at
the internal and external surfaces. The external and internal convective water vapor transfer coefficients
are calculated by Lewis’s relation for each control volume. The other surfaces were considered adiabatic
and impermeable. The sky temperature correlation presented in [46] has been adopted in this work.
Gas (moist air) pressure has been considered constant at all surfaces.
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3.2. Data Analysis

Heat fluxes at the internal roof surfaces are presented in Figure 5a. The mass transport effect
is verified when a roof was simulated without the moisture content and air conservation equations.
As observed in Figure 5, the latent effect was small when compared with the sensible heat flux. This
fact is attributed to the analyzed period (January). This effect is increased in the winter (Figure 5b),
where the sensible heat flux losses dramatically increase its magnitude and the Sun does not dry out
the roof as it does in the summer. However, a difference of 20% in the heat flux is reported for the peak
values when the mass transport is considered.

Energies 2017, 10, 1093 7 of 16 

 

3.2. Data Analysis 

Heat fluxes at the internal roof surfaces are presented in Figure 5a. The mass transport effect is 
verified when a roof was simulated without the moisture content and air conservation equations. As 
observed in Figure 5, the latent effect was small when compared with the sensible heat flux. This fact 
is attributed to the analyzed period (January). This effect is increased in the winter (Figure 5b), where 
the sensible heat flux losses dramatically increase its magnitude and the Sun does not dry out the 
roof as it does in the summer. However, a difference of 20% in the heat flux is reported for the peak 
values when the mass transport is considered. 

(a) (b) 

Figure 5. Heat fluxes at the internal roof surface: (a) on 7 January (summer period); (b) on 7 July 
(winter period). 

Figure 6 presents the temperature and relative humidity profiles within the roof at midnight on 
7 January (Figure 6a) and 7 July (Figure 6b). In Figure 6a the low temperature at the external surface 
increases the relative humidity and, consequently, the mould index in this period, as described by 
Equation (14). Although the indoor latent heat flux is small when compared to the sensible flux, the 
mass transport can play an important role in the heat exchanged at the external surface, mainly, in 
the daytime, when the adsorbed moisture at nighttime is released, decreasing the concrete tile 
temperature due to the outward evaporation. 

(a) (b) 

Figure 6. Temperature and relative humidity profiles in the roof at midnight: (a) on 7 January; (b) on 
7 July. 

In order to confirm the possibility of mould growth on concrete tile, the mould index evolution 
is reported in Figure 7 as the results of the simulation using the numerical model presented in Section 
3. Some mould growth can be detected visually after 76 weeks (Curitiba climate). A small decrease 
in the mould index is observed after the winter period. This work has been limited to 85 weeks due 

Figure 5. Heat fluxes at the internal roof surface: (a) on 7 January (summer period); (b) on 7 July
(winter period).

Figure 6 presents the temperature and relative humidity profiles within the roof at midnight
on 7 January (Figure 6a) and 7 July (Figure 6b). In Figure 6a the low temperature at the external
surface increases the relative humidity and, consequently, the mould index in this period, as described
by Equation (14). Although the indoor latent heat flux is small when compared to the sensible flux,
the mass transport can play an important role in the heat exchanged at the external surface, mainly,
in the daytime, when the adsorbed moisture at nighttime is released, decreasing the concrete tile
temperature due to the outward evaporation.
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In order to confirm the possibility of mould growth on concrete tile, the mould index evolution
is reported in Figure 7 as the results of the simulation using the numerical model presented in Section 3.
Some mould growth can be detected visually after 76 weeks (Curitiba climate). A small decrease
in the mould index is observed after the winter period. This work has been limited to 85 weeks due to
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the high computational time required and to the fact that according to the mould growth risk model
(Section 2.3), mould would visually appear in less than 85 weeks.

Beyond damage and the roof appearance, the mould growth can change the solar absorption of
the external roof surface, causing a high building thermal load. The results indicate that a cleaning
preventive maintenance is suggested every two years. This problem can be mitigated by using
impermeable coating on the tiles.

To conclude this section, it is important to emphasize both the complexity and time consumption
of the previously mentioned computational code. It took almost one week to conclude the 1 year and
8 month simulation period.
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As it can be seen in Figure 7, it takes almost 78 weeks to reach M = 3 in terms of mould growth,
which means, according to Table 1, that there are visual findings of mould at the roof surface, or 50%
coverage of mould can be found through microscopic analysis. This graphic also provides information
about the mould growth model dynamic, where a time delay of acceptable hygrothermal conditions
for growth is considered. Just after this time delay, mould starts growing in order to overcome M = 1
and M = 3 values.

4. Least Squares Support Vector Machines (LS-SVMs)

This section introduces the machine learning technique adopted to identify the hygrothermal
dynamic of building roofs. Computational intelligence has been widely applied to identify building
thermal dynamics and their subsystems, especially in control applications. The LS-SVM can be
classified within a class of models that are used for pattern recognition, those that use a set or subset
of training data in the prediction stage based on kernels. These methods perform predictions from
combinations of the outputs of functions centered on each of the points available. The functions used
for weighting a given set of training data are called kernels.

At first, SVMs were used to train classifiers based on the concept of structural risk
minimization [47]. Besides, the SVMs were developed using the method known as statistical learning.
Statistical learning theory was developed for solving problems where a small amount of data and little
prior knowledge about the system are available, which differs from the traditional methods.

The SVM technique is designed to adjust the vectors defined for supporting a hyperplane, which
aims to separate the input data. The SVM estimated the relationship between output yi and an input
pattern x by the following equation:

yi = wϕ(x) + b, (15)

where b is a bias term, w is a weighting vector and ϕ is a nonlinear function that maps the input pattern
x into a higher-dimensional feature space. The coefficient vector w and bias term b are unknown and
can be obtained by solving an optimization problem.
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When LS-SVM is applied for system identification tasks, the following optimization problem
linked with the minimization of the risk function J can be defined [29]:

minJ =
1
2
||W||2 + γ

1
2

n

∑
i=1

ε[yi, f (xi)], (16)

subject to

ε[yi, f (xi)] =

{
0, |yi, f (xi)| ≤ ε

|yi, f (xi)| − ε, others.
(17)

where W is the vector of weights, ε is a given real number and γ is a regularization parameter that
provides balance between model complexity and training error.

The first part of the objective function given by Equation (16) is used to regulate the weights and
penalize those with higher values. Due to regularization, weights tend to converge to smaller values.
This is necessary because heavy loads cause excessive variance in the model dynamic, deteriorating
the generalization ability of LS-SVM. The second part of Equation (16) represents the regression error
of the training data. The equality constraint imposed by Equation (17) provides the definition of
the regression error.

In the case of nonlinearly separable patterns, the model needs to add variables to the problem, by
introducing loss variables, ζi and ζ∗i . In this case, it is possible to transform Equation (16) into a primal
objective function given by:

minJ =
1
2
||W||2 + γ

1
2

n

∑
i=1

(ζi + ζ∗i ), (18)

subject to {
yi −Wϕ(xi)− b ≤ ε + ζi
Wϕ(xi) + b− yi ≤ ε + ζ∗i

, where i = 1, . . . , N and ζi, ζ∗i ≥ 0 (19)

By introducing the Lagrange multipliers αi and α∗i (support vectors), the regression function given
by Equation (15) can be written as:

f (x, αi, α∗i ) =
n

∑
i=1

(αi − α∗i )G
(
xi, xj

)
+ b (20)

where G
(

xi, xj
)

is the core function, and vectors αi and α∗i are obtained solving the linear system
of equations, following Karush-Kuhn-Tucker. The vector G

(
xi, xj

)
equals the inner product of two

vectors xi and xj in the space of characteristics, ϕ(xi) and ϕ
(
xj
)
; i.e., G

(
xi, xj

)
= ϕ(xi)

T ϕ
(
xj
)
. The fact

of adopting nucleuses to replace the calculation of ϕ(xi) and ϕ
(
xj
)

is complex and can be done
in a simpler way by means of an approximate function.

These nucleuses generate a mapping between the input space and a high dimensional space, called
the feature space. The SVM hyperplane generated by this space of characteristics, to be mapped back
to input space, becomes a non-linear surface. Finally, the separation hyperplane becomes no longer
a linear function of the input vectors, but a linear function of the space vector of characteristics [39].

In this work, a Radial Basis Function (RBF) kernel was adopted, which is given by:

G
(

xi, xj
)
= exp

(
||xi − xj||2

2σ2

)
(21)

where σ is the spread of Gaussian kernel. In this application, to solve the linear programing training
problem of LS-SVM, the SIMPLEX method was adopted [48].

A Nonlinear AutoRegressive with eXogenous inputs (NARX) model structure was adopted
in this work. Four inputs have been considered in the system identification procedures: external
temperature (in K), external relative humidity (in %), direct solar radiation (W/m2), and diffuse solar



Energies 2017, 10, 1093 10 of 16

radiation (W/m2). Four outputs have been identified in a one-step ahead prediction considering
a Multiple-Input, Single-Output (MISO) structure. The identified outputs are: sensible heat flux
(W/m2), latent heat flux (W/m2), vapor flux (kg/m2.s), and the Mould Growth Risk index.

A NARX model can be defined as a product (Equation (22)) to create a nonlinear form presented
in Equation (23).

ŷ(t) =
[
a1, a2, . . . , ana , b1, b2, . . . , bnb

]
∗

[y(t− 1), y(t− 2), . . . , y(t− na), u(t− nd − 1), u(t− nk − 2), . . . , u(t− nd − nb − 1)]T
(22)

ŷ(t) = f

(
y(t− 1), y(t− 2), . . . , y(t− na), u(t− nd − 1),

u(t− nd − 2), . . . , u(t− nd − nb − 1)

)
(23)

where t represents the current time, and d the delayed sample.
The nonlinear function f can be expressed in terms of the model regressors, and the nonlinear

mapping can be performed using nonlinear estimators. In Equations (21) and (22), y(t) represents
the current output of the model, y(t− d) is a finite number of past outputs, u(t− d) the inputs, e(t)
is a white-noise error that is introduced in the difference equation, and ŷ(t) is the predicted output of
the system. The model structure is entirely defined by three integers, where na represents the number
of poles, (nb − 1) is the number of zeros, and nd is the time delay of the systems.

5. Results

This section was divided into three parts. The first describes the simulation parameters adopted
for the LS-SVM method on the system identification procedure. The second part of this section shows
the analysis performed on the data set in order to define the percentage of data used for both training
and test phases. Finally, Section 5.3 presents the prediction results considering the four MISO models
proposed in this study.

5.1. Simulation Parameters

At the beginning of this analysis, one year and six months of data were collected (2444 samples sets
of inputs and outputs) considering the physical domain and the numerical model presented in Section 2.

The training set was divided into 10 subsets following the l-fold cross validation method [49],
in order to train the classifier 10 times, each time leaving out one of the subsets from training, but
using the omitted subset to compute the classification errors using the Mean Absolute Error (MAE)
presented in Equation (24) as minimization criterion.

MAE =
∑N

k=1|yi(t)− ŷi(t)|
N

(24)

In terms of the model structure, na, and nb were set equal to 2 according to previous analysis of
the number of regressors using the neighborhood component analysis for regression [50]. Additionally,
no time delay was considered between the inputs and the outputs (nk = 0).

5.2. Definition of Training and Test Data Sets

In order to define the percentage of data used for training, an analysis using 10% to 90% of dada
for training was performed. In this case, besides MAE, the Multiple Correlation Coefficient (R2) and
the Mean Square Error (MSE) were also adopted.

R2 = 1− ∑N
t=1(yi(t)− ŷi(t))

2

∑N
k=1(yi(t)− yi)

2 (25)

MSE =
∑N

k=1(yi(t)− ŷi(t))
2

N
(26)
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Figure 8 presents the training percentage related to R2, MAE, and MSE for LS-SVM output
prediction. As it can be verified in Figure 8, the test set was also presented in order to evaluate
the balance between the quantity of data used for both training and validation procedures.Energies 2017, 10, 1093 11 of 16 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8. Analysis of the data percentage used for training: (a) output 1: vapor flux; (b) output 2: 
sensible heat flux; (c) output 3: latent heat flux; (d) output 4: mould growth risk. 

5.3. LS-SVM Prediction 

According to the results presented in the previous subsection, 50% of data were selected for 
training, as they present reasonable approximation for all the outputs for both training and test 
procedures. 

Figures 9 and 10 present the comparison between the LS-SVM model and the numerical method 
in terms of prediction. Figure 9 presents both training and test phases for outputs 1 (vapor flow) and 
2 (sensible heat flow), while Figure 10 shows the results for outputs 3 (latent heat flow) and 4 (mould 
growth risk). The absolute error is also presented in these figures. Additionally, Table 2 reports the 
values of the Multiple Correlation Coefficient for both training and test phases. 

 
(a) 

 
(b) 

Figure 8. Analysis of the data percentage used for training: (a) output 1: vapor flux; (b) output 2:
sensible heat flux; (c) output 3: latent heat flux; (d) output 4: mould growth risk.

5.3. LS-SVM Prediction

According to the results presented in the previous subsection, 50% of data were selected for training,
as they present reasonable approximation for all the outputs for both training and test procedures.

Figures 9 and 10 present the comparison between the LS-SVM model and the numerical method
in terms of prediction. Figure 9 presents both training and test phases for outputs 1 (vapor flow)
and 2 (sensible heat flow), while Figure 10 shows the results for outputs 3 (latent heat flow) and 4
(mould growth risk). The absolute error is also presented in these figures. Additionally, Table 2 reports
the values of the Multiple Correlation Coefficient for both training and test phases.
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Figure 10. Comparison between the numerical and the LS-SVM models (a) output 3: latent heat
flux—training phase; (b) output 3: latent heat flux—test phase; (c) output 4: mould growth
risk—training phase; (d) output 4: mould growth risk—test phase.

As can be observed in Figures 9 and 10, the highest absolute error values can be found in
the mould growth index approximation, which can be justified by the different in the dynamic of
the mould growth model. As the M index provides different growth behavior in distinct stages of
growth, those defined by distinct equations, all these stages should be used in the LS-SVM training
stage. As the LS-SVM training data set presented in this work adopted only the behavior between
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the values of 0 ≤ M < 2 (Figure 9c), the model was still capable of reproducing mould growth with
considerable precision.

Table 2. Multiple Correlation Coefficient evaluations for both training and test phases.

Output # Output Name R2 Training R2 Test

1 Vapor Flux 0.97401 0.97086
2 Sensible Heat Flux 0.98589 0.98376
3 Latent Heat Flux 0.97348 0.97049
4 Mould Growth Risk 1.00000 0.99979

As can be viewed in Table 2, the model presented consistent approximation for all four outputs.
Higher values of R2 for the mould growth risk can be justified by its prior behavior in exceeding
the M = 2 limit, as the multiple correlation index is a cumulative measure.

In terms of computational effort, the whole simulation considering both training and test phases
did not take more than 30 s, while the traditional method took about 120 h.

6. Conclusions and Future Research

This article presented an approach to predict vapor flux, sensible heat flux, latent heat flux and
mould growth risk for concrete tiles based on the external weather conditions, considering as inputs for
four MISO (multiple-input, single-output) models external temperature, relative humidity and direct
and diffuse solar radiation; all inputs were obtained from a Test Reference Year (TRY) weather file.

Roofs are subjected to both thermal and moisture gradients, so that an accurate heat transfer
determination requires a simultaneous calculation of both sensible and latent effects. Therefore,
a mathematical model considering the combined two-dimensional heat, air and moisture transport
through an unsaturated roof was presented, and the effects of moisture adsorption and desorption
on the thermal performance of concrete tiles was shown. However, this type of numerical model
is complex and both hardware and time-consuming when used for long periods of simulations, which
is the case of mould growth evaluation.

Besides its effect on heat transfer, moisture can cause damage to the building structure and can
promote both mould and mildew growth. The mould growth on roof surfaces can increase the solar
absorptivity, decreasing its hygrothermal performance.

By considering the whole-building simulation, a tendency in the building physics area due to
energy policies and the search for thermal comfort in indoor environments, fast and precise techniques,
that could be coupled to building simulation software, are proposed and present consistent results,
as shown in this work.

For future research, the authors intend to include the changes on roof solar absorptivity in
the presented model, so that mould growth and the effects on the hygrothermal performance of
the building can be verified more precisely. Moreover, an additional roof painting layer will be
considered during simulations in order to provide a consistent efficiency analysis in order to reduce
mould growth.
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