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Abstract: Stable and accurate forecasting of icing thickness is of great significance for the
safe operation of the power grid. In order to improve the robustness and accuracy of such
forecasting, this paper proposes an innovative combination forecasting model using a modified
Back Propagation Neural Network-Support Vector Machine-Extreme Learning Machine with Kernel
(BPNN-SVM-KELM) based on the variance-covariance (VC) weight determination method. Firstly,
the initial weights and thresholds of BPNN are optimized by mind evolutionary computation (MEC)
to prevent the BPNN from falling into local optima and speed up its convergence. Secondly, a bat
algorithm (BA) is utilized to optimize the key parameters of SVM. Thirdly, the kernel function is
introduced into an extreme learning machine (ELM) to improve the regression prediction accuracy of
the model. Lastly, after adopting the above three modified models to predict, the variance-covariance
weight determination method is applied to combine the forecasting results. Through performance
verification of the model by real-world examples, the results show that the forecasting accuracy of
the three individual modified models proposed in this paper has been improved, but the stability is
poor, whereas the combination forecasting method proposed in this paper is not only accurate, but
also stable. As a result, it can provide technical reference for the safety management of power grid.

Keywords: icing forecasting; back propagation neural network; mind evolutionary computation; bat
algorithm; support vector machine; extreme learning machine with kernel; variance-covariance

1. Introduction

Transmission line icing has a significant impact on the safe operation of power systems. In severe
cases, it can even cause trips, disconnections, tower collapses, insulator ice flashovers, communication
interruptions and other problems, which bring about great economic losses [1]. For example, a large
cold wave area occurred in southeastern Canada and the northeastern United States in 1998, resulting
in the collapse of more than 1000 power transmission towers, 4.7 million people couldn’t use electricity
properly and the direct economic losses reached $5.4 billion [2]. In 2008, severe line icing accidents
happened in South China, and caused forced-outages of 7541 10 KV lines and the power shortfall
reached 14.82 GW [3]. The construction of a reasonable and scientific transmission line icing prediction
model would be helpful for the power sector to deal with icing accidents in advance so as to effectively
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reduce the potential accident losses. Therefore, the study of icing prediction is of great practical
significance and value.

In recent years, many scholars have been carrying out research on transmission line icing
prediction. Some experts have developed sensor systems for direct measurement of icing
events on transmission lines and they obtained real-time and intuitive icing thickness monitoring
information [4–6]. However, the prediction accuracy of this method is poor, and this method is more
suitable for collection equipment as raw data for it often needs icing model algorithms to predict the
future icing trends. As a result, it is necessary to study model algorithms to predict icing thickness.
Generally, the icing forecasting models can be divided into two categories, which include traditional
models and modern intelligent models. Traditional models are further divided into two methods:
physical models and statistical models. The physical prediction models are based on heat transmission
science and fluid mechanics and other physics theories to analyze the icing thickness, such as Imai
model [7], Goodwin model [8], Lenhard model [9], and hydrodynamic model [10]. However, icing is
caused by many factors with too many uncertainties, which leads to the fact that the final forecasts
provided by physical prediction models cannot live up to expectations. The statistical prediction
models use the notion of mathematical statistics to predict the icing thickness based on icing records
and extreme value theory. They include the time series model [11], extreme value model [12] and so
on. However the application of statistical forecasting models needs to meet a variety of statistical
assumptions, and they cannot consider the factors that influence icing thickness, which greatly limits
the scope of application of the statistical models and improvement of the forecasting accuracy.

Therefore, it is more important to adopt the modern intelligent prediction models to predict
transmission line icing with the development of big data, further research on artificial intelligence and
constantly emerging optimization algorithms. Modern intelligent prediction models can handle
nonlinear and uncertain problems scientifically and efficiently with computer technology and
mathematical tools to improve prediction accuracy and speed. The back propagation neural network
model and the support vector machine model are commonly-used intelligent models in the field of
transmission line icing prediction. Li et al. [13] proposed a model based on BP neural networks for
forecasting the ice thickness and the forecasting results showed that this model had good accuracy
of prediction whether in the same icing process or in a different one. Wang et al. [14] put forward a
prediction model of icing thickness and weight based on a BP neural network. The orthogonal least
squares (OLS) method was used for the number of network hidden layer units and center vector
so that the forecasting error could be controlled in a smaller range. However, the BP algorithm
has a very slow convergence speed and it falls into local minima easily, so some scholars use the
genetic algorithm and the particle swarm optimization to optimize the BP neural network. Zheng
and Liu [15] proposed a forecast model based on genetic algorithm (GA) and BP, and the predication
results proved that the GA-BP model was more effective than BP to forecast transmission line icing.
Wang [16] structured a prediction model which used improved particle swarm optimization algorithm
to optimize a normalized radial basis function (NRBF) neural network, and the training speed of
the network was improved. In addition, some scholars used SVM to avoid the selection of neural
network structure and local optimization problems, [17] and [18] built the icing prediction model
based on a SVM algorithm with better accuracy, but the SVM algorithm is hard to implement for
large-scale training samples, and there are difficulties in solving multiple classification problems,
so some scholars have addressed these defects of SVM using the ant colony (ACO) [19], particle
swarm (PSO) [19], fireworks algorithm (FA) [20] and quantum fireworks algorithm (QFA) [21]. Xu et
al. [19] introduced a weighted support vector machine regression model that was optimized by the
particle swarm and ant colony algorithms, and the proposed method obtained a higher forecasting
accuracy. Ma and Niu [20] combined a weighted least squares support vector machine (W-LSSVM)
with a fireworks algorithm to forecast icing thickness, which improved the prediction accuracy and
robustness. Ma et al. [21] proposed a combination model based on the wavelet support vector machine
(w-SVM) and the quantum fireworks algorithm (QFA) for icing forecasting.
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GA, PSO, ACO and other algorithms are applied to advance the performance of BP neural
networks and SVM, but these algorithms require a large initial population to solve large-scale
optimization problems, and the solving efficiency and the ability to solve local optimization problems
are still relatively general. Both the mind evolutionary computation (MEC) [22] and the bat algorithm
(BA) [23] have high solving efficiency and strong competence in global optimization. Two new
operators are added to MEC on the basis of genetic algorithm: convergence and dissimilation. They are
responsible for local and global optimization, respectively, which greatly enhances the overall search
efficiency and global optimization algorithm ability. The BA algorithm is a meta-heuristic algorithm
proposed by Yang in 2010. Many scholars at home and abroad have studied the proposed algorithm,
indicating that this algorithm takes into account both local and global aspects of solving a problem
compared with other algorithms. In the search process, both of them can be interconverted into each
other so that they can avoid falling into local optimal solutions and achieve better convergence.

As a new feed forward neural network, ELM can overcome the shortcomings of the traditional BP
neural network and SVM. The algorithm not only reduces the risk of falling into a local optimum but
also greatly improves the learning speed and generalization ability of the network. It has been applied
in several prediction fields and obtained relatively accurate prediction results [24–26]. However, its
prediction robustness is relatively poor due to the random initialization of the input weights and hidden
layer bias characteristics, so Huang [27] proposed the kernel extreme learning machine algorithm
(KELM) and thus overcame the weakness of poor stability and improved the algorithm precision.

The different forecasting methods reflect the change tendency of the object and its influencing
factors from different aspects, respectively, and provide different information because of the respective
principles, so any single forecasting method confronts the obstacle that the information is not
comprehensive and the fluctuation of prediction accuracy is larger. Based on this, Bates and
Granger [28] put forward the combination forecasting method for the first time in 1969 and it has
achieved good results in many fields. For example, Liang et al. [29] proposed the optimal combination
forecasting model combined the extreme learning machine and the multiple regression forecasting
model to predict the power demand. The result indicated that this method effectively combined the
advantages of the single forecasting models, thus its global instability was reduced and the prediction
precision was satisfactory. Reference [30] introduced a combination model that included five single
prediction models for probabilistic short-term wind speed forecasting and the proposed combination
model generated a more reliable and accurate forecast. Few scholars have applied combination
prediction methods in the field of the transmission line icing forecasting, so in this paper, we decided
to adopt the combination forecasting method to predict line icing thickness. How to determine the
weighted average coefficients of individual methods is the key problem. Compared to the arithmetic
mean method [31] and induced ordered weighted averaging (IOWA) [32], the biggest advantage of the
variance-covariance combined method [33] is that it can improve the robustness of prediction, which
is more suitable for forecasting icing thickness.

In summary, this paper adopts three models, including the BPNN optimized by the mind
evolutionary algorithm (MEC-BPNN), the SVM optimized by the bat algorithm (BA-SVM) and the
extreme learning machine with kernel based on single-hidden layer feed-forward neural network,
to predict icing thickness using the historical icing thickness data and related meteorological
data. The weighted average coefficients of individual forecasting methods are determined by a
variance-covariance combined method to solve the problem of dynamic weight distribution. Then a
modified BP-SVM-KELM combination forecasting model based on the VC combined method solving
the problem of dynamic weight distribution method is constructed. The reason why we combine
the three modified models is that their individual robustness is still poor, especially the BA-SVM
and KELM. Furthermore, MEC-BPNN and KELM have the defects of underfitting and overfitting,
respectively, and BA-SVM has difficulties dealing with large-scale training samples. Therefore, the
combination model can give full play to the advantages of various prediction models, complement
each other, and offer better robustness, stronger adaptability and higher prediction accuracy.
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The rest of this paper is organized as follows: in Section 2, the MEC-BP, BA-SVM, KELM and VC
combined method are presented in detail. Also, in this section, the integrated prediction framework is
built. In Section 3, several real-world cases are selected to verify the robustness and accuracy of this
model. In Section 4, another case is used to test the prediction performance of the proposed model.
Section 5 concludes this paper.

2. Methodology

2.1. Mind Evolutionary Computation (MEC) to Optimize BPNN

MEC is a new evolutionary algorithm aiming at solving the defects of genetic algorithm and
imitating the evolutionary process of human thinking. It inherits some ideas from the genetic algorithm
and introduces two new operation operators, namely convergence and dissimilation, which are
responsible for local and global optimization. The two operators are independent and coordinated,
so improvement of any one can increase the whole search efficiency of the algorithm. Besides, there is
strong ability of global optimization with a directed learning and memory mechanism. Using MEC to
optimize the initial weights and thresholds of BPNN can make up for the defects that BPNN often
falls into local optima and converges slowly. At present, MEC-BPNN is still rare in the field of the
transmission line icing prediction though it has been widely used in other fields. The steps of using
MEC to optimize the initial weights and thresholds of BPNN for forecasting are as follows:

(1) Select the training set and test set. The training set is not only used for BPNN but also serves for
the initialization of MEC. The test dataset is used for examining the model prediction accuracy. In
order to make MEC-BPNN have good generalization performance, the training samples should
be enough and representative.

(2) MEC initialization. Set the population size of MEC, the number of superior races, the number of
temporary population, the size of the sub-population, the number of iterations and the parameters
of the BPNN interface.

(3) Population generation. The initial population, superior sub-population and temporary sub-
population are generated here serving for the convergent operation and dissimilation operation.

(4) Convergence operation. The process of individuals’ competition for winners within a sub-
population is called convergence. The end of the convergence process is the absence of winners
within the population. That's a process of iteration.

(5) Dissimilation operation. In the course of global competition among the sub-populations, if the
score of a temporary sub-population is higher than that of a mature dominant population, the
latter will be replaced and dissolved, or the former will be eliminated and disbanded. The new
sub-population will be supplied with constant iteration.

(6) Get the best individual. The MEC stops optimizing when the terminate condition of the iteration
is reached. Then the optimal individual is parsed according to the encoding rules so that the
weights and thresholds of the corresponding BPNN are obtained.

(7) BPNN training. Set the initial input layer, hidden layer and output layer neuron number in initial
settings of BPNN, and use the training set samples to train BP neural network with the optimized
initial weights and thresholds.

(8) Simulation prediction. Carry out the transmission lines icing forecasting if the simulation testing
of the training result meets the expected goal, and to analyze the results.

2.2. Bat Algorithm (BA) to Optimize SVM

SVM is a machine learning algorithm based on statistical learning theory that can avoid the lack of
learning ability of BPNN. SVM maps linear non-separable low dimensional space data into a linearly
separable high-dimensional feature space by introducing a nonlinear inner product kernel function
and the classification or regression fitting is carried out in this space. The regression fitting of SVM
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is called support vector regression (SVR). In this paper, ε-SVR is used to study the nonlinear icing
thickness prediction. The nonlinear SVR needs to map the raw data into high-dimensional feature
space by kernel function, and then apply linear regression in high-dimensional feature space. The
specific algorithm flow of ε-SVR refers to the reference [34].

The selections of the penalty parameter c, kernel function parameter g and ε loss function
parameter p are crucial because the prediction performance of SVM is influenced by these key
parameters. Compared with other algorithms, the global optimization ability of BA is stronger,
and it can avoid falling into local optimization. Therefore, this paper adopts BA algorithm to optimize
the three key parameters.

The bat algorithm is a new intelligent optimization algorithm inspired by the echo localization of
micro bats in nature. In nature, most bats use echolocation method to hunt their prey, and they can
emit dozens of sounds at up to 110 dB ultrasonic pulses per second. When the bats come near the prey,
the pulse intensity decreases and frequency increases. Bats usually produce higher frequency sound
waves and wider bands for hunting prey in complex environments. If the bat is simulated as agent
in the search space, the good or bad of the agent’s position is measured by the quality of objective
functions, and the process of bats finding prey is just like the process of searching for the optimal
solution in solution space. Then the behavior of bats using ultrasonic positioning can be described
using the following equations. Suppose the bat population is n, the speed and position of the bat i are
updated according to Equations (2) and (3):

fi = fmin + ( fmax − fmin)α (1)

vt
i = vt−1

i + (lt−1
i − l∗) fi (2)

lt
i = lt−1

i + vt
i (3)

where fi is the frequency of sound waves generated by the i bat; f min and f max are the minimum and
maximum frequency of sound waves respectively; α is a random number within [0, 1]; vt−1

i and vt
i are

the velocity at time t–1 and the time t of the i bat; lt−1
i and lt

i are the position at time t–1 and the time t
of the i bat; l∗ is the position of the bat when the target function is optimal in the current global search.
In the initialization process, each bat should be assigned a random frequency, but the frequency should
be within the set range. In the local search, the position of the bat is updated according to the new
formula if a solution is selected from the optimal set:

lnew = lold + εAt (4)

where ε is a random number within [0, 1]; At is the average loudness of all bats at time t; lold is a
solution that is randomly selected from the set of optimal solutions.

The pulse loudness Ai and frequency Ri emitted by i bat will change continuously. During
searching, for example, Amin = 0 indicates that the bat has discovered the prey at this time and pauses
the ultrasonic wave; Amax = 10 indicates that bats increase the pulse loudness as much as possible
to obtain more information in order to search for prey. Pulse loudness and pulse frequency can be
updated by Equations (5) and (6):

At+1
i = τAt

i (5)

Rt+1
i = R0

i [1− e−γt] (6)

where the value of the pulse loudness increasing coefficient τ and pulse frequency attenuation
coefficient are selected according to the subjects. The range of τ is in [0, 1]; γ > 0. The optimal
solution is similar to the prey of the bat in BA algorithm, and the variation of pulse loudness and
frequency represents, to some extent, the closeness to the optimal solution.

The fitness function used by the BA algorithm is the root-mean-square error (RMSE) under k-fold
cross validation (K-CV). The RMSE can be obtained by Equation (22). K-CV randomly divides the
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training samples into k disjoint subsets, each of which is roughly equal in size. Using k-1 training
subsets, a regression model is established for a given set of parameters, and the RMSE of the remaining
last subset is used to evaluate the performance of the parameters. Repeat the procedure K times, and
each subset has the opportunity to be tested. The accuracy of cross validation is the average value of
the percentage of data correctly predicted for K times. The expected generalization error is estimated
according to the average value of RMSE obtained after the K iteration, and finally a set of optimal
parameters is selected [35].

2.3. Extreme Learning Machine with Kernel (KELM)

ELM was put forward by Huang et al. in 2006. Based on this theory, the basic extreme learning
machines, online sequential extreme learning machines and KELM algorithms have been derived [36].
KELM is a single layer feedforward neural network algorithm. Compared with ELM, its ability to solve
regression prediction is stronger, and compared with BPNN and SVM, its calculation speed is faster
when the prediction accuracy is better or similar, which greatly improve the generalization ability of
network [37]. The KELM algorithm has been proved to have excellent forecasting performance in
many fields.

First, the neural network construction mechanism of the basic ELM algorithm is briefly described,
and its neural network function is shown as follows:

g(x) = hi(x) · βi (7)

where g(x) is the network output value, hi(x) is the output of the i hidden layer neurons which
corresponds to the input x; βi is the connection weights between the i hidden layer neurons and the
output neurons.

ELM’s precision of regression forecasting is guaranteed by minimizing the output error as follows:

lim
L→∞
‖g(x)− gO(x)‖ = lim

L→∞
‖

L

∑
i=1

βihi(x)−gO(x)‖ = 0 (8)

where L is the number of neurons in the hidden layer; gO(x) is the predictive function of the target value.
At the same time, the ELM algorithm guarantees the generalization ability of neural networks

by minimizing the output weight β. The β usually takes its least square solution, and the calculation
method is shown as follows:

β = H+O = HT(HHT)
−1O

= HT( 1
C + HHT)

−1
O

(9)

where H is the hidden layer matrix of neural network; H+ is the generalized inverse matrix of H matrix;
O is predictive target vector. According to ridge regression theory, the results will be more stable and
provide better generalization ability by increasing the normal number 1/C.

The KELM algorithm introduces the kernel function for obtaining better regression prediction
accuracy. The kernel matrix is defined by applying Mercer' s condition as follows:{

ΩELM = HHT

Ωi,j = h(xi) · h(xj) = K(xi, xj)
(10)

The random matrix HHT of ELM is replaced by the kernel matrix Ω, then all the input samples
are mapped from the n-dimensional input space to a high dimensional implicit feature space by kernel
function. The mapping value of the kernel matrix Ω is fixed after setting the nuclear parameter. The
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kernel functions include Radical Basis Function (RBF) kernel functions, linear kernel functions and
polynomial kernel functions. It is usually set as RBF kernel, and the formula is as follows:

K(µ, ν) = exp[−(µ− ν2/σ)] (11)

The parameter 1/C is added to the main diagonal of the unit diagonal HHT so that the eigenvalues
is not 0, and then the weight vector β* is obtained. It makes ELM more stable and has better
generalization. The output weight of the ELM network here is as follows:

β∗ = HT(I/C + HHT)
−1

O (12)

where I is diagonal matrix; C is penalty coefficient for weighing the proportion between structural risk
and empirical risk; HHT is generated by mapping input samples from kernel functions.

From the above formulas, the output of the KELM model is described as follows:

f (x) = h(x)HT(I/C + HHT)
−1O

=

 K(x, x1)
...

K(x, xN)


T

(I/C + ΩELM)−1O
(13)

In the KELM algorithm based on kernel, the specific form of feature mapping function h(x) of
hidden nodes is not given specially, and the output function value can be obtained only by the concrete
form of kernel function. In addition, since the kernel function uses the inner product directly, it is
unnecessary to set the number of hidden layer nodes when solving the output function value, so the
initial weight and bias of hidden layer needn’t be set.

2.4. VC Combined Method Solved the Problem of Dynamic Weight Distribution

The combination forecasting model can integrate the advantages of each single model and improve
the prediction precision. The merit of VC combined method solved the problem of dynamic weight
distribution is that the optimum combination weight coefficient can be found, so the robustness and
accuracy can be improved.

The variance of each prediction model is calculated by the following formula:

δi =
1
n
·
[
(e1 − e)2 + (e2 − e)2 + · · ·+ (en − e)2

]
i = 1, 2, 3 (14)

where n is the number of training samples; e1, e2, . . . , en are the absolute percentage error for each
training sample; e is the average absolute percentage error of the n training sample.

The weights are derived from the variance according to the following formula:

ω1 = 1/[δ1(1/δ1 + 1/δ2 + 1/δ3)] (15)

ω2 = 1/[δ2(1/δ1 + 1/δ2 + 1/δ3)] (16)

ω3 = 1/[δ3(1/δ1 + 1/δ2 + 1/δ3)] (17)

The weights are multiplied by the corresponding prediction results, and the combined prediction
results are shown as follows:

g = ω1g1 + ω2g2 + ω3g3 (18)

where g is the combined forecasting result; g1, g2 and g3 are the individual prediction results of each
model. The result of the combination is that the corresponding weights are adjusted dynamically with
the different training and test results for better adaptability.
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2.5. Combination Forecasting Model

Firstly, the original relevant data is selected and preprocessed, after which the data is divided
into test samples and training samples. Then, three single modified models are utilized to forecast
respectively, including MEC-BP, BA-SVM and KELM. Finally, the forecasting results are combined by
VC combined method solving the problem of dynamic weight distribution. The proposed combination
forecasting model is shown in Figure 1.
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3. Case Study and Results Analysis

3.1. Data Selection

There are many factors affecting the transmission line icing thickness. According to [38], the
temperature, relative air humidity, wind speed and wind direction are the major factors. The
temperature must be less than or equal to 0 ◦C. If the relative air humidity is above 85%, it is easier for
icing to occur on transmission lines. When the icing temperature and vapor conditions are present the
wind plays an important role in the icing of the wires. It can deposit large amounts of supercooled
water droplets continuously onto the lines, and then collide with the wire and gradually increase these
deposits to cause icing phenomens. It is observed that icing first grows on the windward side of the
line, and the wire is twisted due to gravity when the windward side reaches a certain icing thickness,
so a new windward surface appears. In this way, the icing gradually increases by constantly twisting,
and eventually circular or elliptical icing is formed, so the wind speed should exceed 1 m/s in the
process. In addition, the wind direction also affects the lines’ icing. The angle of wind direction is
measured by taking the direction of the wire as the benchmark, i.e., the direction of the wire is set to
be horizontal 0◦. When the wind rotates counterclockwise around the wire, if the angle between the
wind and the wire is in the range of [0◦, 180◦), the closer the angle is to 0◦ or 180◦, the lighter the icing
degree is, and the closer the angle is to 90◦, the more serious the degree of icing is, or the closer the
angle is to 180◦ or 360◦, the lighter the icing degree is, and the closer the angle is to 270◦, the more
serious the degree of icing.
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Affected by the abnormal atmospheric circulation and La Niña weather patterns, cold air entered
Hunan in 11 January 2008 making the area cool rapidly. The strength of the frontal inversion formed by
the confluence of cold and warm air was great. What’s more, the terrain in Hunan is lower in the north
and higher in the south, which made the strength of the frontal inversion greater. The stronger the
strength of the frontal inversion, the stronger the strength of the rain and snow, so a continuous glaze
was formed with the continuous supplement of warm wet air, and Hunan power grid suffered a record
disaster accompanied by a large area of rain and snow, freezing rain incidents and large scale icing of
transmission lines and substations. During the freezing disaster, the number of collapsed transmission
towers reached 2242 and the number of deformed transmission towers reached 692, causing serious
damage to the power grid. Therefore, we selected the “Dong-Chao line” of Hunan, which was the
hardest-hit area during the Chinese icing incident in 2008 as a case study to verify the effectiveness of
the proposed model. The example chooses some data including the transmission lines icing thickness,
regional temperature, relative air humidity, wind speed and wind direction from 0:00 12 January 2008
to 24:00 6 February 2008. Here we take 2 h as the data collection frequency, and each indicator collects
312 sets of data where the first 192 are used as the training samples and the latter 120 are test samples
in Case 1.

The original data is shown in Figure 2. All of the data were provided by Key Laboratory of
Disaster Prevention and Mitigation of Power Transmission and Transformation Equipment (Changsha,
Hunan Province, China), where all the data are collected by professional instruments and can reflect
the state changes during the icing process. As we can see from Figure 2, the temperature and wind
speed data present a cyclical downward trend, while the relative air humidity data present a cyclical
upward trend. In addition, there is no exceptional data or missing data. Hence these data can be used
directly as data sources.Energies 2017, 10, 1196 10 of 21 
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where J is the result value of clustering process for wind direction; θ is the angle between the wind 
and the wire when the wind rotates counterclockwise around the wire, i.e., the direction of the 
transmission line is set to be horizontal 0°; Ceil is the bracket function. The wind direction processing 
data for "Dong-Chao line" is shown in Figure 3. 

Figure 2. Original data chart of icing thickness, temperature, humidity, wind speed, and wind direction.
Note: (a) represents the original data of icing thickness; (b) represents the original data of temperature;
(c) represents the original data of humidity; (d) represents the original data of wind speed; (e) represents
the original data of wind direction.

In addition to the icing thickness, the data of temperature, relative air humidity, wind speed and
wind direction at the forecast point T was selected as input data. However, ice accretion phenomenon
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is a continuous process and the prior T-z’s icing thickness can influence the transmission lines icing
thickness at the forecast point T. When selecting the different prior T-z’s icing thickness as input data,
the forecasting effectiveness is different. Hence this paper selects different prior T-z’s icing thicknesses
as input data. For example, when z equals 3, the input icing thickness data includes the icing thickness
at T-1, T-2, and T-3. After selecting the input data, the proposed model is applied to check the exact
input icing thickness by using the training samples, whose experimental results are shown in Table 1.

From Table 1, it can be found that the proposed model obtains different error values when the
icing thickness values are selected at different time points. However when z equals 4, the RMSE of
proposed model reaches the minimum value, thus the input icing thickness data includes the icing
thickness at T-1, T-2, T-3 and T-4, while the other input data includes the temperature, relative air
humidity, wind speed and wind direction at the forecast point T.

Table 1. RMSE of proposed model when selecting the input icing thickness data at different time point.

z 1 2 3 4 5

RMSE of Proposed Model 0.0321 0.0201 0.0156 0.0115 0.0115

z 6 7 8 9 10

RMSE of Proposed Model 0.0115 0.0115 0.0115 0.0115 0.0115

3.2. Data Pretreatment

The data preprocessing steps are as follows:

(1) Wind direction data clustering processing

The large fluctuation range of wind direction data will reduce the accuracy of prediction results,
and the clustering of wind direction data can make the fluctuation smaller which can improve the
prediction accuracy. Thus, the paper uses clustering to process wind direction data according to the
degree of influence of wind direction on icing thickness; which formula is as follows:

J =


ceil(0.1θ), 0 ≤ θ < 90
ceil(18− 0.1θ), 90 ≤ θ < 180
ceil(0.1θ − 18), 180 ≤ θ < 270
ceil(36− 0.1θ), 270 ≤ θ < 360

(19)

where J is the result value of clustering process for wind direction; θ is the angle between the wind and
the wire when the wind rotates counterclockwise around the wire, i.e., the direction of the transmission
line is set to be horizontal 0◦; Ceil is the bracket function. The wind direction processing data for
“Dong-Chao line” is shown in Figure 3.

(2) Standardized processing of all data

Due to the different nature of each evaluation index, and they usually have different dimensions
and orders of magnitude. In order to ensure the accuracy of the prediction results, it is necessary to
standardize the original index data. The data are processed by the following equation:

Z = {zi} =
xi − xmin

xmax − xmin
i = 1, 2, 3, . . . , n (20)

where xi is actual value and the actual value of wind direction data is the result of clustering; xmin and
xmax are the minimum and maximum values of the sample data.
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3.3. Performance Evaluation Index

The evaluation index of the icing prediction result used in this paper are:

(1) Relative error (RE):

RE =
xi − x̂i

xi
× 100% (21)

(2) Root-mean-square error (RMSE):

RMSE =

√
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(
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)

2
(22)

(3) Mean Absolute Percentage Error (MAPE):

MAPE =
1
n

n

∑
i=1
|(xi − x̂i)/xi| · 100% (23)

(4) Average absolute error (AAE):

AAE =
1
n
(

n

∑
i=1
|xi − x̂i|)/(

1
n

n

∑
i=1

xi) (24)

where x is the actual value of the icing thickness; x̂ is the forecasting value; n is groups of data.
The smaller the above index value is, the higher the prediction accuracy is.

3.4. Modified BPNN-SVM-KELM for Icing Forecasting

The paper’s experiment and modeling platform is Matlab R2014a, and the operating environment
is an Intel Core i5-6300U CPU with 4G memory and a 500 G hard disk. The topology structure
of BPNN in MEC-BPNN is 9-7-1. The transfer function of the hidden layer uses the expression
f (x) = 2/(1 + e−2x) − 1 which is a tansig function. The output layer transfer function takes the
form f (x) = x which is a purelin function. The maximum training time is 100, the training target
minimum error is 0.0001, and the training speed is 0.1. In addition, the population size of MEC is 200,
the sub-population is 20, the dominant sub-population’s number is 5, the quantity of the temporary
population is 5, the number of iterations is 10. The parameters of the BA algorithm in the BA-SVM
prediction are set as follows: the dimension of search space is 7; the size of the bat population is
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30; the pulse frequency Ri of bats is 0.5; loudness Ai is 0.25; the acoustic frequency range is [0, 2];
the termination condition of the algorithm is when the calculation reaches the maximum number
of iterations (300). In SVM, the penalty parameter that needs to be optimized is C whose range of
variation is [0.01, 100]; the range of kernel parameter g is [0.01, 100]; the range of the ε loss function
parameter p is set as [0.01, 100]. The SVM optimal penalty parameter c is 1.971, the kernel parameter g
is 0.010 and the ε loss function parameter p is 0.01 by BA optimization. The kernel function of KELM
algorithm uses RBF kernel function whose input and output data processing interval is [−1, 1].

In order to show whether the forecasting results of the three modified models were a local optimal
or global optimal location and whether these models can be generalized to other unseen data, a
K-CV test is conducted here. According to the K-CV method described in Section 2.2, the data set is
substituted into the model for testing and analysis. The 312 sets of data are randomly divided into
12 datasets, each of which has 26 groups of data and do not intersect each other. After 12 operations,
each sub-data set is tested and the RMSE of the sample is obtained, which can be seen in the Table 2.

Table 2. Results of the k-fold cross validation.

Fold Number RMSE of
MEC-BPNN RMSE of BA-SVM RMSE of KELM

1 0.0126 0.0132 0.0136
2 0.0131 0.0205 0.0142
3 0.0126 0.0141 0.0135
4 0.0112 0.0126 0.0128
5 0.0118 0.0139 0.0142
6 0.0139 0.0149 0.0151
7 0.0143 0.0152 0.0137
8 0.0125 0.0133 0.0132
9 0.0101 0.0124 0.0152

10 0.0117 0.0128 0.0139
11 0.0109 0.0151 0.0149
12 0.0102 0.0118 0.0122

Average Value 0.0121 0.0142 0.0139
Standard Deviation 0.00129 0.00219 0.00087

From Table 2, it can be known that the average RMSE values of MEC-BPNN, BA-SVM and KELM
are 0.0121, 0.0142 and 0.0139, respectively. The RMSE standard deviations of MEC-BPNN, BA-SVM
and KELM are 0.00129, 0.00219 and 0.00087, respectively. It is indicated that the validation error of the
each modified model proposed in this paper can obtain its global minimum.

After the prediction of the three individual improved models, the VC combined method to solve
the problem of dynamic weight distribution is adopted to combine these models. The result of the
combination is that the corresponding weights are adjusted dynamically according to the different
training results whose adaptability is better. The combination weights of three individual models of
MEC-BPNN, BA-SVM and KELM are 0.42, 0.34 and 0.24, respectively.

The paper uses the mature BP neural network model and SVM model to do a comparative
experiment based on the sample data mentioned in Section 3.1 in order to verify the performance of the
proposed combination forecasting model. The initial weights and thresholds of a single BPNN model
are obtained by their own training, and other parameter settings are consistent with the MEC-BPNN.
Besides, in the single SVM model, the penalty parameter c is 9.063, the kernel function parameter g is
0.256, and the ε loss function parameter p is 3.185.

The forecasting values and original values of BPNN, SVM, MEC-BPNN, BA-SVM, KELM, and
improved BP-SVM-KELM based on VC, part of which are given in Table 3, are shown in Figure 4. The
relative forecasting error of each model is revealed in Figure 5. This paper divides the test set samples
into four groups to show the forecasting effect of each model owing to the large model quantities and
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sample points. Figures 4 and 5 therefore consist of three sub-graphs, respectively. The RMSE, MAPE
and AAE of models are demonstrated in Figure 6.

The deviation between the icing thickness forecasting value and the original value of BPNN
and SVM is large by contrasting the results of the six forecasting methods in Figure 4. In addition,
the curves of forecasting value and original value are suddenly far or suddenly near, indicating that
the forecasting accuracy and robustness of these two methods are poor. Besides, the deviations of
MEC-BPNN, BA-SVM and KELM are smaller than the above two models so that the precision is
improved, but the curves are still like those with poor stability. However, the deviation which is
obtained from improved BP-SVM-KELM based on VC is smaller and it is between the most accurate
and the most inaccurate single improvement model. The value is the closest to the most precise
model which indicates the accuracy of the combined forecasting model is guaranteed. Then the
curves distance between the forecasting value and the actual value of the composite model is basically
distributed near the actual value curve, indicating that the combination forecasting model has the
strongest robustness.

Table 3. Part of the forecasting value and relative errors of each model.

Data
Point

Number

Actual
Value
(mm)

BPNN SVM MEC-BPNN BA-SVM KELM Proposed Model

Forecast
Value Error % Forecast

Value Error % Forecast
Value Error % Forecast

Value Error % Forecast
Value Error % Forecast

Value Error %

1 50.01 50.5 0.98 50.38 −0.74 50.17 −0.32 50.18 −0.34 50.11 −0.20 50.16 −0.30
2 50.08 50.45 −0.74 50.38 −0.60 50.2 −0.24 50.2 −0.24 50.25 −0.34 50.21 −0.26
3 50.11 49.61 1.00 50.47 −0.72 50 0.22 50 0.22 50.27 −0.32 50.07 0.09
4 50.35 49.85 0.99 50 0.70% 50.5 −0.30 50.16 0.38 50.11 0.48 50.29 0.12
5 50.89 51.34 −0.88 50.53 0.71 51 −0.22 50.7 0.37 50.69 0.39 50.82 0.13
6 51.01 50.51 0.98 51.46 −0.88 50.87 0.27 51.18 −0.33 51.21 −0.39 51.06 −0.09
7 50.35 49.85 0.99 50 0.70% 50.25 0.20 50.5 −0.30 50.15 0.40 50.31 0.08
8 49.67 50.12 −0.91 50.05 −0.77 49.8 −0.26 49.8 −0.26 49.53 0.28 49.73 −0.13
9 49.53 50 −0.95 49.91 −0.77 49.43 0.20 49.43 0.20 49.64 −0.22 49.48 0.10
10 48.87 48.37 1.02% 49.25 −0.78 49 −0.27 49 −0.27 48.77 0.20 48.94 −0.15
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Figure 5 compares the relative errors of the six forecasting methods. By counting the maximum
and minimum relative errors, it can be found that the maximum relative errors of BPNN, SVM,
MEC-BPNN, BA-SVM, KELM and the combined forecasting model are 5.910%, 1.186%, 1.003%,
0.551%, 0.545% and 0.543%, the minimum values are 0.611%, 0.170%, 0.135%, 0.119% and 0.002%. The
maximum and minimum values in the three improved models are less than the two basic models,
which shows that the prediction accuracy is better than the BPNN model and the SVM model. The
maximum and minimum values in combined forecasting model are less than the three individual
improved models, indicating that its prediction value is the nearest to optimal single improved model.
The fluctuation ranges of the RE curves of the two basic models are the largest showing their stabilities
are the poorest, and the stabilities of the three improved models have improved with a relatively small
range of fluctuation. However, compared with the combination forecasting model, the fluctuation
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range is still large, which shows that the combination forecasting model plays a role in avoiding the
weaknesses and improves the stability of prediction under the premise of ensuring the accuracy.

As we can see from Figure 6, the RMSE value of the combination forecasting model is 0.86%,
and the RMSE values of the BPNN, SVM, MEC-BPNN, BA-SVM and KELM models are 4.44%, 3.68%,
1.04% and 1.32%, respectively. The proposed combination forecasting model has a lower error and
a higher accuracy than the other models which makes the accuracy of single points be higher than
the worst though the VC combined method solved the problem of dynamic weight distribution. The
value is infinitely close to the most accurate single model at this point, so its stability and accuracy
can be fully guaranteed. The prediction results of the three improved models are better than SVM
and BPNN models indicating that their prediction performance has been improved by intelligent
algorithms. The MAPE values of the BPNN, SVM, MEC-BPNN, BA-SVM, KELM and the combination
forecasting models are 2.71%, 1.83%, 0.70%, 0.81%,0.84% and 0.50%. The evaluation index also shows
that the combination forecasting method has the best overall prediction effect, the three improved
models are second, and the two basic models have the worst prediction performance. The AAE value
of the combination forecasting method is the smallest which enough shows the overall prediction
performance of the proposed model is the best.

In conclusion, the prediction accuracy of the three improved models is advanced through the
improvement of the basic model, but the robustness is still poor. The combination prediction model
is not the most accurate at each point, but it is the closest to the most accurate predictions because
the weights tend to the model with the highest accuracy according to the weight distribution. In the
unknown prediction, the combination method can make best use of the advantages and bypass the
disadvantages, so the flexibility, adaptability and accuracy are guaranteed.

4. Further Simulation

This paper now selects another line in Hunan, the “Tianshang line”, as a case to further verify
the performance of the proposed model. The data of “Tianshang line” are from 17 January 2008 to 15
February 2008, and have a total of 360 data groups. The first 240 are training samples and the latter 120
are test samples. All data of icing thickness, temperature, humidity, wind speed and wind direction
clustering are shown in Figure 7. Like Case 1, all of the data were provided by the Key Laboratory of
Disaster Prevention and Mitigation of Power Transmission and Transformation Equipment (Changsha,
China), where all the data are collected by professional instruments and can reflect the state changes
in the icing process. As we can see from Figure 7, the temperature data first decreases periodically,
then rises periodically. The data of relative air humidity and wind speed present a cyclical upward
trend. What’s more, there is no exception data or missing data. Hence these data can be used directly
as data sources.

BPNN, SVM, MEC-BPNN, BA-SVM, KELM and thw improved BP-SVM-KELM combination
model based on VC are utilized to compare and analyze in this section. The parameter setting of BPNN,
MEC-BPNN, and KELM are consistent with the previous case. In the single SVM model, the penalty
parameter c is 10.307, the kernel function parameter g is 0.328, and the ε loss function parameter p is
2.261. For the same case, the SVM optimal penalty parameter c is 2.083, the kernel parameter g is 0.012
and the ε loss function parameter p is 0.011 by BA optimization. The combination weights of the three
individual models of MEC-BPNN, BA-SVM and KELM are 0.40, 0.25 and 0.35, respectively, through
the VC combined method that solved the problem of dynamic weight distribution.

The results of the k-fold cross validation for the three modified models proposed in this paper
are described in Table 4. A part of the forecasting values and relative errors of each model is listed
in Table 5. The forecasting results of each model are described in Figure 8, and the relative errors are
shown in Figure 9. The RMSE, MAPE and AAE are shown in Figure 10.
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Figure 7. Original data of icing thickness, temperature, humidity, wind speed, and the processing data
of wind direction. Note: (a) represents the original data of icing thickness; (b) represents the original
data of temperature; (c) represents the original data of humidity; (d) represents the original data of
wind speed; (e) represents the processing data of wind direction.

Table 4. Results of the k-fold cross validation.

Fold Number RMSE of MEC-BPNN RMSE of BA-SVM RMSE of KELM

1 0.0178 0.0217 0.0182
2 0.0156 0.0233 0.0181
3 0.0182 0.0202 0.0192
4 0.0166 0.0193 0.0169
5 0.0167 0.0205 0.0175
6 0.0198 0.0202 0.0196
7 0.0202 0.0192 0.0185
8 0.0186 0.0178 0.0179
9 0.0191 0.0191 0.0192

10 0.0182 0.0203 0.0197
11 0.0175 0.0195 0.0186
12 0.0190 0.0212 0.0192

Average Value 0.0181 0.0202 0.0186
Standard Deviation 0.00130 0.00136 0.00083

Table 5. Part of the forecasting value and relative errors of each model.

Data
Point

Number

Actual
Value
(mm)

BPNN SVM MEC-BPNN BA-SVM KELM Proposed Model

Forecast
Value Error % Forecast

Value Error % Forecast
Value Error % Forecast

Value Error % Forecast
Value Error % Forecast

Value Error %

1 26.38 26.729 −1.32 26.02 1.36 26.54 −0.61 26.37 0.04 26.51 −0.49 26.49 −0.40
2 26.97 27.426 −1.69 26.62 1.30 26.86 0.41 26.86 0.41 27.16 −0.70 26.96 0.02
3 27.32 27.801 −1.76 26.969 1.28 27.21 0.40 27.432 −0.41 27.43 −0.40 27.34 −0.09
4 27.68 28.136 −1.65 27.37 1.12 27.47 0.76 27.8 −0.43 27.87 −0.69 27.69 −0.05
5 28.01 27.55 1.64 28.37 −1.29 27.9 0.39 28.14 −0.46 28.09 −0.29 28.03 −0.06
6 28.32 27.86 1.62 28.68 −1.27 28.05 0.95 28.14 0.64 28.18 0.49 28.12 0.71
7 27.87 27.33 1.94 28.176 −1.10 27.8 0.25 27.69 0.65 27.71 0.57 27.74 0.46
8 25.51 25.12 1.53 25.84 −1.29 25.68 −0.67 25.38 0.51 25.36 0.59 25.49 0.07
9 23.65 23.22 1.82 24.01 −1.52 23.82 −0.72 23.53 0.51 23.54 0.47 23.65 0.01
10 22.35 21.92 1.92 22.74 −1.74 22.57 −0.98 22.17 0.81 22.51 −0.72 22.45 −0.43
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As is shown in Table 4, the average RMSE values of MEC-BPNN, BA-SVM and KELM are 0.0181,
0.0202 and 0.0186, respectively. In addition, the RMSE standard deviations of MEC-BPNN, BA-SVM
and KELM are 0.00130, 0.00136 and 0.00083, respectively. These data illustrate the fact again that the
generalization performance of the three modified models has been improved.

As we see from Figure 8 and Table 5, compared with the BPNN and SVM models, the forecasting
values of the three improved models are closer to the original values, which shows that the prediction
accuracy of the modified model is better. The forecasting value of combination model is between
the forecasting values of the three modified models. Although the proposed model is not the most
accurate, the change range of the distance between the prediction and the actual value curves is the
smallest. Besides, the result of the combination forecast model is closer to the most accurate single
model predictive value which further shows that the combination forecasting model greatly improves
the stability of prediction under the premise of ensuring accurate prediction.

The relative errors of the BPNN model and the SVM model are at a high level and the fluctuation
range is large by observing Figure 9, where the relative forecasting error of the six models are displayed,
indicating that the two models’ accuracy and robustness are poor. As we can see from Figure 9 and
Table 5, the relative errors of MEC-BPNN, BA-SVM and KELM are lower than those of the two basic
models with greater volatility, and the value at some points is still large, which shows that its accuracy
has been improved while the stability is still not guaranteed. It can be found that the relative errors of
the three modified models constantly change their ranking at various points, which can be classified
into three cases. For instance, in the first case, the relative errors of MEC-BPNN, BA-SVM and KELM
are 1.13%, 1.64% and −1.01%, respectively, at the 60th sample point, where the forecasting accuracy of
KELM is the highest. In the second case, the relative errors of MEC-BPNN, BA-SVM and KELM are
1.35%, −3.04% and 2.14%, respectively, at the 80th sample point, where the forecasting accuracy of
MEC-BPNN is the highest. In the third case, the relative errors of MEC-BPNN, BA-SVM and KELM are
−5.81%, 3.10% and 6.20%, respectively, at the 120th sample point, where the forecasting accuracy of
BA-SVM is the highest. However, the relative error curve of the proposed combination model is among
the three curves of MEC-BPNN, BA-SVM and KELM and it is close to the most accurate prediction in
almost every sample point. In addition, its fluctuation range is also narrower. This indicates that the
combination model can obtain both accurate and stable forecasting results.

As is shown in Figure 10, the RMSE, MAPE and AAE of the proposed combination forecasting
model are the minimum at 1.20%, 0.63% and 0.34%. This indicates that its whole predictive performance
is optimal. By observing these values of the three improved model, it can be found that the whole
prediction accuracy of MEC-BPNN is better than KELM’s, and KELM’s is superior to BA-SVM’s. When
adopting the VC combined method to solve the problem of dynamic weight distribution to assign
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weights, MEC-BPNN’s weight is the highest, KELM’s is the second and BA-SVM’s is the minimum. It
shows that weight assignation of the proposed combination forecasting method leans toward the most
precise model, which enhances the robustness of prediction and also guarantees the accuracy.

By comparing the case with the previous one, it is clear that the weights of the three individual
improvement models differ from those of the previous case. The prediction accuracy of BA-SVM
is better than that of KELM and its weight is higher than KELM’s in the Case 1 according to the
calculation results of performance evaluation index. However, the Case 2 is just the opposite. The
difference indicates that the VC combined method solved the problem of dynamic weight distribution
can adjust the weights according to the prediction accuracy of each individual model. It is so flexible
that the overall accuracy of the prediction is improved.

In summary, the paper introduces the MEC-BP model, the BA-SVM model and the KELM model
to improve the prediction performance of the individual models. The VC combined method solved
the problem of dynamic weight distribution combines these models’ advantages, and the weights are
flexibly assigned, so the overall instability of the model is reduced and satisfactory prediction results
are obtained.

5. Conclusions

In order to obtain better accuracy and stability of icing forecasting, an innovative
combination forecasting model using a modified Back Propagation Neural Network-Support
Vector Machine-Extreme Learning Machine with Kernel (BPNN-SVM-KELM) based on the
variance-covariance (VC) weight determination method is proposed in this paper. First of all, BPNN
is optimized by a mind evolutionary algorithm (MEC) to solve the problem that BPNN often falls
into local optima and converges slowly. Second, a bat algorithm (BA) is used to optimize SVM, and
the problem of choosing SVM key parameters is solved. Third, the kernel function is introduced into
ELM to improve the regression forecasting accuracy of the model. Finally, by the dynamic allocation
method of VC weights, three improved models of MEC-BPNN, BA-SVM and KELM are combined to
obtain the combination forecasting model. In the simulation process, this paper takes into account
the strong fluctuation of wind direction data, which will have a negative impact on the accuracy
of forecasting. Therefore, according to the influence degree of wind direction on icing thickness, a
clustering processing is carried out. Through the simulation of two examples, it is clear that three
individual modified models utilize various optimization algorithms to take advantage of the core
advantages of the forecasting model, avoiding the defects of the model itself and optimizing the
performance of the model. Furthermore, the VC weighted combination method is used to dynamically
assign weights, and the forecasting results tend to the best single prediction model. It is proved that the
combination method complements the shortcomings of each model and has a strong comprehensive
response ability. In summary, the research content of this paper is expected to provide a useful reference
for the power sector to deal with icing accidents in advance.
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