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Abstract: The integration of Distributed Generation, Electric Vehicles, and storage without
compromising the quality of the power delivery requires the deployment of a communications
overlay that allows monitoring and controlling low voltage networks in almost real time. Power Line
Communications are gaining momentum for this purpose since they present a great trade-off between
economic and technical features. However, the power lines also represent a harsh communications
medium which presents different problems such as noise, which is indeed affected by Distributed
Generation, Electric Vehicles, and storage. This paper provides a comprehensive overview of the types
of noise that affects Narrowband Power Line Communications, including normative noises, noises
coming from common electronic devices measured in actual operational power distribution networks,
and noises coming from photovoltaic inverters and electric vehicle charging spots measured in
a controlled environment. The paper also reviews several techniques to mitigate the effects of noise,
paying special attention to passive filtering, as for being one of the most widely used solution to
avoid this kind of problems in the field. In addition, the paper presents a set of tests carried out to
evaluate the impact of some representative noises on Narrowband Power Line Communications
network performance, as well as the effectiveness of different passive filter configurations to mitigate
such an impact. In addition, the considered sources of noise can also bring value to further improve
PLC communications in the new scenarios of the Smart Grid as an input to theoretical models
or simulations.

Keywords: Advanced Metering Infrastructure (AMI); Distributed Energy Resources (DER);
Distributed Generation (DG); Electric Vehicle (EV); Narrowband Powerline Communications (NB-PLC);
noise; PoweRline Intelligent Metering Evolution (PRIME); Smart Grids; supraharmonics

1. Introduction

The penetration of DG (Distributed Generation) based on renewables, EV (Electric Vehicles),
and distributed storage in the low voltage power distribution networks entails many benefits.
As a matter of fact, it will definitely contribute to achieving the main goals of the so-called Smart
Grids, such as minimizing both costs and environmental impacts while maintaining system reliability,
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resilience, and stability [1]. However, it also entails great challenges especially to the grid management,
which cannot keep “swimming” at the primary substation level anymore, but needs to “dive” down to
the secondary substations, smart meters, and even beyond. As a token of the increase in complexity that
this change of paradigm entails, assuming 100 SS (Secondary Substations) per primary substation and
100 smart meters per SS, which sounds quite reasonable in European power distribution networks [2,3],
the number of elements that need to be considered increases four orders of magnitude.

There are different ways of approaching the new scenario sketched in previous paragraph, but all
them rely on the same common idea: the solution is all about communications. In this regard,
AMI (Advanced Metering Infrastructures) are being widely deployed worldwide [4-6] to provide
bidirectional communications which allow delivering sophisticated services such as DR (Demand
Response) [7]. In the case of the EU (European Union), for instance, most of its members have decided
to undertake massive AMI deployments involving an estimated accumulated investment of € 35,000
million for the installation of 195 million smart meters by 2020 [8].

Although wireless communications of course play an important role in the Smart Grid, in general,
and AM]I, in particular [9], PLC (Power Line Communications) specially stand out in this field [10-12]
due to the great trade-off between economic and technical requirements they present [13].

However, the power lines were designed to transmit power and not data. Hence, they represent
a harsh communications media which suffers from frequency selectivity, continuous altered loads, EMI
(ElectroMagnetic Interference), and, above all, noise. DG, EV, and storage indeed represent sources of
noise themselves, since they are equipped with power electronics that introduce unwanted emissions
in the frequency bands where PLC works (so-called supraharmonics when such emissions are between
2 and 150 kHz).

During the last decades, theoretical models for the PLC channel [14-17] and noise [18-22] have
been developed based on measurements or analysis to mitigate such problems, contributing to take
PLC from simulation environments to the field. As a result, from some time now there are singular
infrastructures, such as laboratories and in-field deployments, which involves both PLC networks and
DG, EV, and storage equipment. Such infrastructures can be used to further improve PLC networks
and its coexistence with the ecosystem of devices they have to monitor and control (1) by obtaining
measurements that can be used to fine-tune communications networks or be input to theoretical
models and simulations [23-36], and (2) by learning through experimentation itself, which is indeed in
the very origins of science.

This paper contributes to these two approaches to keep improving PLC networks in the
aforementioned new scenarios of the Smart Grid with remarkable presence of DG, EV, and storage at
the low voltage grids. Thus, Section 2 sets the background of the paper, presenting an overview of
PLC technologies in AMI scenarios, with special emphasis on NBPLC (Narrowband PLC) technology
PRIME (PoweRline Intelligent Metering Evolution) [37,38]. Section 3 provides a comprehensive
study of typical noises in PLC networks for AMI, including normative noises, noises measured
in actual operational deployments of the Spanish DSO (Distribution System Operator) Union
Fenosa Distribucién, and noises coming from DG and EV equipment measured in the LINTER
(Grid Interoperability Laboratory) [39], also from Unién Fenosa Distribucién. Section 4 reviews
different noise mitigation techniques used in PLC networks, paying special attention to one of the
preferred solutions by DSO for this purpose: the use of filters. Although filter design is a well-known
topic, the filters for this application have to meet constrained requirements, such as bearing currents
up to tens of amperes while staying compact and low-cost, or presenting high input impedance.
Thus, Section 4 presents a filter specifically designed to facilitate assessing the suitability of several
filter configurations to different problematic scenarios in AMI. Section 5 indeed describes the setup
and methodology followed in the set of tests that were carried out in the LINTER to evaluate the
effectiveness of the aforementioned configurable filter to mitigate the effects of a selection of the most
representative noises presented in Section 3. Section 6 presents the spectral measurements taken
during these tests. Section 7 briefly introduces PRIME Analytics [40], a novel software tool that allows
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for network forensics, and analyzes the effects of the noise sources and filter configurations in PRIME
network performance using it. Section 8 discusses the main contributions and findings of the paper.
Finally, Section 9 wraps up and draws conclusions.

The configurable filter and the network forensics tool PRIME Analytics represent novel
developments that have been carried out within the scope of the Spanish R&D project OSIRIS [41].
The presented tests and analysis have been also carried out within the scope of the OSIRIS project
and aim to serve as a token of how the gathered measurements can be used to learn through
experimentation. Nevertheless, the noise records are available together with the paper so that they can
be used in theoretical and simulation works to further improve PLC network performance in Smart
Grid scenarios.

2. PLC Technologies

2.1. Overview of PLC Technologies and Their Application to AMI

The very basic elements that compose AMI are the smart meters, which work both as sensors and
actuators with bidirectional communications capabilities, and the information systems (also referred
as MDMS—Meter Data Management Systems—in the literature [13]), where the gathered data is
processed and the appropriate decisions are made. The smart meters and the information systems
can be connected directly through backhaul communications technologies, resulting in monolithic
communications architectures, as shown in Figure 1a.
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Figure 1. Overview of Advanced Metering Infrastructure (AMI) communications architectures.
(a) Monolithic; (b) Hierarchical with two network segments; (c) Hierarchical with three network segments.

Monolithic communications architectures have pros and cons [13] and, in order to improve
scalability, data concentrators are typically deployed, resulting in hierarchical communications
architectures, as shown in Figure 1b. The place where the data concentrators are deployed may
vary depending on the features of the power distribution infrastructure (e.g., number of smart meters
per SS, length of the low voltage cables, number of SS per primary substation, etc.). For instance,
in Europe (and China) such data concentrators are typically located at the SS since low voltage cables
are long and power distribution grids are reasonably dense; whereas in the US (and Japan) they are
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located upwards in the power distribution hierarchy because the low voltage cables are shorter and
less populated [42,43].

No matter where the concentrators are, the use of concentrators split the communications
architecture into two main communications segments: (1) the “last mile” or NAN (Neighborhood
Area Network) [44,45], which comprises the smart meters and the data concentrators; and (2) the
backhaul, which comprises the data concentrators and the information systems. This paper focuses on
the “last mile” or NAN (in red in Figure 1), notably when the concentrators are deployed at the SS,
so smart meters and concentrators are directly connected through the low voltage cables.

PLC can be mainly classified in three different types [10,12]: UNB (Ultra NarrowBand), NB
(NarrowBand), and BPL (Broadband over Power Lines). UNB is not the preferred solution for AMI
in the considered communications segment since the data rate may be too low, although there are
solutions available and running in the market for quite a few years, such as Aclara TWACS (Two-Way
Automatic Communications System).

On the opposite side, the two main BPL standards (namely IEEE 1901 and G.hnem [46]) may
exceed the communications and economic requirements of this segment, although there are examples
where it is used as well [47]. In the case of Spain, for instance, DSO Iberdrola used this technology to
provide broadband access some years ago, but with the launch of VDSL (Very-high-bit-rate Digital
Subscriber Line) the business case stopped being economically justifiable. Nevertheless, Iberdrola
learned from this experience and now they use this technology over the medium voltage or FAN
(Field Area Networks) for AMI and tele-control purposes [48,49], resulting in the communications
architecture shown in Figure 1c.

Thus, the most widely used PLC technologies for this segment are definitely NB. Table 1 summarizes
the most relevant NBPLC technologies together with their main features.

Table 1. Summary of Narrowband PLC (NBPLC) technologies.

. PHY Max Data Main
Technology Promoter Standard Band Modulation Rate (kbps) Deployments [50]
IEC CENELECA . . Nordic countries
OSsSGP Echelon 14908.1 (35-91 kHz) Single carrier 3.6 and Russia
. CLCTS Multicarrier .
CX1 Siemens 50590 CENELECA (AMC-SS) 64 Austria
CLCTS . . .
Meters & More ENEL 50568-4 CENELECA Single carrier 9.6 Italy, Spain
. ITU-T CENELECA Multicarrier
G3-PLC G3 Alliance (EDF) 59903 (ARIBand FCC)  (OFDM adaptive) 34 France
PRIME 1:&1\;[;32‘%: ITU-T CENELECA Multicarrier 128.6 (v1.3.6) Soain. UK
’ G.9904  (ARIB and FCC) (OFDM) 1000 (v1.4) pain,

Natural Fenosa)

Notably, this paper focuses on PRIME. Hence, the next section explains more in detail how this
technology works.

2.2. PRIME

PRIME is a second-generation NBPLC technology that was initially developed by the PRIME
Alliance [37], led by DSO and chipset manufacturers such as Iberdrola, Gas Natural Fenosa, Texas
Instruments or ADD (now Microchip), and later standardized by ITU-T [38]. The standard specifies
the two lowest layers of the protocol stack, namely: the PHY (physical) and the DLL (Data Link Layer).
The DLL comprises in turn the MAC (Medium Access Control) and the Convergence Layer, which deals
with multiplexing upper layer protocols, as well as with flow control and ARQ (Automatic Repeat
reQuest) mechanisms.

At the PHY layer, PRIME can operate at the CENELEC-A band (notably, between 41 and 89 kHz)
or at the FCC/ARIB band (reaching up to 500 kHz) using OFDM (Orthogonal Frequency Division
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Multiplexing). The carriers may use different modulation schemes allowing for maximum PHY data
rates of up to 130 kbps, in the CENELEC-A band (version 1.3.6), and up to 1 Mbps, in the FCC/ARIB
band (version 1.4). However, currently all PRIME deployed networks are compliant with version 1.3.6
(which is the version considered in this paper) and use DBPSK (Differential Binary Phase Shift Keying)
with FEC (Forward Error Correction) ON, which is the most robust modulation scheme, allowing
maximum PHY data rates of 24.1 kbps [38]. In DBPSK, the first carrier of the OFDM symbol carries
a value that is well-known by transmitter and receiver and the information is encoded in the phase shift
with respect to that value. Therefore, this modulation scheme avoids using an equalizer at the expense
of slightly worsening the effective data rate and the BER (Bit Error Rate) vs. SNR (Signal-to-Noise
Ratio) curve.

At MAC layer, two kinds of nodes are defined: Base Node and Service Node. The Base Node
(the so-called concentrator in AMI terminology) coordinates the PRIME network, only a single Base
Node per network being allowed. The Service Nodes are the smart meters in AMI terminology.
However, they may play just the role of Terminal or they can be promoted to Switches. Switches are
communications repeaters whose main goal is to increase signal range in the cable via relaying,
thus mitigating the effects of attenuation and noise. Figure 2 illustrates the different states and transitions
of a Service Node together with the tree-wise logical topology of a PRIME network.

Disconnected

E/ =_aw !

Concentrator

Terminal Switch

(a) (b)

Figure 2. (a) States and transitions of a PRIME Service Node; (b) Tree-wise logical topology of a PRIME network.

Media access control in PRIME includes a SCP (Shared Contention Period) and a CFP (Contention
Free Period). Their main difference is that in the former all the service nodes can content for the
channel at the same time using CSMA-CA (Carrier Sense Multiple Access with Collision Avoidance);
whereas the latter guarantees a time slot for service nodes and the base node to use the channel.
Current implementations only include the SCP, although the benefits of using the CFP for applications
that required certain level of QoS (Quality of Service) are being investigated [51].

PRIME define three types of frames:

e  Beacon PDU (Packet Data Unit): PRIME networks are designed to be plug & play. Therefore, before
the SCP, a period of time is reserved for the transmission of beacons, which are used by the
concentrator or the switches to advertise themselves, as well as to provide network synchronization.
So whenever a new smart meter is switched on, it will listen to the channel waiting for these beacons
so that it can join the PRIME network.

e Promotion Needed PDU: If a new smart meter is switched on and it does not hear any beacon,
it will start sending Promotion Needed PDU, which work as a kind of SOS mechanism, since any
smart meter that listen to such a PNPDU will have to ask the concentrator to promote itself to
switch, so that the new smart meters can reach the concentrator through it.
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Generic MAC PDU: The Generic MAC PDU can be either Data or Control packets. Figure 3
shows all the possible control packets. As it can be seen, the control packets include, for instance,
the registration messages, which are used to join the PRIME network. As a result of this procedure,
the new smart meter is assigned a 22-bit ID which is shorter than its MAC address (48 bits),
thus reducing the overhead. Since PRIME communications are connection-oriented, the control
packets also cover the connection procedure. The promotion requests which are triggered by the
PNPDU are also a type of control packet. Finally, it is worthwhile to highlight also that keep-alives
are yet another type of control packet which are used by the concentrator to get an idea of the
connectivity status of the network.

Beacon
MAC Frame (HDR.HT = 2)

Promotion Needed
(HDR.HT =1)

Generic
(HDR.HT = 0)

Data Control ‘

(PKT.C = 0) (PKT.C =1)

|
- Registration Mngmnt (PKT.CTYPE = 1) - CFP Request (PKT.CTYPE = 6)
- Connection Mngmnt (PKT.CTYPE = 2) - Keep Alive (PKT.CTYPE=7)
- Promotion Mngmnt (PKT.CTYPE = 3) - Multicast Mngmnt (PKT.CTYPE = 1)
- Beacon Slot Indication (PKT.CTYPE = 4) - PHY Robustness Mngmnt(PKT.CTYPE = 9)
- Frame Structure Change (PKT.CTYPE =5) - Security Info (PKT.CTYPE =10)

Figure 3. Overview of PRIME (PoweRline Intelligent Metering Evolution) MAC (Medium Access Control) frames.

For the sake of comprehensiveness, although it does not belong to PRIME specification, on top

of PRIME or any other NBPLC technology, i.e., at the application layer, DLMS/COSEM is used,
where COSEM (IEC 62056-61/62) is an energy metering profile of the DLMS (IEC 62056-53) protocol [52,53]
Thus, DLMS/COSEM defines data models for common energy-related parameters together with
a communication protocol designed to transport this kind of information.

3. Noise in PLC Networks

3.1. Traditional Noise Classification

Traditionally, the noise in PLC channels has been classified into two main categories [18,19]:

Background noise, which is always present and changes slowly in time (from minutes to even hours);
Impulsive noise, which consists of very powerful noise burst normally taking between
microseconds and milliseconds.

The background noise can in turn be considered as the sum of the contribution of two types of

noise, namely [22]:

Colored background noise, which is in turn caused by the summation of numerous low-power
sources of noise. This type of noise has a relatively low PSD (Power Spectral Density) and is
named “colored” because, on the contrary to the white noise, its frequency response is not flat,
but varies. The pink noise, for instance, whose PSD is inversely proportional to the frequency,
is a well-known example of this type of noise.

Narrowband noise, which consists mainly of amplitude-modulated impulses. This type of noise may
be caused either by broadcast stations or by switching power supplies on the network (being also
referred to as periodic impulsive noise asynchronous to the mains frequency in the latter case).
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There are also two types of noise that can be considered to form the impulsive noise, namely [22]:

e  Periodic impulsive noise synchronous to the mains frequency, which is caused by power supplies
and consists mainly of impulses that last some microseconds with a repetition rate of 50 or 100 Hz.

e  Asynchronous impulsive noise, which is caused by switching transients to the network and
consists of random impulses that last from microseconds up to milliseconds, being much stronger
than background noise.

3.2. Noise Library for NBPLC-PRIME

3.2.1. Noise Categorization

Reference [54] presents a well-established categorization of noise sources for the NBPLC frequency
band, in general, and for the PRIME frequency band, in particular. It must be considered that in this
study: (1) the equipment involved were legitimately CE (European Conformity) marked and the
related standardized emission limits and immunity requirements were met; and (2) events related
with an EMI due to current/voltage components in the frequency range from 2 to 150 kHz, exceeding
the immunity of an equipment in normal operation status, were analyzed. Such a categorization is
summarized next [54]:

e EMI due to conducted emissions

o  EMI due to lighting equipment
o EMI due to electricity meters
o EMI due to mains communication systems

[ Power supplies

e TV antenna system

e  UPS for computers/servers
e Camera surveillance system
e  Satellite receiver amplifier

e TV receiver

e DVD player

e LAN router/switch

o PC

e  4G/LTE base station

e  Battery charger / Voltage converter
e  Antenna amplifier

e  Short range effect (in MV /LV secondary substations)
m  Power systems: loads and inverters

e Frequency inverters in an industrial plant
e  Frequency-controlled ventilation

e  Frequency-controlled water pump

e Inverters in a waste water treatment plant
e Inverter in a heat plant

e  Several inverters in a rural supply area

e  Commercial washing machine

u Variable Frequency Drives in a pump station
Lighting equipment
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Energy efficient lighting

Fluorescent lights

Emergency lighting
u Other EMI sources

e  Fiber switch
e  Signal attenuation by IT equipment
e  (Circuit breaker

| EMI due to medical equipment

e  Ultrasonic equipment
e  Electrocardiograph (ECG)

e  EMI due to radiated emissions

Broadcast time-signal systems
Contactless magnetic card reader
Mobile radio receivers

o O O O

Traffic control system.

3.2.2. Normative Noise Signals

All the aforementioned voltage/current equipment and components have some potential for
causing EMI, for which also a combination of the different sorts has to be considered in a double
way: (1) cumulative effect of voltage components from all emitting equipment connected to a supply
network; and (2) proliferation of different sorts of electric equipment and its different durations
of operation.

The main standards related to EMC regulation and guidelines are:

e EN 50065 [55];
e CISPRI5 [56];
e and IEC TS 62578 [57].

EN 50065 is a standard used for the certification of equipment transmitting in the PLC
communications band. It is, therefore, used for all PRIME equipment. Its limits are mandatory
for all the equipment transmitting in the band, but it is possible to find equipment that transmits up to
the limit of the band in multiple frequencies. As standard, EN 50065 only applies to PLC transmitters,
so there may be equipment (e.g., inverters, luminaires) that transmit above these limits.

The standard CISPR15 is used for the certification of certain equipment that is not for
communications, but that produces a considerable energy in frequencies close to those of PLC
communications. Its limits are mandatory for all equipment that meets this standard, but it is possible
to find equipment that transmits up to the band limit in multiple frequencies. As the limits of CISPR15
are not sufficient to allow the work of PLC communications, a more constrained limitation has been
analyzed between 30 and 150 kHz.

The standards used for the certification of certain non-communications equipment do not always
adequately limit the transmission of signals in the frequency bands used by PLC communications. This is
why the EU seeks to create a regulatory framework that, without hindering the development of equipment
such as inverters or luminaires, allows adequate coexistence between PLC communications equipment
and other equipment. One of the proposals analyzed in the TC22 appears in TS 62578 and covers the
range of the PRIME communications. Figure 4 summarizes the main standard emissions limits between
2 and 150 kHz.

The red dash line in Figure 5 shows the agreement that has been recently reached in the IEC/SC
77A/WGS8 on the compatibility level for the frequency band ranging from 30 to 150 kHz as a trade-off
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between the two main opposing options (namely, option A in blue continuous line and option B in
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Using as a reference the standards indicated above, a set of synthetic noises has been generated in
a controlled environment to evaluate PRIME communications against noises close to the normative
limits that are currently being studied in technical committees.

The equipment used for the noise generation is a signal generator in the time domain that, together
with an amplifier and an RF probe, induces the signal in the power cables in a range between 40 and
90 kHz. For the calibration of the signal, an oscilloscope with the capacity to capture in time and to
analyze in frequency has been used, allowing the progressive adjustment of the signal.

2 records have been generated, corresponding to curve with peaks in frequencies every 8 kHz
and every 1.953 kHz. Figures 6 and 7 show such noise records produced according to the regulatory
limits of EN 50065. The yellow line represents the noisy signal in the time domain and the white line
represents the noisy signal in the frequency domain.
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Figure 7. Synthetic noise for EN 50065 limits with frequency peaks every 1.953 kHz.
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3.2.3. Noise Signals Measured in Actual Operational Deployments

In the process of capturing noise in the field, it is always tried to capture the noise peaks and the
maximum noise accumulated during a certain period of time. This is because it is assumed that those
maximums are the ones that are actually hampering communications.

In general, these curves are included as maximum curves of the amplitude of the voltage versus
frequency. However, it must be considered that the spectral distribution is not constant, but varies over
time depending on the state of operation of the equipment generating the disturbances. Therefore, it is
also interesting to have temporary records.

In addition, it is necessary to know the electrical characteristics of the environment in which the
noise is measured in order to reproduce that environment in the laboratory. The noise signal can be
measured in power, as direct voltage or through the current, and in all the cases it is necessary to know
the impedance on which it is measured in order to reproduce it precisely later on.

Furthermore, in the context of AMI, noises do not affect all smart meters in the same way when
they are operating at a high current or when they are operating at low or no current.

The methodology and the instrumentation used also have a great influence on the measurements
and therefore must be identified in the records that are delivered. For example, a record obtained with
a power quality equipment for electrical networks registers harmonics with respect to the fundamental
frequency with a limited frequency analysis and it is very different from one obtained with a specific
REF system or with the own smart meters.

Another relevant fact to keep in mind is that in the field it is always difficult to have ‘clean” noises,
understood as generated by a single disturbing source. The only elements that actually block a noise are
the transformers. Therefore, below each transformer, the noises accumulate among each other. In AM],
each centralization is made up of multiple smart meters from which multiple noises can appear. The noise
that comes from the load of a smart meter (i.e., household) is transmitted immediately to the rest of the
smart meters nearby and can even affect more distant smart meters in a more attenuated way.

With this accumulation of noise, it is difficult to determine the true source of noise. Only in relatively
well-known environments or where a noise source operates exclusively at certain time periods, the source
can be detected. It is understood, therefore, that some of the records available from the real environment
will not be associated with a specific source, although the predominant source is indeed identified.

Next, several noise records measured in operational power distribution networks of Unién Fenosa
Distribucion are presented with the aim of getting an idea of the main features that some of the noises
identified in [54] present in actual deployments.

In general, all the noises have been obtained as registers in the frequency domain, i.e., in a format
that collects the voltage levels as a function of frequency at a given time.

All recorded noise registers represent signals that are in the frequency ranges between 15 and 170 kHz,
although the analysis focuses on PRIME frequency band (i.e., between 40 and 90 kHz).

The equipment used for measuring the noise is a 4PBN sniffer from ZIV [59], which allows
the capture of instantaneous values and accumulated values of the frequency response of both noise
and communications.

The records are JPEG images with two lines: a colored one representing the ‘instantaneous’ noise,
and a gray one, superior to the colored one, which reflects the maximum level measured since the
analyzer was switched on, which is the sum of the noise and the PRIME communications signal.
Nevertheless, the most important features of the measured noises are characterized in order to allow
reproducing them in a controlled environment.

Figure 8 shows the noise introduced by a community antenna. Community antennas are single-phase
power elements that can generate noise due to their power supplies. The fact that there is a relatively
large distance between the antenna and the smart meter room causes the cable that feeds the antenna
to become in turn a large antenna that simultaneously transmits the noise and radiates. This radiation
induces the noise in other cables of other smart meters so that, finally, the noise can be seen in smart
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meters different from the one of the antenna, although the maximum noise will always be seen in the
smart meter corresponding to the antenna.

Figure 8 shows the R phase of the community antenna. Two peaks are observed in frequencies at
41.5 and 83 kHz in a relevant level reaching 95 and 100 dBuV respectively. In S and T phases it was
lower (85 dBuV). In this situation, all the smart meters of the centralization lost their connectivity.

Figure 8. Community antenna noise measured in the field (Phase R).

Figure 9 shows the noise associated to a domestic TV receiver. TV receivers are elements that
can generate noise due to their power supplies or, in case of old televisions, by degradation of the
demodulator components.

As it can be seen in Figure 9, the noise introduced by the TV receiver is somehow colored noise,
being close to 90 dBuV in the entire PRIME frequency band. This noise was higher than the received
PRIME communication level and, due to the proximity of the centralization with the SS, prevented the
communications in the whole PRIME network.

Figure 9. TV receiver noise measured in the field.

Figure 10 shows the noise associated to a water pump. Water pumps are infrequent elements in
large residential blocks of buildings, but common in house residential areas. These pumps, generally
three-phase equipment, can generate noises due to the operation of their motor.

As it can be seen in Figure 10, it is also a kind of colored noise, but reaches lower levels than the TV
receiver noise (notably, up to 65 dBuV). Anyway, this noise hampered the communications of all the smart
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meters in the same smart meter room and even of smart meters located in smart meter rooms further away
from the SS.

Figure 10. Water pump noise measured in the field.

Finally, Figure 11 shows the noise associated to an electronic ballast. In a fluorescent lamp the
role of the ballast is twofold: (1) to provide the high voltage necessary for the ignition of the tube;
and (2) after the ignition of the tube, to limit the current that passes through it. In both cases, the ballast
can generate noise in the PRIME communication band.

As it can be seen in Figure 11, the measured noise introduced by this electronic ballast affect the
upper part of the PRIME frequency band, behaving as a kind of colored noise that reaches levels up to
85 dBuV. Due to the proximity of the centralization with this noise to the SS, this noise prevented the
communications in the whole PRIME network too.

Figure 11. Electronic ballast noise measured in the field.

3.2.4. Noise Signals Measured in the Lab

In addition to normative noise and the noise measurements taken in the field, noise measurements
have been also gathered in a controlled environment such as the LINTER of Unién Fenosa
Distribucion [39]. This laboratory is equipped with around 100 smart meters and a few concentrators
from the main manufacturers in the market [60], as well as with DG installations based on renewables
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and EV charging spots. All the equipment is connected with low voltage cables of lengths ranging
from 10 to 150 m and sections ranging from 4 to 35 mm?. In this case the measurements have focused
indeed on the noise introduced by the DG installations and the EV charging due to their relevance in
low voltage networks both currently and even more in the forthcoming years.

The equipment used for measuring the noise in this case is the HW /SW SpectraVue sniffer from
Moetronix [61], which allows capturing instantaneous values and accumulated values of the frequency
response of both noise and communications in a range that includes PRIME frequency band.

The records are both CSV and JPEG images. The JPEG images include two lines: a green one
representing the “instantaneous” noise, and a blue one, superior to the green one, which reflects the
maximum level measured since the analyzer was switched on, which is the sum of the noise and the
PRIME communications signal. The CSV records include the frequencies and amplitudes associated to
the green line of the JPEG images (i.e., “instantaneous” noise).

EV are elements that require a rapid charging process during which they can emit significant
noise levels in PRIME communication bands. Figure 12 shows the setup and components used for
measuring the EV charging noise at the LINTER. As it can be seen, three different models of EV were
considered, namely Renault Twicy, Renault Zoe, and Nissan Leaf.

T Medium voltage

Transformer l Low voltage
E Smart [
Meter
e ]
[ Smart Met
“I= socket maPaner er
Charging
spot
~N|
P P
4 Top PLC Filter Sniffer

Laptop

Figure 12. Setup and components used for measuring the EV (Electric Vehicle) charging noise at the
LINTER (Grid Interoperability Laboratory).

Figure 13 shows the noise measured at the LINTER when charging a Renault Twicy. It can be seen
that it introduces a remarkable peak at the very beginning of the PRIME frequency band. By analyzing
the CSV records with MATLAB, it can be seen that such a peak reaches —30.28 dBV at 48.29 kHz.

Figure 14 shows the noise measured at the LINTER when charging a Renault Zoe. In this case,
the measured noise is kind of colored, reaching levels up to —65 dBV, i.e., lower than when charging
the Renault Twicy.

Figure 15 shows the noise measured at the LINTER when charging a Nissan Leaf. In this case,
it can be observed that it is kind of colored with two main peaks at 54 and 82 kHz that reach —60 dBV.
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Figure 13. Noise associated to charging a Renault Twicy.
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Figure 15. Noise associated to charging a Nissan Leaf.
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It should be noted that, although these records are valuable to reproduce these noises in
a controlled or simulated environment with the aim of evaluating their impact in different scenarios,
the noise introduces by EV charging changes with time and also depends on the charging type
(e.g., slow, semi-fast or fast, single-phase or three-phase) and on the state of charge of the battery.

Regarding the inverters, they are elements that have not limited conducted emissions in the
frequency bands below 150 kHz by regulation so far, so they can emit very relevant noise signals in
PRIME communication band. The noise generated by inverters typically contains a series of peaks
whose frequency is related to the working frequency of the inverter power electronics. In many cases
the inverters are grouped by tens, reason why the accumulated noise in the installation is much bigger
than the contribution of only one.

Figure 16 illustrates the setup and components used for measuring the noise coming from inverters at
the LINTER. The available PV installation consists of 3 amorphous PV panels and 3 single-phase Danfoss
DLX 3.8 KW inverters. The nominal power of the installation is 10 KW, obtained from a 141 m? surface.
Although there were filters available to mitigate the effects of some of the inverters, they were not used
during these measurements in order to obtain the overall noise associated to the three inverters.

Sniffer

PLC Filter

PV Inverter 1
Panel 1

[—
SM
PV Inverter 2
Panel 2 iﬂm:rt socket
eter
SM
Panel

PV
Panel 3

Inverter 3

Figure 16. Setup and components used for measuring the PV (Photovoltaic) inverter noise at the
LINTER (Grid Interoperability Laboratory).

Figure 17 shows the noise measured at the LINTER with the inverters injecting between 3 and 3.2 KW.
The aforementioned series of peak can be observed. Notably, five outstanding peaks can be seen, three of
them inside PRIME frequency band. These three peaks are at 48, 64, and 80 kHz in this case, reaching
—22.9, =289, and —27.3 dBV, respectively.
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Figure 17. Noise associated to the inverters.

As in the case of EV charging noises, although these measurements are valuable for experimentation,
it should be noted that the noise introduced by the inverters also changes with time and depends on the
working point, which in turn depends on the weather conditions.

3.3. Summary of Noise Signals in NBPLC-PRIME Networks

To sum up, the main features of the noises presented in this section are summarized in Table 2.
Although these noises are not “pure”, Table 2 also tries to map them onto a simplified version of the
traditional noise classification presented in Section 3.1.

Table 2. Summary of noise signals in NBPLC-PRIME networks.

Noise Type Noise Colored  Impulsive Features
Normative 1 X Peaks every 8 kHz in the whole PRIME
) (synthesized) frequency band
Normative
Normative 2 X Peaks every 1.953 kHz in the whole PRIME
(synthesized) frequency band
Community X 2 peaks at 41.5 kHz (95 dBuv) and 83 kHz
antenna (100 dBuV)
TV receiver X Maximum values up to 90 dBuv
Measured :
in the field Water pump X Maximum values up to 65 dBuv
Electronic Affect only the upper part. of the PRIME
ballast X frequency band with maximum values up
to 85 dBuV
Renault Twicy X Main peak at 48 kHz (—30.28 dBV)
Renault Zoe X Almost flat around —65 dBV
Metf:;:g m Nissan Leaf X 2 peaks at 54 kHz and 82 kHz (—60 dBV)
PV inverters X Three peaks at 48 kHz (—22.9 dBV), 64 kHz

(—28.9 dBV), and 80 kHz (—27.3 dBV)
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4. Noise Mitigation Techniques

The state of the art is plenty of proposals for mitigating the effects of noise in PLC networks. There are
proposals that involve using novel modulation schemes. In [62], for instance, a modulation scheme called
OPP-MC-CDMA (Orthogonal Poly-Phase-based Multicarrier Code Division Multiple Access) is proposed
to overcome the effects of bursty noise and multipath frequency-selective fading in BPL networks.

Compressive sensing is also a very common technique to mitigate the effects of impulsive noise
in OFDM systems [63], in general, and in PLC networks [64,65], in particular. In [66] a modification
of compressive sensing based on Partial Fourier Matrices is proposed, the main advantage of such
a modification being that no redundancy is added, so there is no decrease in the transmission data rate.

In order to mitigate the effects of impulsive noise, there are also proposals which involve simple
memoryless nonlinearity techniques, such as clipping, blanking or a combination of both [67,68].

Another proposal to overcome noise conditions harsher than regular ones in the field is the use of
data concentrators with three phase injection capabilities [69]. But sometimes a very powerful noise source
generates a very high-level wideband noise which results several dB above the NBPLC signal, making
the communications impossible in part or even in the whole network, as it has been shown in Section 3.
In current practice, this kind of situation are corrected by the installation of filters at the customer premises,
in addition of investigating if the interference emission levels are above regulatory limits [70].

Filters are designed to mitigate conducted noise generated by domestic or industrial appliances
in the PRIME frequency band. They are installed between the interfering element (typically located at
the customer’s premises) and the smart meter, as shown in Figure 18.
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Figure 18. Detail of filter installation.
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The filters used in this kind of scenarios must meet very constrained and sometimes conflicting
requirements, e.g.,: for safety reasons, they have to bear currents up to tens of amperes without any
risk of burning; they have to be reasonably compact (as a rule-of-thumb, their dimensions round
5 x 5 x 10 cm); they have to present high input impedance so that the automatic recovery mechanism
of the smart meter works; and their cost have to be low, since potentially a high number of filters
may be deployed. Therefore, in these scenarios the best filter is not the one that better attenuate
the noise (otherwise a low pass filter with a cut-off frequency before the beginning of the PRIME
frequency band would be fair enough), but the one that presents the best trade-off between all the
aforementioned requirements.

As a result, one of the main objectives of the OSIRIS project [41] was to develop a filter that
combats common noises in “last mile” of AMI reasonably well and that could be massively deployed.
In order to achieve this goal, the configurable filter shown in Figure 19 was designed with the aim of
easily comparing the effectiveness of different configurations.

c1 % $1 c2
R L L ¢
L Ri R 15
\ %5
i | ~~~~~ Ll
~— S— 1
= ca = o
) N
N N

Figure 19. Electric schematic of the configurable filter.

This configurable filter allows selecting different filter configurations by opening or closing the
switches (S). The most relevant configurations for the target study are: (1) the use of one or two
inductances; (2) the insertion of a capacitor to neutral; and (3) the different capacitors and resistors and
their influence on the tip of the attenuation curve. Hence, in the next sections the effectiveness of the
four configurations shown in Figures 20-23, ranging from simple and cheap configurations to more
sophisticated ones, are assessed in different noise scenarios. Figures 20-23 also show the frequency
response of the considered filter configurations in the PRIME frequency band.
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Figure 20. Schema and frequency response of Filter F2.
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Figure 21. Schema and frequency response of Filter F4.
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Figure 23. Schema and frequency response of Filter F9 (low-pass differential-type filter).

In addition, the commercial filter Spica Strike [71], available at the LINTER to mitigate the effects
of the noise coming from the inverters in the PRIME network, is also evaluated in the next sections.

5. Laboratory Test Description

5.1. Objectives and Methodology

The set of tests presented in this section was carried out in the LINTER of Unién Fenosa
Distribucion, whose main characteristics have already been introduced in Section 3.2.4. The main

objective of such a set of tests is twofold:
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e  On the one side, the tests aim to shed some light on the impact of different representative sources
of noise in the performance of NBPLC networks (notably, PRIME).

e  On the other side, the tests also aim to evaluate how effective different passive filters are to
remove or mitigate the effects of such sources of noise, taking advantage of the configurable filter
presented in Section 4.

The methodology applied in the tests is as follows:

(1) First, it is checked that the scenario is isolated and that there are no other sources of noise, beside
the background noise.

(2) Then, the source of noise under study is introduced and measurements are taken.

(3) Next, a specific configuration of the filter is used and measurements are taken again.

(4) Step 3 is repeated with all the filter configurations to be evaluated.

(5) Finally, the gathered measurements are analyzed and conclusions are drawn.

5.2. Considered Noise Signals

For these tests, a few representative sources of noise have been selected from the comprehensive
review of sources of noise presented in Section 3. Specific samples from all the main categories
presented in Section 3.2 (namely, normative noises, noises measured in the field, and noises measured
in the lab) have been chosen.

Regarding normative noises, the noise that fits the limits established in the EMI norm EN 50065
with frequency steps of 1.953 kHz has been selected as for representing the worst case, since the noise
pulses are more frequent and the envelope remains the same (c.f. Figures 6 and 7).

Regarding the noises measured in the field, the noise generated by a community antenna has
been chosen for several reasons: (1) because it represents a very common noise, considering that this
kind of devices are present in every single building; and (2) because it represents a harsh noise which
can prevent the communications in PRIME networks, as it was pointed out in Section 3.2.3.

Finally, regarding the noises measured in the lab, the noise generated by the charging station
of an EV (notably, the Nissan Leaf) has been chosen as an example of consumption device and the
noise generated by the PV panel inverters available at the LINTER has been selected as an example
of generation equipment. In addition, both PV panels and electric vehicles represent, together with
storage, the most novel equipment at the low voltage power networks of the Smart Grid, so the
considered noises increase the potential impact of the study.

5.3. Considered Scenarios

The tests can be classified into two subsets depending on whether the noise was injected in the
network using a signal generator or the source of noise was a physical component of the lab premises.
To be more precise, the worst case normative noise and the community antenna noise were generated
synthetically; whereas the EV charging spot and the PV inverters available at the LINTER were used.

The components and the setup of the test bench are different depending on this differentiation.
Figure 24 shows the setup used in the synthetic noise injection tests. As it can be seen, the noise
is synthetically generated by means of a signal generator [72] and is injected in the PLC network
through a RF amplifier and a bulk current injection probe [73]. The role of the RF amplifier is to allow
evaluating the impact of different power levels of the injected signal. The RF amplifier used in these
tests works from 3 kHz to 1 MHz with a maximum output power of 50 W.
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Figure 24. Components and setup of the synthetic noise injection tests.

Figure 25 illustrates the procedure followed to synthetically reproduce the noise. As it can be
seen, the inputs are either an image or a text file representing the spectrum of the noisy signal. If the
input is an image, first a manual process to characterize the most significant spectral components is
required. As a result of this process, a text file including pairs of (frequency, amplitude) is obtained.
Such text files are processed by software to obtain pairs of (time, amplitude), since the input of the
signal generator is a time-domain signal. Then, the signal is injected in the PLC network and compared

with the expected one.

Freq. Domain: « Direct transfer X X Sials
- Txtfile =| - Freg-Ampltude = i Honan Signal 1oPes
- Image file Characterization file generator adjustment

picofaseR, (s=999600.. L | [ =
T Y e —— Y '

Ayuda i
0.00041452961917588349 -
0.00033046931961237369
0.00017254623401609395
~1.4830125307814569e-005
-0. 00013991294055001974

-0.00027867970556235555
-0. 00023861507898226525

-8. 31965641 797 38e-005
5. 9266545857944835e-005
| frec30-100_curval bt i 0.00016837719940231307

0.00021123310639801677 -
__ amp30-100_curval .bdt < ’

Figure 25. Schema of the procedure followed to synthetically reproduce the noise.

Figure 26 shows the setup of the tests related to the noise associated to the charging of the EV

Nissan Leaf.
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Figure 26. Components and setup of the EV noise tests.

Figure 27 shows the setup of the tests related to the noise introduced by the inverters of the PV
panels. As it has already been mentioned in Section 3.2.4, the PV system consists of amorphous panels
and a three-phase power conversion consisting of 3 single-phase Danfoss DLX 3.8 KW inverters, in two
of these phases (R and S) being the commercial filter Spica Strike [71] to attenuate harmonics.

Ethernet

RSTN Data
Concentrator >

Smart Inverters PV panels

Meter A [
_@_.._ )_FH_ H_ A

e
R_n ———(Ee )7L [ "tHHh

PLC =~
Filter
l Oscilloscope I

Figure 27. Components and setup of the PV panel inverter tests.
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As it is shown in Figures 24, 26 and 27, in all the tests the signal in the line is monitored
through an oscilloscope [74], which is able to show the time and frequency domain at the same time,
although Section 6 will focus on the frequency domain. The data concentrator is responsible to record the
measurements related to the performance of the PRIME networks that will be analyzed in Section 7.

Figures 24 and 26 also show the position in the network of the configurable filter presented in
Section 4, which can be present or not, as explained in Section 5.1. It is worthwhile to stress that such
a configurable filter is not the same as the filters used in the PV panel inverter tests (Figure 27).

In all the tests, the data concentrator was configured to request standard consumption reports
(such as S02—daily incremental consumption profile report—and S05—daily billing report) to all the
smart meters in the network, so that a certain level of data traffic was guaranteed.

5.4. Lab Test Summary

Table 3 summarizes all the tests that were carried out together with their most relevant features.
Each test was run during 5 min.

Table 3. Summary of the set of tests that were carried out.

Group Noise Filter Amplifier Gain Test ID
No 25% N1
F2 (Figure 20) 25% N2
F4 (Figure 21) 25% N3
Normative 1.953 kHz Fé6 (Figure 22) 25% N4
F6B 25% N5
. F6C 25% N6
Synthetic . o
Noig;_ Injection F9 (Figure 23) 25% N7
No 25% Al
F2 (Figure 20) 25% A2
F2B 25% A3
Antenna No Maximum A4
F2 (Figure 20) Maximum A5
F2B Maximum A6
BV No - EV1
. F2B (Figure 20) - EV2
Lab Equipment
No - PVI1
PV Inverters Spica Strike [71] - PVI2

6. Test Spectral Measurements

6.1. Normative Noise Tests

These tests have been carried out following the schema of Figure 24 and correspond to test IDs N1 to
N7 in Table 3, i.e., with a normative noise signal power corresponding to the 25% of the maximum output
power of the amplifier. The main goal of these tests is to evaluate the effectiveness of the different considered
configurations of the configurable filter (c.f., Figures 20-23) to remove such a harsh noise.

Figure 28 shows the spectral signal measured in phase R for test N1 (i.e., no filter) when there is
no PRIME communications. The normative noise can be easily recognized, the peaks reaching levels
up to 90.9 dBuV. Figure 29 shows that PRIME communications reach levels around 90.9 dBuV too, so it
is to be expected that the normative noise affects the PRIME communications.

Figure 30 shows the spectral signal measured in phase R for test N2 (i.e., with filter F2). Filter F2
does not seem to remarkably mitigate the effects of the normative noise.
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Figure 30. Spectral signal without PRIME communications in test N2.
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Figure 31 shows the spectral signal measured in phase R for test N3 (i.e., with filter F4). It can

be seen that filter F4 introduces two slight dips inside the train of impulses of the normative noise,
as expected from its frequency response (c.f., Figure 21).

File Horizontal | Trigger Vertical Math Cursor Meas Masks Search Analysis Display Tutorials
Figure 31. Spectral signal without PRIME communications in test N3.

Tests N4 to N6 use the same filter configuration: F6. However, by switching S6 on (c.f., Figure 19),
the capacitor in the left side of the superior branch is increased in test N5 and, by switching both 56
and S1 on, the value of both capacitors in the superior branch is increased in test N6. Figure 32 shows
that the regular configuration of F6 introduces a dip inside the train of impulses of the normative noise

File Horizontal Trigger Vertical Math Cursor Meas Masks Search Analysis Display Tutorials

Figure 32. Spectral signal without PRIME communications in test N4

In Figures 33 and 34, it can be observed that such a dip moves towards the beginning of the
PRIME frequency band as the values of the capacitors increase.

Finally, Figure 35 shows the spectral signal measured in phase R for test N7 (i.e., with filter F9)
It can be seen that filter F9 removes the normative noise within the PRIME frequency band.
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Figure 35. Spectral signal without PRIME communications in test N7.
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6.2. Antenna Noise Tests

These tests, as the ones described in previous Section 6.1, are part of the synthetic noise injection
tests, so the same setup in used (Figure 24). The signal injected in this case is shown in Figure 8.
This signal has peaks in frequencies of 41.5 and 83 kHz, reaching 95 and 100 dBuV respectively.

The main goal of these tests is twofold: (1) evaluate the increase of the noise when the gain of the
amplifier reaches its maximum value; and (2) evaluate the effectiveness of a simple and cheap filter
configuration such as filter F2 to mitigate the noise in this situation.

This set of tests comprises from test Al to A6. From Al to A3, the gain of the amplifier is set to
25% and, from A4 to A6, it is set to the maximum.

Figure 36 shows the spectral signal measured for test Al. It can be seen that the peaks reach level
slightly higher than 90 and 100 dBuV respectively. The communications signal is between 90 and 100 dBuv,
as in previous Section 6.1.

File | Horizontal | Trigger | Vertical | Math Cursor Meas | Masks Search Analysis Display Tutorials

Figure 36. Spectral signal without PRIME communications in test Al.

In tests A2 and A3, the same filter configuration F2 is used. The difference is that in test A3 the
value of the capacitor of the filter is increased by switching S6 on (c.f., Figure 19). Figures 37 and 38
show the spectral signal measured for tests A2 and A3 respectively. It can be seen that the filters
achieve reducing the peaks of the noise down to 90 and 100 dBuV respectively.

-B 4&:34 ms —4.:\5?":‘- ms

Figure 37. Spectral signal without PRIME communications in test A2.
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Figure 38. Spectral signal without PRIME communications in test A3.

Like test A1, A4 consists of the injection of the community antenna noise without filtering, but in
this case the gain of the amplifier is set to the maximum. Figure 39 shows that, as a result, the peaks of
the noise are increased up to 100 and 115 dBuv respectively.

File Horizontal | Trigger Vertical Math Cursor | Meas Masks | Search Analysis Display Tutorials

Figure 39. Spectral signal without PRIME communications in test A4.

Tests A5 and A6 are analogous to tests A2 and A3 but with the gain of the amplifier configured
to its maximum value. Based on Figures 40 and 41, the filters do not seem to remarkably reduce the
peaks of the noise in this case.
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Figure 41. Spectral signal without PRIME communications in test A6.

6.3. Electric Vehicle Noise Tests

These tests have been carried out at the LINTER following the setup shown in Figure 26 and
correspond to tests IDs EV1 and EV2 in Table 3.

The main goal of these tests is to evaluate the effectiveness of a simple and cheap filter configuration
such as filter F2 to mitigate the noise introduced by charging an EV (notably, a Nissan LEAF). The used
charging station has a three-phase supply and it is connected to a three-phase meter. However, the charge
work in single-phase mode (8 Amperes in phase R).

Figure 42 shows the spectral signal measured for test EV1 (i.e., without using the filter). It can be
seen that the peaks within the PRIME frequency band reach levels slightly higher than 90 dBuV and
between 80 and 90 dBuV respectively. The communications signal is between 90 and 100 dBuv, as in
previous sections.

Figure 43 shows the spectral signal measured for test EV2 (i.e., introducing filter F2 with switch
S6 on—to increase the value of the capacitor—in phase R). It can be seen that the filter remarkably
mitigates the noise, reducing the peaks in the PRIME frequency band down to around 80 dBuV and
around 71.5 dBuV respectively.
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Figure 43. Spectral signal without PRIME communications in test EV2.

6.4. Photovoltaic Inverter Noise Tests

These tests have been carried out at the LINTER following the setup shown in Figure 27 and
correspond to test IDs PVI1 and PVI2 in Table 3.

The main goal of these tests is to evaluate the effectiveness of the commercial filter Spica Strike [71],
available at the LINTER, to mitigate the noise introduced by the PV inverters. To be more precise,
the PV system has two filters (for the R and S phases, the T phase is not filtered) installed in the AC
outputs of the inverters; the effect of removing the filter in the R phase will be checked by comparing
the result without and with filter.

Figure 44a shows the spectral signal measured for test PVI1 (i.e,, without using the filter)
and Figure 44b shows the spectral signal measured for test PVI2 (i.e., with the filter in phase R).
Comparing both figures, it can be observed that the filter remarkably mitigates the effects of the noise,
being especially effective as the frequency increases.
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Figure 44. (a) Spectral signal without PRIME communications in test PVI1 (without filter); (b) Spectral
signal without PRIME communications in test PVI2 (with filter).

7. Traffic Traces Analysis

7.1. Basis of the Traffic Analysis Tool PRIME Analytics

PRIME Analytics [40] is a cutting-edge software tool, developed within the scope of the OSIRIS
project, which aims to assist DSO to remotely diagnose communications problems in their operative
NBPLC PRIME networks by analyzing reports and logs provided by the deployed data concentrators.
Figure 45 shows an overview of how PRIME Analytics works. Notably, it takes as input the standard
topology report 511, a log with topology events and a log with traffic traces, and provides as output
a set of graphs and processed data. Based on such processed data, network forensics analysis are
made to determine whether a scenario is problematic from communications perspective or not, and to
answer typical forensics questions in case it is problematic, such as why, where, and who.
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Figure 45. PRIME Analytics simplified schema.

In this study, two parameters, obtained from the output of PRIME Analytics, are considered

as figures of merit to evaluate the impact of the noise sources in PRIME communications and the
effectiveness of the filter to mitigate such an impact:

Ratio between ALV_B and ALV_S (ALV_B/S): As Figure 45 shows, PRIME Analytics provides
statistics of packet types based on the traffic traces log. The analysis performed in this study
focuses on two types of packets in particular: ALV_B and ALV_S. ALV_B refers to the keep-alive
messages that the data concentrator (the Base node in PRIME terminology) sends to the smart
meters. The ALV_S refers to the answers of the smart meters (the Service nodes in PRIME
terminology) to the keep-alive messages from the concentrator. The concentrator has independent
counters to keep track of the number of ALV_B and ALV_S messages sent to and received from
each smart meter. These counters are used to obtain statistics on the quality of the communications
with each smart meter, as well as to proceed to unregister a smart meter from the network when
the difference between them exceeds a given threshold. In addition, the concentrator configures
a specific keep-alive timeout at each smart meter and, whenever any smart meter does not
receive any ALV_B message during such a timeout, it proceeds to unregister from the network.
Furthermore, if the smart meter is connected with the concentrator through one or more switches,
the switch(es) would process the unregistration message, proceeding to remove that smart meter
from their forwarding table. Therefore, the higher the difference between the ALV_B and ALV_S,
the worse the conditions of the communications network, since this indicates that either the
ALV_B messages or the ALV_S got lost. In the ideal situation, where no messages get lost,
each ALV_B sent by the concentrator would be answered with the corresponding ALV_S sent by
the appropriate smart meter, so the ratio between these two types of messages would be 1.
Number of unregistered nodes: whenever a smart meter is unregistered from the network
(no matter if the procedure is triggered by the concentrator or by the smart meter), the concentrator
make a note of such an event in the topology event log. Therefore, by processing such a topology
event log, PRIME Analytics calculates the overall number of unregistered nodes. This parameter
is used in this study since it reflects the performance of the network: the higher the number of
unregistered nodes, the worse the performance of the network. It should be noted that if the same
smart meter unregisters from the network, registers to the network and unregisters again during
the same test, both unregistrations count, since this provides indeed an idea of how harsh the
communications are.
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7.2. Normative Noise Tests

Figure 46 shows the results obtained for the normative noise tests. Test N7 (where filter F9 was
used) is not considered since the logs were not recorded by mistake. Nevertheless, based on the
spectral measurements (Figure 35), F9 clearly outperformed the rest of the filter configurations in terms
of removing the noisy signal. Apart from this, Figure 46 shows that test N1 (where no filter was used) is
the worst situation from the communications perspective, as it could be expected. Filter configuration
F4 (used in N3) shows the worst performance in this scenario, followed by filter configuration F2 (used
in N2). Filter configuration F6 (used in tests from N4 to N6) shows the best performance. In addition,
it can be observed that the communications work better as the capacitors in the upper branch of Fé
increase and so the dip within the series of noisy pulses move to the beginning of the PRIME frequency
band. These results may be related with the fact that PRIME uses DBPSK (c.f., Section 2.2), so the first
carrier of the OFDM symbol transmits a well-known value agreed by transmitter and receiver which is
used as reference for the subsequent frequency shifts, and invites to conclude that protecting the lower
part of the PRIME frequency band yields better communications performance.
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Figure 46. Traffic traces analysis for the normative noise tests.

7.3. Antenna Noise Tests

Figure 47 shows the results obtained for the antenna noise tests. It shows that these tests can
be classified into two main groups: (1) tests from Al to A3, where the gain of the amplifier was set
to 25% of its maximum; and (2) tests from A4 to A5, where the gain of the amplifier was set to its
maximum. In the first group, based on the number of unregistered nodes, it seems that the filter
configuration used (F2) performs better when the capacitor increases and the frequency dip move
towards the beginning of the PRIME frequency band, as in the previous case. In the second group,
based on Figure 47, the filter does not seem to be effective, as it was also observed in the spectral
measurements (Figures 40 and 41).
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Figure 47. Traffic traces analysis for the antenna noise tests.

7.4. Electric Vehicle Noise Tests

Figure 48 shows the results of the EV noise tests. It can be seen that the use of filter configuration
F2 with switch S6 on to increase the value of the capacitor improves the network performance both
in terms of ALV_B/S and number of unregistered smart meters, which agrees with the spectral
measurements (Figures 42 and 43).
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Figure 48. Traffic traces analysis for the EV noise tests.

7.5. Photovoltaic Inverter Noise Tests

Figure 49 shows the results of the PV inverter tests. First, it can be observed that the noise introduced
by the PV inverter remarkably hampers the network performance. However, the commercial filter
available in the LINTER proves to effectively mitigate the noise effects, which also agrees with the spectral
measurements (Figure 44).
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Figure 49. Traffic traces analysis for the PV inverter noise tests.

8. Discussion

Communications networks are of capital importance in Smart Grids. PLC technologies are
especially relevant in these scenarios since they provide benefits to DSO, such as that they use the
power lines themselves as communications medium, so deployment costs are dramatically reduced.
In particular, NBPLC technologies are being widely used in the “last mile” or NAN of many AMI
deployments especially in Europe, since they fit the characteristics of European low voltage networks
and meet the communications requirements of the application. All these NBPLC technologies operate
in the CENELEC A band (between 35 and 90 kHz), where a wide range of devices radiate unwanted
emissions mainly due to their power electronics. As a result, the frequency disturbances in the range
from 2 to 150 kHz (the so-called supraharmonics) have become a hot topic both in research and
standardization [75,76]. Hence, some recent research works have investigated the effects associated to
consumer electronics [77], to PV inverters [78,79] or to EV charging [80] in this frequency range.

However, there are just a few studies that investigate the effects of such unwanted emissions in the
NBPLC network performance based on actual experiments and measurements. Reference [81] presents
a great study along this research line, addressing the impact of several DER (namely, hydropower
turbine and pump, PV inverters, and storage equipment) on NBPLC PRIME communications based
on a set of experiments carried out at the Spanish CEDER (Center for the Development of Renewable
Energies). Reference [82] also addresses this issue by investigating the impact of changes in impedance
related to PV production on the quality transmission of FSK NBPLC networks by means of field
measurements, simulations and measurements taken from a simple laboratory setup.

This paper represents another contribution along this research line, presenting some features
which stand out among current state of the art. The overview of noises in NBPLC networks represents
a very comprehensive study, including normative noises, noises coming from consumer electronics
that prevent actual operational PRIME networks from working properly, as well as noises coming from
PV inverters and EV charging. In addition, the paper reviews different noise mitigation techniques,
paying special attention to passive filters, which is in practice the preferred solution of DSO for this
purpose, with the main aim of coming up with a filter that presents a fair enough performance and
can be massively deployed. Thus, based on a set of experiments carried out in the LINTER of Unién
Fenosa Distribuciéon and using own-developed hardware and software tools (namely, a configurable
filter and the network forensics tool PRIME Analytics [40]), the paper also evaluates the impact of
some relevant sources of noise on PRIME communications, together with the effectiveness of different
passive filter configurations to mitigate such an impact.

The analysis of the traffic traces performed with PRIME Analytics shows that the considered sources
of noise affect to PRIME network performance to different extent, provoking certain instabilities.
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The spectral measurements show that the most effective filter configuration in terms of mitigating
the noise is filter 9 (a low pass differential-type filter which presents an attenuation in PRIME band
of more than 48 dB, c.f., Figures 23 and 35). However, this type of filter has an important drawback:
it does not allow the reconnection of the breaker (power control) embedded in the smart meter by
infinitive impedance detection because the filter presents a low capacitive impedance at 50 Hz if the
capacity to neutral is not controlled. This problem could be solved by using an active element, but DSO
are reluctant to this option since it increases the complexity of managing the filter (e.g., the active
element may fail, consumes energy, and requires certain maintenance tasks). Therefore, the application
of this filter is bounded to those locations where breakers are not used or the reconnection is manual.

Based on the spectral measurements and on the traffic analysis, filter F6 shows a remarkable
performance without presenting the aforementioned problem. Filter F2 also proves to be a simple and
cheap solution that works properly in the considered scenarios, thus representing a great option for
massive deployment.

In the assessment of both filter F6 and F2, it is observed that when the value of the capacitor
increases and so the notch of the filter moves towards the beginning of the PRIME frequency band,
PRIME network performance improves, which fits the fact that DBPSK is used.

Finally, the commercial filter used in the LINTER to mitigate the effects of the PV inverters also
shows a great performance based on both the spectral measurements and the traffic analysis.

9. Conclusions

This paper presents a comprehensive study of noise sources, their effects and countermeasures in
NBPLC PRIME networks. The topic is addressed from a practical perspective. First, the paper presents
a set of noises both generated synthetically (normative noises) and measured in the field (noises coming
from consumer electronic devices) or in the LINTER of Union Fenosa Distribucion (noises coming
from EV charging spots and PV inverters). Next, the paper presents a practical analysis of noise effects
and mitigation based on actual tests carried out in the LINTER, where representative noise sources and
different passive filter configurations are considered with the main aim of coming up with a filter that
combats common noises in the “last mile” of AMI reasonably well and could be massively deployed.
Thus, the data gathered in these test is used to evaluate the impact of the considered noises and the
effectiveness of the considered filters in PRIME network performance. This work relies mainly on the
configurable filter and the network forensics tool PRIME Analytics developed within the scope of the
Spanish Ré&D project OSIRIS.

The presented analysis shows that filter F9 outperforms the rest of the filters. However, this filter
does not allow the reconnection of the breaker (power control) embedded in the smart meter by infinitive
impedance detection, making it inappropriate for many in-field deployments. Filter F6 and filter F2 also
show reasonable performance, filter F2 especially representing a great option for massive deployments
due to its simplicity and cost. The analysis also shows that protecting the beginning of the PRIME
frequency band seems to improve PRIME network performance, which fits with the fact that DBPSK
is used.

The noise measurements presented in this paper represents a contribution themselves, since they
can be used for the development of novel theoretical models or for running simulations that enable
further improving the performance of NBPLC networks in the presence of DER.
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Acronyms

AMI Advanced Metering Infrastructure
ARQ Automatic Repeat request

BPL Broadband over Power Line

CE European Conformity

CFP Contention Free Period

COSEM Companion Specification for Energy Metering
CSMA-CA  Carrier Sense Multiple Access with Collision Avoidance
DBPSK Differential Binary Phase Shift Keying
DER Distributed Energy Resources

DG Distributed Generation

DLL Data Link Layer

DLMS Device Language Message Specification
DR Demand Response

DSO Distribution System Operator

EMC ElectroMagnetic Compatibility

EMI ElectroMagnetic Interference

EU European Union

EV Electric Vehicle

FAN Field Area Network

FEC Forward Error Correction

FSK Frequency-Shift Keying

LINTER Grid Interoperability Laboratory

MAC Medium Access Control

MDMS Meter Data Management System

NAN Neighborhood Area Network

NB Narrowband

OFDM Orthogonal Frequency Division Multiplexing

PDU Packet Data Unit

PHY PHYsical layer

PLC PowerLine Communications

PN Promotion Needed

PRIME PoweRline Intelligent Metering Evolution

PSD Power Spectral Density

QoS Quality of Service

R&D Research & Development

SCP Shared Contention Period

SS Secondary Substation

TWACS Two-Way Automatic Communications System

UNB Ultra-Narrowband

VDSL Very-high-bit-rate Digital Subscriber Line
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