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Abstract: Wind turbine blades being struck by lightning is one of the most urgent problems facing
wind farms. In order to reduce the probability of lightning accidents on wind farms, this paper
presents a new electro-geometric model for multiple turbines. In this new model, based on the
physical model of lightning leader development, the striking distance range of the blade tip receptor
is calculated, taking into account the influence of the charged particles around the blade. Lightning
shielding amongst multiple turbines is provided in combination with the traditional electro-geometric
model, and a criterion formula is obtained for mutual shielding for multiple turbines. The influence
of environmental factors, such as temperature, atmospheric pressure, air humidity, and altitude,
on lightning shielding on large-scale wind farms is also analyzed by studying the lightning shielding
distance between wind turbines. The calculation shows that the larger the relative air density and the
absolute humidity, and the lower the altitude, and the larger the lightning shielding distance between
wind turbines. The method proposed in this paper provides a theoretical basis for the lightning
protection on wind farms under different environmental conditions.
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1. Introduction

Wind power is an important contributor to energy system reform as a form of clean energy
production. However, wind farms are highly susceptible to lightning strikes as a result of their special
structure and the area surrounding wind turbines. Most damage caused by lightning is irreparable,
which seriously affects the economic performance of wind farms due to the high cost of repairing or
replacing the damaged blades [1,2]. Therefore, it is imperative to analyze the lightning protection of
multiple turbines and the influence of environmental factors on lightning protection is important in
order to promote the economic and stable operation of the wind farms.

The turbines on existing wind farms are mostly arranged in rows where the spacing is based
on semi-empirical models, confirmed by wind farm operations, to maximize the power generation
efficiency [3]. The optimal spacing between columns was suggested to be 3R–6R [4] according to actual
operational experience. In order to determine a method for optimizing turbine spacing on wind farms
with different wind conditions and regional boundaries, genetic algorithms have been employed,
using the ratio of total investment to the power generation efficiency as the target parameter [5,6].

The above research indicates that the existing layout of wind farms has not been analyzed from a
lightning protection perspective, and the influence of environmental factors on lightning protection
efficiency has not been considered. For the protection of wind turbines from lightning, some progress
has been made through experimental studies on electric field distribution around the blade and the
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lightning protection effect of the blade tip receptor [7–9]. However, those experimental studies have
poor portability since repeated tests have to be done for different models of wind turbines under
different environmental conditions, requiring extensive manpower and resources. As the wind turbine
capacity increases, it becomes more difficult to perform the experiments. The experiments are also
not applicable to the protection of multiple turbines. Therefore, the development of an analytical
model suitable for shielding multiple turbines from lightning is the basis for improving the allocation
of wind turbines on farms for lightning protection. Based on the two-dimensional (2D) stochastic
model of the lightning leader (a discharge mode in early formation of lightning), the Chinese Academy
of Meteorological Sciences [10] simulated the characteristics of lightning strikes on wind turbines
and analyzed the impact of lateral distance of the lightning downward leader from the wind turbine,
and the effect of the angle of the blade on the probability of lightning strikes. Mengni et al. [11]
employed the Self-consistent Leader Inception and Propagation Model (SLIM) proposed by Becerra
and Cooray [12,13] to calculate the striking distance of each blade tip receptor and explain how the
points on the blade farthest from the receptor are damaged by lightning. However, the above analysis
is insufficient as it does not take into account the accumulation of charges at the tip discharge area
and is confined to a single turbine, while the lightning shielding between multiple turbines was
not considered.

In this paper, the electro-geometric model (EGM) of lightning shielding between multiple
wind turbines is introduced by combining the lightning leader progression physical model and
a conventional EGM. In this new EGM, the influence of charged particles around the blade is taken into
account. The model is then used to analyze the impact of environmental factors such as temperature,
atmospheric pressure, air humidity, and altitude on mutual shielding between wind turbines on
a large-scale wind farm. The results provide a theoretical basis for the allocation of turbines on
wind farms under different environmental conditions, and gives significant insight for their safe and
economic operation. A breakdown experiment of scaled wind turbines was designed to verify the
impact of air humidity on the shielding distance between two turbines.

2. EGM of Lightning Shielding Between Multiple Wind Turbines

2.1. The Principle of Lightning Shielding Between Multiple Wind Turbines

The EGM relates the lightning’s parameters to the geometrical structure of the studied object by the
striking distance, which describes the capacity of ground structures to attract lightning. The common
assumption is the lightning will discharge to the object as long as it reaches the range of striking
distance [14,15]. With the large-scale application of wind power, cluster development often occurs
with wind turbines. This section focuses on the mutual shielding between two turbines and analyzes
the mutual shielding distance. As shown in Figure 1, the colored circle represents the striking distance
range under a certain lightning current at a certain rotation angle of the blade. The center of the striking
distance circle is located on the blade tip rotation circle and the radius Rp is the striking distance of the
tip receptor. D is the spacing between two wind turbines, and Lf is the horizontal shielding distance of
one turbine at a certain angle, which can be calculated as:

Lf = R cos θ + RP (1)

The two turbines are assumed to be axially symmetrical during operation. Figure 1 shows the
intersection of striking distance circles of two turbines’ blade tip receptors, where Ls is the overlap
distance. Provided that the lightning downward leader (DL) develops vertically, the number of
lightning strikes on two turbines can be calculated as:

N = (4Lf − Ls)× n (2)
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where n is the equivalent lightning bolt frequency where the turbines are located. If the striking
distance circles of two turbines do not intersect, the number of lightning strikes on two turbines is:

N0 = 4Lf × n (3)
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From Equations (2) and (3), N < N0, which means the intersection of the striking distance circles
of two turbines enables them to shield each other, reducing the overall likelihood of lightning strikes.
This improves the lightning protection of the whole wind farm. Mutual shielding occurs when the
distance between two turbines D meets the requirement that:

D < Dmax = 2R cos θ + 2RP (4)

where Dmax is the maximum distance at which mutual shielding exists. If D > Dmax, the two turbines
have no mutual shielding on each other, so that Equation (4) is the criteria formula for mutual shielding
between multiple turbines.

2.2. Calculation of Space Potential Around the Wind Turbine Blade

Thunderclouds are generally distributed in the space 2–10 km above the ground, and 90% of
them have negative polarity [16]. We assume the height of the thundercloud to be 2.5 km and the
potential generated by thundercloud is calculated by a simplified charged disk model [17]. The charge
distribution of the lightning DL channel is simulated by a line charge with a point charge at the head.
According to the charge model proposed by Cooray et al. [18], the internal charge density of lightning
leader channel is obtained by:

ρ(τ) = a0

(
1− τ

H − z0

)
G(z0)Ip +

Ip(a + bτ)

1 + cτ + dτ2 H(z0) (5)

where G(z0) = 1 − z0/H, H(z0) = 0.3 α + 0.7 β, α = e−(z
0
− 10)/75, G(z0) = 1 − z0/H, p(τ) is the internal

charge density of the lightning leader channel, C/m; z0 is the height of lightning leader head, m; H is
the height of thundercloud, m; τ is the distance from a certain point of DL channel to leader head, m;
Ip is the first return stroke current amplitude, kA. The values of the coefficients are: a0 = 1.476 × 10−5,
a = 4.875 × 10−5, b = 3.9097 × 10−6, c = 0.522, and d = 3.73 × 10−3.
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In order to calculate the motion of charged particles in the corona area for lightning weather,
a simulation model has been built on the basis of a research by Axel Winter [19]. The space charge
is axially symmetric around the blade tip receptor ignoring the influence of wind. For the sake of
convenience, charged particles are divided into three categories according to their sizes: large charged
particles such as aerosols, small charged particles such as charged ions, and neutral particles. The charge
of each type of particle is considered to be approximately the same. The Convection/Diffusion module
and the AC/DC module of COMSOL Multiphysics (COMSOL Multiphysics 5.0, COMSOL, Stockholm,
Sweden) were used to simulate the distribution of charges in the vicinity of the wind turbine blade
taking into account the motion, diffusion, and neutralization of charged particles [20].

The kinematic equations of n+, N+, and Na, respectively, are as follows:

∂n+

∂t
= d · ∇2n+ −∇ ·

(
n+ · µn+ ·

→
E
)
− knN · n+ · Na (6)

∂N+

∂t
= d · ∇2N+ −∇ ·

(
N+ · µN+ ·

→
E
)
+ knN · n+ · Na (7)

∂Na

∂t
= d · ∇2Na − knN · n+ · Na (8)

The electric field intensity
→
E and electric potential Φ are in accord with the Poisson equation:

∇ ·
→
E = −∇2Φ =

e · (n+ + N+)

ε0
(9)

where µn+ is the ion mobility of small particles with a value of 1.5 × 10−4 m2/(s·V), µN+ is the ion
mobility of large aerosol particles with a value of 1.5 × 10−6 m2/(s·V), knN is the binding coefficient
between small particles and large aerosol particles with a value of 2.9 × 10−6 m3/s, d is the particle
diffusion rate with a value of 1 m2/s, e is the charge of elementary charge, and ε0 is the dielectric
constant of air with a value of 8.854187 × 10−12 F/m.

A 1.5 MW wind turbine was used as an example, with a tower height of 70 m, a blade length of
40 m, a radius of the lightning down conductor of 0.01 m, a tower radius of 2.5 m, and the blade has
only a single tip receptor. As shown in Figure 2, one blade is perpendicular to the horizontal plane and
the lightning DL develops vertically downward from directly over the blade.
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The space potential distribution near the upright blade is shown in Figure 3, where h is the height
of the DL head, m; and U is the background potential in the direction of discharge axis of the blade
tip receptor, MV. Under the combined action of the lightning DL and the blade, the electric field is
significantly distorted in the space especially within 5 m from the blade tip. The potential of the area
within 10 m from the blade is significantly reduced if the movement of charge around the blade is
taken into account. This is due to the accumulated positive charge near the blade tip that neutralizes
the negative background electric field. There is no significant difference in the potential beyond 10 m
since there is little charge in the area far from the blade.
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2.3. Numerical Calculation of the Striking Distance of the Blade Tip Receptor

Most of the negative lightning strikes can be divided into three stages: the downward
development of DL, the initiation of upward leader (UL), and the connection process between DL
and UL. The downward development of DL increases the surface electric field of the ground object.
A positive space charge area is generated due to the collision ionization and adhesion effect, which will
produce an initial corona when the positive space charge is larger than a certain value [21]. After an
initial corona is generated, a streamer is formed in the discharge gap [22,23] and an UL is generated
while the streamer charge Q > 1 C [24].

After a UL is generated, DL is assumed to vertically approach the ground incrementally.
The corresponding simplified process of UL development is shown in Figure 4 where l is the length
of the UL, ls is the length from streamer head to the starting point of the UL, U1 is the background
potential and U2 is the distorted potential considering the corona area charge. When the DL develops
in the ith step, the potential of the UL head is Utip, which can be calculated as [25]:

U(i)
tip = −liE∞ − x0E∞ ln

[
Estr

E∞
− Estr − E∞

E∞
× e−

li
x0

]
(10)

where E∞ is the steady-state value of the quasi-static leader field intensity with a value of 3 × 104 V/m;
Estr is the electric field intensity of the streamer area, which is related to the relative density of air,
humidity, and altitude with a value of 400 kV/m here; and x0 is the length coefficient with a value of
0.75 m.
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The quantity of the newly generated charge in the corona area in front of the UL head can be
approximated by:

∆Q(i) = KQ

∫ l(i)s

l(i)
{U(i−1)

tip − [U(i)
tip + Estr(l − l(i))]}dl (11)

where KQ is an environmental factor with a value of 3.5 × 10−11 C/(V·m).
The quantity of charge qL required to convert the streamer to UL per unit length corresponds to a

value with a suggestion of 65 µC/m. Combining this into Equation (11), the length of the UL in the
i + 1th step is:

l(i+1) = l(i) + ∆Q(i)/qL (12)
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Based on the above-mentioned leader development mechanism, we assumed the lightning strike
occurs when DL and UL develop to the nth step and their streamers encounter one another. At this
time, ls(n) is the longest distance the UL and its streamer reach, which represents the lighting attraction
range of tip receptor. This distance is determined to be Rp, the striking distance of the tip receptor,
which can be calculated by:

Rp = l(n) +
(

U(n)
tip −U(n)

d

)
/Estr (13)

where Ud is the potential of the DL head. The process for calculating Rp is described by the algorithm
sketched in Figure 5. The traditional formula of striking distance has been widely used for the lightning
protection of buildings with lightning rods. The upright blade is similar to a lightning rod. In this
paper, the striking distance of the upright blade was calculated and compared with the result obtained
with the traditional formulas (Figure 6). The values obtained with this study are smaller than those of
Armstrong and Whitehead [14] as well as the results given by IEEE [26], and are closer to the results
of the formula recommended by IEEE. The calculation method used in this paper takes into account
the effect of space charge that attenuates the electric field intensity around the blade tip receptor
and making the generation of an UL more difficult, which leads to the decrease of Rp. In addition,
this method is more consistent with the physical development of lightning and considers the special
structure of the wind turbine, unlike the traditional formula which makes it unsuitable for wind
turbine lightning protection.
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3. Impact of Environmental Factors on the Maximum Shielding Distance of Two Turbines

As is shown in Figure 1, the value of Lf is associated with the rotation angle of the blade. In order
to analyze the impact of environmental factors on the maximum shielding distance, Dmax, we took the
median rotation angle (θ = 45◦), instead of the boundary values of 0◦ and 90◦, to reduce the overall
relative error. The lightning current is Ip = 60 kA and the wind turbines have a rated capacity of
1.5 MW; the parameters are described in Section 2.2.

3.1. Relationship Between Dmax and Pressure, Temperature and Humidity

The electric field intensity of the streamer area Estr is influenced by environmental factors such as
atmospheric pressure, temperature and humidity [27]. The relationship can be expressed as: Estr = 425δ1.5 + (4 + 5δ)γ

δ =
P
P0

T0
T

(14)

where γ is the absolute humidity, g/m3; δ is the relative air density; P is the atmospheric pressure,
atm; T is the temperature, K; P0 is the atmospheric pressure at sea level under standard atmospheric
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condition with a value of 1 atm; and T0 is the temperature at sea level under standard atmospheric
condition with a value of 293 K.

According to the principle of lightning leader development reviewed in Section 2.3, we know
that the value of Estr will affect the potential of leader head and the quantity of electric charge ∆Q
newly generated by each step in the streamer area, and ultimately the development length of the UL.
According to the simulation process shown in Figure 5 and Equation (4), the variation of Dmax versus
the change of atmospheric pressure, temperature, and humidity with a lightning current of 60 kA is
obtained (Figures 7 and 8). Dmax increases with the increase of atmospheric pressure and absolute
humidity, and decreases with the increase of temperature.

As temperature and atmospheric pressure are related to relative air density, the above-mentioned
relationship can be expressed simply as Dmax increase with the increase of relative air density δ and
absolute humidity γ. For a wind farm with low air density and absolute humidity, the spacing between
two turbines should be reduced as much as possible to guarantee mutual shielding.
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3.2. Relationship Between Dmax and Altitude

Since precise data for δ and γ have to be measured with special instruments, using Equation (14)
in engineering is impractical. Dmax between two turbines can be approximately calculated according
to the local altitude [28] because P, T and γ are related to the altitude HL as follows:

P = P0 × e−HL/8 (15)

T = T0 − 6HL (16)

γ = γ0 × e−HL/3 (17)
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where HL is the altitude, km; γ0 is the standard absolute humidity at sea level under standard
atmospheric condition with a value of 11 g/m3. Equations (15)–(17) are incorporated with Equation (14)
to obtain the relationship between the electric field intensity of streamer area Estr and the altitude,
represented as:

Estr = 9.18HL
2 − 102.16HL + 523.69 (18)

The variation of the maximum shielding distance Dmax between two turbines under Ip = 60 kA
with changing altitude is illustrated in Figure 9. Dmax decreases with the increase of altitude, so wind
farms at high altitude must reduce the distance between two turbines as much as possible to guarantee
mutual shielding.

Notably, P, T, and γ in two different areas at the same altitude may be slightly different due to the
terrain, latitude, and season. Therefore, in order to obtain an accurate result, δ and γ of the area have
to be locally measured with instruments and be incorporated into Equation (14).
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4. Long Gap Breakdown Experiment for a Scaled Wind Turbine

To verify the influence of environmental factors on the shielding distance Dmax, a long gap
discharge experiment with a scaled wind turbine model was carried out at the Shahe Experimental
Station of North China Electric Power Research Institute. The voltage of the rod-shaped electrode was
used to simulate the height of the lightning DL. The variation of striking distance of a single wind
turbine Rp with different air humidity was studied. Combining Rp and Dmax shown in Equation (4),
the variation of Dmax with the change of air humidity is obtained.

The experimental schematic diagram and the wind turbine model are illustrated in Figure 10,
where the height of the scaled wind turbine model is 4 m and the length of blade is 1.8 m. A tip
receptor was installed on each blade and grounded by a down conductor. A rod-shaped electrode
was used to simulate the lightning DL. The height between the electrode and the wind turbine nacelle
was adjusted to ensure that an UL is formed when breakdown occurs (Figure 11). Considering the
maximum voltage generated by the impulse voltage generator, the vertical distance between the lower
end of electrode and the nacelle was determined to be 3 m.

The angle of the blade was set to 30◦ and 90◦ in the experiment. Because the atmospheric
pressure intensity is difficult to control, the experiment mainly analyzes the influence of air humidity
to UL creation. The breakdown experiment of the scaled wind turbine model was carried out on
both sunny (γ = 18 g/m3) and cloudy days (γ = 25 g/m3) while the temperature is between 30 and
32 degrees Celsius.

The analysis in Section 3 indicates that the greater the air humidity, the greater the value of Dmax

and the longer the length of the UL. Under higher air humidity, the UL can be generated when the
DL value is higher. This relationship can be approximately represented by the potential of the rod
electrode: the higher the electrode potential, the nearer the DL to the ground.
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The breakdown experiment was performed 20 times each with blade angles at 30◦and 90◦ under
different humidity conditions. The camera used long exposure mode to record the breakdown path
to ensure an UL was generated when breakdown occurred. The breakdown voltage is illustrated in
Figure 12. The breakdown voltage at γ = 25 g/m3 is lower than the breakdown voltage at γ = 18 g/m3

by about 80 kV. This means the higher the air humidity, the earlier the UL is generated and the
larger the Rp. According to the relationship between Rp and Dmax in Equation (4), Dmax is also larger.
The experimental results are consistent with the conclusion drawn in Section 3 that Dmax increases
with an increase in air pressure and absolute humidity.
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5. Conclusions

In this paper, an electro-geometric model of lightning shielding between multiple turbines was
established. The model uses the physical development model for the lightning upward leader to
calculate the striking distance of the blade tip receptor, taking into account the influence of charged
particles around the blade on the background potential distortion. The criterion formula for the mutual
shielding of multiple turbines is obtained, showing that mutual shielding exists when the distance
between two turbines D < Dmax.

The effect of environmental factors, including temperature, atmospheric pressure, air humidity
and altitude, on Dmax were further investigated. We found that the distance between two turbines
should be reduced as much as possible in areas with low air density, high humidity or high altitude in
order to meet the requirements for mutual shielding.

The EGM of lightning shielding between multiple wind turbines proposed in this paper is of
referential value for lightning protection and ensuring the stable operation of wind farms.
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Nomenclature

θ Angle between the blade and horizontal direction
p Charge density of the lightning leader channel
γ Absolute humidity
γ0 Standard absolute humidity
δ Relative air density
τ Distance from a point of downward leader channel to the leader head
Φ Electric potential
µn+ Ion mobility of small particles
µN+ Ion mobility of large aerosol particles
ε0 Dielectric constant of air
d Particle diffusion rate
D Spacing between two wind turbines
e Charge of elementary charge
→
E Electric field intensity

E∞ Steady-state value of quasi-static leader field intensity
Estr Electric field intensity of the streamer area
HL Altitude
Ip Lightning current amplitude
knN Binding coefficient of small particles and large aerosol particles
KQ Environmental factor
l Length of the upward leader
ls Total length of upward leader and streamer
Lf Horizontal shielding distance of turbines at a certain angle
Ls Overlap distance
n Equivalent thunderbolt frequency
n+ Concentration of small charged particle
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N+ Concentration of large charged aerosol particle
Na Concentration of neutral aerosol particle
P Atmospheric pressure
P0 Standard atmospheric pressure
R Length of turbine blade
Rp Striking distance of blade tip receptor
T Temperature
T0 Standard temperature
U1 Background potential
U2 Distorted potential considering corona area charge
Ud Potential of downward leader head
Utip Potential of blade tip receptor
x0 Length coefficient
z0 Height of lightning leader head
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