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Abstract: Cascaded H-bridge Multilevel Inverter (CHMI) is widely used in industrial applications
thanks to its many advantages. However, the reliability of a CHMI is decreased with the increase
of its levels. Fault diagnosis techniques play a key role in ensuring the reliability of a CHMI.
The performance of a fault diagnosis method depends on the characteristics of the extracted features.
In practice, some extracted features may be very similar to ensure a good diagnosis performance at
some H-bridges of CHMI. The situation becomes even worse in the presence of noise. To fix these
problems, in this paper, signal denoising and data preprocessing techniques are firstly developed.
Then, a Principal Components Rearrangement method (PCR) is proposed to represent the different
features sufficiently distinct from each other. Finally, a PCR-based fault diagnosis strategy is designed.
The performance of the proposed strategy is compared with other fault diagnosis strategies, based on
a 7-level CHMI hardware platform.

Keywords: fault diagnosis; feature representation; principal components rearrangement; cascaded
H-bridge multilevel inverter

1. Introduction

Due to the limitation of natural resources and increased pollution caused by fossil fuels and
nuclear power, renewable energy research has become a hotspot [1]. As an important part of energy
conversion, cascaded H-bridge Multilevel Inverter (CHMI) is widely used in high power applications
for medium and high voltages thanks to its high switching frequency, small number of components
and low total harmonic distortion [2–4]. However, when its level increases, the reliability of the inverter
will be reduced due to the eventual loss and faults of components [5,6]. The healthy functioning of an
inverter plays an important role in the process of DC to AC power conversion [7]. Therefore, the fault
diagnosis of CHMI is particularly important [8–10].

To achieve a good fault diagnosis, it is crucial to extract representative and distinctive fault
features [11]. Principal Component Analysis (PCA) is an efficient tool to extract useful features,
especially from high-dimensional data [12], such as the fault data of CHMI. Recently, lots of PCA-based
feature extraction methods have been proposed for fault diagnosis of CHMI. In [13], after the Fourier
transform of data, the dimension of fault features is reduced by PCA. In [14], PCA is used to reduce
the input data of Back Propagation Neural Network (BPNN). However, considering the unavoidable
noise and high-dimension of large data, if the classical PCA is used only, the fault features may not be
sufficiently distinct from each other due to the great similarity between several signals among different
categories in CHMI. When perturbed by noise, the similarity degree of features may become too big to
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ensure the performance of fault diagnosis. As a result, improved PCA algorithms have been proposed
for the fault diagnosis of CHMI. For example, Ref. [15] has adopted Relative Principal Component
Analysis (RPCA) for feature rearrangement of the fault data acquired from CHMI. Ref. [16] has used
Kernel Principal Component Analysis (KPCA) for feature extraction and fault detection of high-voltage
circuit breakers. Though the improved PCA algorithms are able to extract more useful information of
high-dimensional data, this improvement is made before the steps of the PCA algorithm, which has
some inherent drawbacks, such as the great complexity due to the selection of the relevant relative
information of Principal Components (PCs) [17,18], the big similarity [19–21] between some features
corresponding to different fault categories after utilizing the PCA method, etc.

The main problem is that the different fault features extracted by PCA are affected by noise and
may be very similar to ensure a good performance in fault diagnosis of CHMI. Therefore, signal
denoising and data preprocessing are necessary before feature extraction. Principal Components
Rearrangement (PCR), a feature representation method, is proposed in this work. This method tries to
make the features extracted by PCA sufficiently distinct to facilitate their diagnosis. PCR consists of
three parts: the PCA-based feature extraction, features rearrangement of each PC and new projection
matrix rebuilding.

The rest of this paper is organized as follows. Section 2 describes a common problem of CHMI
with a resistive load of finite value. Section 3 details the steps of the proposed PCR method. In Section 4,
a PCR-based fault diagnosis strategy is presented. In Section 5, the performance of the proposed
PCR-based fault diagnosis strategy is verified and compared with other related fault diagnosis
strategies, based on a 7-level CHMI hardware platform. Finally, Section 6 concludes the paper.

2. Problem Description

In this section, firstly, the useful signals are selected for the fault diagnosis of CHMI. Then,
the structure of the original data is described. Finally, a common problem of CHMI with a resistive
load of finite value is described.

2.1. Fault Signal Analysis

The acquisition of effective signals plays an important role in the fault diagnosis of CMHI. In this
paper, the voltage signals are chosen as the signals for the fault diagnosis, and Open Circuit (OC) of
switching devices in CHMI is considered as the fault cause. The analysis is as follows.

When a fault occurs at any switch, the voltage and current signals will be unbalanced and distorted.
Voltage and current are the main signals allowing to make the fault diagnosis of CHMI [22]. Compared
with the voltage signals, the load has greater effects on the current signals, which are not suitable for
the fault diagnosis [22]. Moreover, when there exist logic errors of driving signals, under-voltage of
power supply, over-voltage breakdown, avalanche breakdown and thermal breakdown, etc., Short
Circuit (SC) may occur at switching devices of CHMI. Because the time of SC is very short (nomally
within 10µs), usually, it is too late to diagnose a SC due to its great destruction to CHMI, which may
make the system break down promptly and sometimes even irreversibly. As a result, the SC protection
of switching devices is always based on hardware such as protection circuits, usually the fuses. Then,
SC can be converted to OC. Therefore, both SC and OC, two main faults of switching devices of CHMI,
can be attributed to OC for fault diagnosis [23]. Consequently, the voltage signals of OC are selected
for fault diagnosis of CHMI.

The topology of a CHMI is shown in Figure 1, where m represents the number of H-bridges.
The last H-bridge is denoted as “H_bottom”. The labels of different conditions are shown in Table 1
according to the notations in Figure 1. For example, there are 12 single switch faults plus the normal
condition when m= 3, giving a total of 13 different situations. Figure 2 shows the voltage signals for a
7-level CHMI without load, which means that the value of load is infinite. We can observe that when
an OC occurs at H-bridge 1, Switch 1 (H1S1) at 0.02 s, the voltage amplitude is decreased from 72 V to
48 V. When OC occurs at other switching devices, the changes of voltage amplitudes are all obvious
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and different from each other as circled in Figure 2. Therefore, the amplitudes of OC voltage signals
can be used as the features for fault diagnosis of CHMI.

Figure 1. A Cascaded H-bridge Multilevel Inverter (CHMI) topology.

Table 1. Faults and category labels.

No. Fault Category Labels

1 Normal [1,0,0,0,0,0,0,0,0,. . . ,0,0,0,0]T

2 H-bridge 1, Switch 1 Open Circuit (H1S1 OC) [0,1,0,0,0,0,0,0,0,. . . ,0,0,0,0]T

3 H1S2 OC [0,0,1,0,0,0,0,0,0,. . . ,0,0,0,0]T

4 H1S3 OC [0,0,0,1,0,0,0,0,0,. . . ,0,0,0,0]T

5 H1S4 OC [0,0,0,0,1,0,0,0,0,. . . ,0,0,0,0]T

6 H2S1 OC [0,0,0,0,0,1,0,0,0,. . . ,0,0,0,0]T

7 H2S2 OC [0,0,0,0,0,0,1,0,0,. . . ,0,0,0,0]T

8 H2S3 OC [0,0,0,0,0,0,0,1,0,. . . ,0,0,0,0]T

9 H2S4 OC [0,0,0,0,0,0,0,0,1,. . . ,0,0,0,0]T

· · · · · · · · ·
4m−2 HmS1 OC [0,0,0,0,0,0,0,0,0,. . . ,1,0,0,0]T

4m−1 HmS2 OC [0,0,0,0,0,0,0,0,0,. . . ,0,1,0,0]T

4m HmS3 OC [0,0,0,0,0,0,0,0,0,. . . ,0,0,1,0]T

4m+1 HmS4 OC [0,0,0,0,0,0,0,0,0,. . . ,0,0,0,1]T
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Figure 2. Voltage signals of each switching device in a 7-level CHMI with load of infinite value when
an Open Circuit (OC) occurs at 0.02 s.

2.2. Structure of the Original Data

The structure of the original acquired data for fault diagnosis is described in Figure 3. There are
I categories (normal and fault situations), J observations for each category and N sampling points
with each observation. The total observations are M= I× J. Consequently, the original data can be
represented by a matrix of dimension (M, N). After the original data are denoised or preprocessed,
the structure of the processed data remains the same.

Figure 3. Structure of the original data.

2.3. Problem Description in CHMI

When an OC occurs in CHMI, even the load has less effects on the voltage signals than the current
signals, and these effects can’t be ignored. The resulting voltage signals in CHMI with a resistive load
of finite value may become very similar. For illustrating the problem, a 7-level CHMI with a load of
finite value is used.

To give a practical example of similar fault signals, a resistive load is used in CHMI. Here, 5 Ω is
used in the 7-level CHMI model to describe the problem in CHMI. The resulting voltage signals are
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shown in Figure 4. The voltage signals are different for different faults except for H3, the last H-bridge.
When an OC occurs, the signals are very similar (almost the same) at the cross positions (H3S1, H3S4

and H3S2, H3S3), which will make their diagnosis very difficult.

Figure 4. Fault signals of CHMI with load = 5 Ω when an Open Circuit (OC) occurs at 0 s and m = 3.

As shown in Figure 5, the problem remains the same at the cross positions in H_bottom of CHMI
when m is set as 4, 5 and 6 corresponding to level-9, level-11 and level-13 of CHMI, respectively.
Therefore, the problem that the voltage signals are very similar at the cross positions in H_bottom of
CHMI can not be avoided, and this common problem will influence the performance of the final fault
diagnosis. Additionally, affected by noise during the data acquisition, the fault diagnostic performance
will be worse.

To overcome the above problems, after the necessary signal denoising and data preprocessing,
an effective feature representation method and a fault diagnosis strategy are proposed in this paper.

Figure 5. Fault signals in H_bottom of CHMI when m = 4, 5, 6 and load = 5 Ω.
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3. PCR Method

For fixing the problem of great similarity between some features, the PCR method is proposed
in this paper. This section provides details of this method, which includes the PCA-based feature
extraction, features rearrangement of each PC and new projection matrix rebuilding.

3.1. PCA-Based Feature Extraction

PCA is usually used to reduce the dimension of data and extract useful features. The steps of
the classical PCA method [24] are described as follows.

Let X ∈ RM×N be a M×N real data matrix, where M, N represent the number of total
observations and the number of sampling points in each observation, respectively. M= I× J , where I,
J are, respectively, the number of categories and the number of each category’s observations.

Firstly, X is normalized by Equation (1) for numerical efficiency without any physical meanings:

X∗ =
X−min(X)

max(X)−min(X)
. (1)

The correlation matrix of X∗ can be estimated by [25]:

CX∗ =
1

N− 1
(X∗)TX∗. (2)

Let λi and νi, where i = 1, 2,. . . , I, be its eigenvalues and the corresponding eigenvectors
respectively. The Cumulative Percentage of Variance (CPV) is defined as:

CPV(n) = ∑n
i=1 λi

∑N
i=1 λi

× 100%. (3)

From Equation (3), the number k of PCs can be estimated by:

k = arg min
n

(CPV(n)) ≥ 85%. (4)

Denote the projection matrix of PCA by P ∈ RN× k, which is constituted by the eigenvectors
corresponding to the k largest eigenvalues. The resulted data after dimension reduction are given by:

Y = XP, (5)

which can be specified as:

Y = (y1, y2, . . . , yk) =

 y11 · · · y1k
...

. . .
...

yM1 · · · yMk

 . (6)

Each column of Y is a PC, which is used as the input data for the rearrangement method described
as follows.

3.2. Features Rearrangement of Each PC

This part describes the rearrangement method in order to make the features of each PC sufficiently
distinct. The features rearrangement of each PC includes the two following steps.

Step 1: Selection of one column of Y

The selected cth column yc of Y can be written as:

yc = (y1c, y2c, . . . , yMc)
T, (7)

where c = 1, 2, . . . , k. Considering the I categories, yc can be rewritten as
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yc = (yT
c_1, yT

c_2, . . . , yT
c_I)

T. (8)

There are J observations in each category. Thus, yc_i = (y[(i−1)J+1]c, y[(i−1)J+2]c, . . . , y[(i−1)J+1]c)

belongs to the ith category in vector yc, where i = 1, 2, · · · , I.

Step 2: Features rearrangement for each PC

Denote the vector of mean values of I categories by:

yc = (µc_1, µc_2, . . . , µc_I), (9)

where the mean value of the ith category is calculated by uc_i =
1
J ∑J

j=1 y[(i−1)J+j]c. Let the data interval
length of yc_i be ∆i, given by:

∆i = max(yc_i)−min(yc_i). (10)

In order to make the different categories sufficiently distinct, a straightforward and easy way is to
make the length of different categories equal to the maximum data interval length, which is defined as:

∆ = max(∆1, ∆2, . . . , ∆I). (11)

For the ith category of yc, yc_i can be rearranged as:

yPCR
c_i = yc_i −min(yc_i) + (I− l)∆, (12)

where i, l = 1, 2, . . . , I and µc_i is the lth largest value in yc. Finally, the cth PC vector after the
rearrangement is given by:

yPCR
c = ((yPCR

c_1 )T, (yPCR
c_2 )T, . . . , (yPCR

c_I )T)T. (13)

Other PCs are all calculated in the same way by Equations (7)–(13) until all the k PC vectors
are rearranged.

3.3. New Projection Matrix Rebuilding

When all the k PC vectors are rearranged, the final rearranged matrix YPCR can be written as:

YPCR = (yPCR
1 , yPCR

2 , · · · , yPCR
k ). (14)

According to the data matrix X ∈ RM×N and the rearranged data matrix YPCR ∈ RM×k (14),
the new projection matrix PPCR ∈ RN×k can be built to replace the initial projection matrix P (5) as:

PPCR = X†YPCR, (15)

where X† represents the pseudoinverse of X, which can be obtained through the following Singular
Value Decomposition (SVD) of X:

X = USVT, (16)

where UTU = I, VTV = I and I is an identity matrix. Then, X† can be calculated as:

X† = VS†UT, (17)

where the diagonal matrix S† is obtained by inversing all the diagonal elements having value greater
than zlim = 10−6 of the diagonal matrix S.

4. Fault Diagnosis Strategy Based on PCR

As shown in Figure 6, a fault diagnosis and tolerant control system usually contains six steps:
signal denoising, data preprocessing, feature representation, fault classification, diagnosis results
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output and fault-tolerant control. Focusing on the first four steps, this section details a PCR-based fault
diagnosis strategy.

Figure 6. Structure of fault diagnosis strategy used in the inverter system.

4.1. DWT-Based Signal Denoising

Noise affects the success of fault detection and classification. Denoising the measured signals
plays a vital role in effective fault diagnosis. For this purpose, Discrete Wavelet Transform (DWT)
by using multiscale wavelet decomposition and reconstruction is used for signal denoising [26,27].
In this paper, DWT-based signal denoising is a necessary and mandatory step in all the studied fault
diagnosis strategies. The main steps of signal denoising by DWT are as follows.

(1) The original data are decomposed into ndwt layers with Symlet wavelet function ψ [28].
(2) The denoised data are reconstructed with the last layer’s wavelet coefficients corresponding to the

low-frequency components.

4.2. FFT-Based Data Preprocessing

Fast Fourier Transform (FFT) [29] transforms a temporal signal into frequency harmonics.
Compared with the signal in frequency domain, the signal in time domain has the following drawbacks
for fault diagnosis of the inverter:

• The fault features’ information is not very obvious.
• When there are many sampling points, it is difficult to realize real-time fast diagnosis.

Therefore, the time domain signal is usually transformed into its frequency domain and the
harmonics with the most important amplitudes are selected in fault diagnosis of CHMI [30].

4.3. PCR-Based Feature Representation

The processes of PCR are shown in Figure 7. The denoised data are divided into offline dataset
and online dataset.
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Figure 7. Framework of the using process based on Principal Components Rearrangement (PCR).

On the one hand, after the data preprocessing, the offline process builds the proposed PCR model,
including PCA for feature extraction, PC rearrangement and new projection matrix rebuilding.

On the other hand, after the data preprocessing, the online process extracts features in real-time
based on the PCR model. The following describes the detailed steps.

(1) Offline PCR model building

1) Transform the denoised data by FFT and extract the k PCs by PCA.
2) Select one PC vector.
3) Calculate the mean values of I categories (9).
4) Calculate the max length of data interval ∆ (11).
5) Rearrange the PC features (12).
6) Repeat Steps from 2) to 5) for the next PC vector, until all the k PCs have been rearranged.
7) Obtain the rearranged matrix (14).
8) Calculate the new projection matrix (15).

(2) Online feature representation

1) Collect the fault signals.
2) Denoise the signals and transform them into the frequency domain.
3) Obtain the real-time features based on the new projection matrix (15).

4.4. BPNN-Based Fault Classification

Good fault classification techniques play an important role in a fault diagnosis strategy. In order
to verify the performance of the proposed method, any one of the traditional classification methods,
such as BPNN [31], Support Vector Machine (SVM) [32] and multiclass Relevance Vector Machine
(mRVM) [33] can be chosen. For example, FFT-PCR-BPNN, FFT-PCR-SVM and FFT-PCR-mRVM are
some possible fault diagnosis strategies. BPNN has strong abilities to classify the features with both
nonlinearity and instability [34]. In addition, BPNN doesn’t need the specific relations between the
adjacent layers but the training by error back propagation [35]. The main purpose of this section is
to show the performance gain brought by the proposed PCR; therefore, we choose arbitrarily in the
following BPNN as the classification method. It should be noted that other classification techniques
can of course be selected.

5. Experimental Analysis

The first part of this section details the parameters of the hardware platform and fault diagnosis
strategy introduced in the above section. The second part gives the experimental results based on
different fault diagnosis strategies.
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5.1. Parameters Setting

5.1.1. Parameters of the Hardware Platform

To assess the performance of different fault diagnosis strategies, a hardware platform based
on a 7-level CHMI is built as shown in Figure 8. The hardware platform mainly consists of power
supply units, H-bridge circuit, Sinusoidal Pulse Width Modulation (SPWM) driving circuit, a voltage
sampling and conditioning circuit, Digital Signal Processor (DSP) based diagnosis unit and the load.
The data processing is based on a computer with a CPU of Inter (R) Core (TM) i7-4790 and RAM of
12G (DDR3-1600MHz). The system specifications are listed in Table 2.

Figure 8. Hardware platform of cascaded H-bridge inverter.

Table 2. Main parameters of the system.

Notation Description Value/Product Model

Um Voltage of DC sources 24 V
Load Impedance of the load in Cascaded

H-bridge Multilevel Inverter (CHMI)
181 Ω

Sunit Voltage sampling unit CHV-25P/200
Insulated Gate Bipolar Transistor (IGBT) Switching device AUIRGP35B60PD
Optocoupler Drive isolation modules TLP250
Digital Signal Processor (DSP) Controlling chip TMSF28335
Oscilloscope For monitoring and data acquisition TDS 1012C-EDU
7-level CHMI Main circuit of CHMI With 3 H-bridges

Additionally, based on the hardware platform, independent DC sources directly supply the power
for H-bridges of CHMI. The auxiliary DC sources are chosen to supply the power for the voltage
sampling circuit, voltage conditioning circuit, and other electronic components. Figure 8 gives an
example that H1S4 is under OC fault, where the real-time fault signals and their corresponding number
of fault category are shown.

5.1.2. Parameters of the Fault Diagnosis Strategy

As previously mentioned, FFT-PCR-BPNN is adopted as the fault diagnosis strategy in this paper.
The corresponding parameters are given in Table 3.

The continuous voltage signals are acquired via the hardware platform. Then, the original voltage
signal is sampled with N sampling points to get {Sn}N−1

n=0 . After denoised by DWT, the discrete Fourier
transform of the data is denoted by {Xn}N−1

n=0 , which constitutes an observation in frequency domain
corresponding to a row of X ∈ RM×N, where M= 5200 is the size of observations, N = 1000 is the
number of frequency components, giving then 1000 harmonics in each observation. There are J = 400
observations for each category.
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Table 3. Main parameters of the fault diagnosis strategy.

Notation Description Value/Product Model

M Number of all the observations 5200
N Sampling points in each observation 1000
I Number of fault categories 13
J Observations in each category 400
ψ Wavelet function sym8
ndwt Decomposition layers by Discrete

Wavelet Transform (DWT)
5

ma Modulation ratio of Sinusoidal Pulse
Width Modulation (SPWM)

0.85–0.95

SPWM Method of driving switching devices Phase Disposition SPWM [36]
fs Switching frequency 1 kHz
fesample Experimental sample frequency 50 kHz
Cumulative Percentage
of Variance (CPV)

CPV value in principal component
analysis method

0.95

X† Pseudoinverse matrix of X Singular Value Decomposition (SVD)
zlim The limit of minimum value of S in SVD 1× 10−6

nout The output layer nodes of Back
Propagation Neural Network (BPNN)

13

f(x) Activation function 1/(1 + e−x)

Figure 9 shows a part of the data spectra of all of the 13 fault categories. The harmonics with
most important amplitudes are chosen as useful features [37]. It is obvious in Figure 9 that the first 70
harmonics have the most important amplitudes and the other harmonics’ amplitudes are almost zero.
In fact, the cumulated power of these 70 harmonics represents 95.32% of the total power. Thus, the
first 70 harmonics {Xn}69

0 of each observation’s spectrum are chosen in the following steps. Therefore,
the dimension of the final data matrix X is reduced from (5200, 1000) to (5200, 70) after the data
preprocessing based on FFT, which will be further reduced after the feature extraction based on PCA.

Figure 9. Data spectra.
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Because for the denoised and dimension reduced spectral matrix X, CPV(2)= 0.95 (3), only two
PCs are selected and rearranged. They are used as the input of BPNN after FFT-PCR. The output of
BPNN is 13, representing the 13 categories labeled in Table 1. The number of input layer nodes is
nin = 2 according to the extracted features and that of output layer nodes is nout = 13. The number
of hidden layer nodes is set according to the empirical formula: nh =

√
nin + nout + a, where a can

be selected as a constant value between 1 and 10 [38]. Therefore, the number of hidden layer nodes
is set as 13. When the dimension of fault features is changed, nin and nout can be adjusted as above.
Among the 400 observations of each category, 300 and 100 are used for training and testing BPNN,
respectively.

5.2. Analysis and Comparison

To assess the performance of FFT-PCR based fault diagnosis strategy, different fault feature
extraction and representation methods are tested, and the diagnosis results based on BPNN are
compared with each other. FFT-BPNN, PCA-BPNN, FFT-PCA-BPNN, PCR-BPNN and FFT-PCR-BPNN
are chosen as the fault diagnosis strategies in this experiment. To make the comparison of different
fault diagnosis strategies more objective, the test samples are acquired randomly from the 100 testing
samples. For instance, 3, 50, 71 and 92 groups’ samples are used to test the performance of fault
diagnosis, respectively. Every fault diagnosis strategy runs 50 times for each test. The average fault
diagnostic results are given in Table 4.

Table 4. Average fault diagnostic results based on different diagnosis strategies and the parameters of
Back Propagation Neural Network (BPNN).

Items Fault Diagnosis Strategies and Parameters of BPNN Test Samples (Groups)

3 50 71 92

Running time (ms)

FFT-BPNN nin = 70, nh = 19, learning rate = 0.50 1725 1861 1710 1693
PCA-BPNN nin = 8, nh = 14, learning rate = 0.20 923 917 946 904
FFT-PCA-BPNN nin = 2, nh = 13, learning rate = 0.18 561 529 532 595
PCR-BPNN nin = 8, nh = 14, learning rate = 0.20 101 129 113 128
FFT-PCR-BPNN nin = 2, nh = 13, learning rate = 0.18 34.7 36.9 41.2 30.8

Diagnostic accuracy (%)

FFT-BPNN

Same as above

82.8 81.5 81.9 80.7
PCA-BPNN 84.8 83.6 84.5 83.3
FFT-PCA-BPNN 92.9 93.5 93.1 93.2
PCR-BPNN 95.2 94.9 94.6 95.7
FFT-PCR-BPNN 99.5 99.7 99.3 99.6

According to Table 4, without feature representation method, if FFT is used as the data
preprocessing before fault classification by BPNN, the average running time and diagnostic accuracy
are 1747.25 ms and 81.73%, respectively. When PCA replaces the FFT, the running time shortens almost
by 1/2, and the diagnostic accuracy increases almost by 3%. When FFT-PCA-BPNN is adopted, the time
is reduced to 554.25 ms, and the accuracy is 93.18%. When the proposed method, PCR, is adopted
instead of PCA, the diagnostic performance improves increasingly; in particular, the running time is
around 117.75 ms and the diagnostic accuracy increases by 2%. When FFT-PCR-BPNN is used as the
fault diagnosis strategy, the running time is only 35.90 ms and the diagnostic accuracy is almost 99.52%.

As shown in the above results, appropriate data preprocessing is helpful for improving
the fault diagnostic performance. FFT can preprocess and select more effective features according
to the importance of harmonics’ amplitudes. PCA is used for feature extraction and dimension
reduction, which accelerates the process of fault diagnosis. PCR makes the PC features more distinctive
and representative to enhance the performance of classification. As a result, compared with PCA,
the performance of the proposed diagnostic strategy is greatly improved.

Additionally, if OC fault occurs at H1S1, the original signal, denoised signal by DWT and its
spectrum by FFT-based preprocessing are shown in Figure 10. Compared with the original signal,
the DWT-based denoised signal is smoother. It filters out some interference signals, such as the voltage
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pulses during the switching periods driven by SPWM. Therefore, it is also necessary to denoise original
signals to enhance performance of fault diagnosis.

Figure 10. Processed results of original signal after denoising and preprocessing when H1S1 has an
Open Circuit (OC) fault.

6. Conclusions

In order to solve the main problem that the fault signals at the cross positions of the last H-bridge
in CHMI are very similar with each other, and affected by noise, leading to poor performance of
fault diagnosis, the PCR method for better feature representation has been proposed in this paper.
The proposed method includes the PCA-based feature extraction, features rearrangement of each PC
and new projection matrix rebuilding. To reduce the noise interference, DWT by multiscale wavelet
decomposition and reconstruction is used for signal denoising. To exact and select more useful features,
FFT is used for signal preprocessing before the feature representation based on PCR. Furthermore,
BPNN is used as a fault classification method to test the effectiveness and accuracy of the strategy
based on PCR. It should be noted that other fault classification methods can also be used.

Moreover, a hardware platform based on a 7-level CHMI is built for assessing the performance of
FFT-PCR-BPNN. The original experimental data are processed by different fault diagnosis strategies.
By comparing and analyzing the results, the diagnosis strategy based on the proposed PCR requires
less running time and achieves higher accuracy of fault diagnosis of CHMI. The concept that the
features can be rearranged for better classification can be used for other feature representation methods,
not only for PCA. By using the features from PCR, this paper provides an effective way to solve fault
diagnosis in the presence of similar features and noise.
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CHMI Cascaded H-bridge Multilevel Inverter
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PCA Principal Component Analysis
PCR Principal Components Rearrangement
PCs Principal Components
OC Open Circuit
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