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Abstract: The effect of strongly-imbalanced carrier concentration and mobility on efficiency droop
is studied by comparing the onset voltage of high injection, the onset current density of the droop,
and the magnitude of the droop, as well as their temperature dependence, of GaInN-based blue
and green light-emitting diodes (LEDs). An n-to-p asymmetry factor is defined as σn/σp, and was
found to be 17.1 for blue LEDs and 50.1 for green LEDs. Green LEDs, when compared to blue LEDs,
were shown to enter the high-injection regime at a lower voltage, which is attributed to their less
favorable p-type transport characteristics. Green LEDs, with lower hole concentration and mobility,
have a lower onset current density of the efficiency droop and a higher magnitude of the efficiency
droop when compared to blue LEDs. The experimental results are in quantitative agreement with the
imbalanced carrier transport causing the efficiency droop, thus providing guidance for alleviating
the phenomenon of efficiency droop.
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1. Introduction

Light-emitting diodes (LEDs) in a GaInN material system suffer from a reduction in efficiency at
high injection currents, which is known as the “efficiency droop.” An understanding of the physical
origin of the efficiency droop is critical for future progress in LEDs, particularly when operated at
high current densities. Various mechanisms to explain the efficiency droop have been proposed,
including delocalization of carriers [1,2], Auger recombination [3,4], and electron leakage [5,6].
Auger recombination (i.e., an electron drops non-radiatively from the conduction band to the valence
band while transferring its energy to another electron or hole) has been regarded as a major cause
of efficiency droop. However, the Auger recombination coefficient, even if defect-assisted, has very
small theoretical values ranging between ~10−34 and ~10−30 cm6/s in nitride-based LEDs and weakly
increases with temperature, making it difficult to explain various aspects of the efficiency droop [7–11].
Recently, a simple analytical theoretical model was formulated in support of electron leakage the cause
of efficiency droop [7]. Lack of hole injection and electron leakage are equivalent phenomena, “two
sides of the same coin,” since for every hole not injected, an electron leaks out of the active region.
The foundation of the model is the strong imbalance in electron and hole transport characteristics.
In this model, the electron leakage depends on the third power of the carrier concentration and an
associated third-order drift-leakage coefficient CDL (as well as a smaller fourth-order coefficient).
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The term CDL·n3 allows one to quantitatively estimate the efficiency droop, where CDL is expressed
based on the physical parameters of the pn-junction as follows [7]:

CDL =
δµn

µp pp0
B (1)

where µn, µp, and pp0 are the electron and hole mobility and equilibrium hole concentration in the p-type
layer, respectively, B is the bi-molecular radiative recombination coefficient, and δ is the ratio of the
electron concentration in the barrier to the electron concentration in the quantum well (δ = nbarrier/nwell,
estimated to be about 10−3 to 10−4) [7]. Based on the analytic result given in Equation (1), we can
learn that CDL, and thus the efficiency droop, can be reduced by the following measures: (i) lowering
δ, (ii) increasing pp0, and (iii) increasing µp. Much published research on the efficiency droop can
be interpreted and understood by the analytic model. Several research groups reported that the
polarization fields in the multi-quantum well (MQW) and electron blocking layer (EBL) enhance δ

and thus facilitate electron leakage from the MQW into the p-type region, thereby causing a larger
efficiency droop [6,12,13]. In addition, there have been several reports on the lack of hole injection
and electron leakage being caused by a much lower concentration and mobility of holes compared
to those of electrons, leading the authors to the conclusion that electron leakage contributes to the
efficiency droop [14–17]. Furthermore, the onset current density of the efficiency droop, JOnset-of-droop,
i.e., the current density where the peak point of the efficiency is found, can be expressed by the electron
leakage model as [7]:

JOnset−Of−droop = edactive
ASRH B

CDL
= edactive ASRH

µp pp0

δµn
(2)

where ASRH, e, and dactive are the Shockley-Read-Hall (SRH) coefficient, the elementary charge, and the
thickness of the active region, respectively. Based on the equation, the onset of droop point is expected
to shift to a lower current density in LEDs with greater asymmetry in carrier transport, i.e., greater
asymmetry in carrier concentration and mobility. Although the analytical electron leakage model
provides a useful foundation to explain the phenomenon of efficiency droop, additional experimental
data are highly desirable to confirm the model, fully understand efficiency droop, and ultimately
overcome the droop.

Here, we investigate the effect of imbalanced carrier concentration and mobility in GaInN-based
pn-junction diodes on efficiency droop by comparing GaInN-based green and blue LEDs. Compared
with blue LEDs, a higher indium (In) content is required in the MQW active region of green LEDs.
It is well known that GaInN MQWs with a high In content become unstable at high epitaxial growth
temperatures, because of the high volatility of In and the tendency to form InN clusters [18,19].
To preserve the integrity of the high-In-content GaInN active region, the growth temperature for the
subsequently grown p-type GaN layer is lowered for green LEDs. The following characteristics of
green LEDs with a p-type GaN layer grown at a lower temperature are noteworthy: First, p-type
doping is limited by the lower solubility of magnesium (Mg) in the GaN cladding layer of green LEDs,
resulting in a lower equilibrium hole concentration pp0 in the p-type layer when compared to blue
LEDs [20]. Second, grain boundaries and defects are more abundant for p-type GaN layers grown
at lower temperatures, and thus the p-type GaN cladding layer has a poor hole mobility µp while
the electron concentration n and mobility µn in the n-type GaN cladding layer of green LEDs are the
same as those in blue LEDs [21]. Therefore, the comparison of green and blue LEDs in this study may
contribute to a better understanding of the effect of asymmetry in carrier concentrations and mobilities
on the efficiency droop in LEDs.
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2. Experiment

Commercially-available high-performance GaInN LEDs used in this study had a chip size of
1.3 mm × 1.3 mm for the blue LEDs (λ = 450 nm) and 1.45 mm × 1.45 mm for the green LEDs
(λ = 520 nm). For such a difference in wavelength (450 nm versus 520 nm), the In mole fraction in
the quantum wells of the green LEDs was ~22%, i.e., higher than in those of the blue LEDs, ~14%,
which was enabled by reducing the growth temperature for the active region and subsequent p-type
layers (1050 ◦C and 950 ◦C for the blue and green LEDs, respectively). The typical values of hole
concentration and mobility were about 1.1 × 1018 cm−3 and 16 cm2/(V·s) in p-type GaN grown at
1050 ◦C, and 7.5 × 1017 cm−3 and 8 cm2/(V·s) in p-type GaN grown at 950 ◦C, respectively [22,23].
Light output-current-voltage (L-I-V) characteristics for top-emitting packaged blue and green LEDs
were measured at temperatures ranging from 80 to 300 K by using a vacuum chamber probe station
equipped with an Agilent B2902 precision source-measurement unit. The light output power was
collected by a silicon (Si) photodiode under pulsed current operation (pulse period = 5 ms, duty cycle
= 0.5%) in order to minimize self-heating effects.

3. Results and Discussion

Let us consider a material system with strongly-imbalanced carrier mobility, for example, GaInN
with µn > 10 µp. The low-level-injection condition is given by ∆np(0)µn � pp0µp, where ∆np(0) is the
injected electron concentration at the edge of the p-type neutral layer [7]. LEDs with asymmetric carrier
concentration and mobility, especially the green LEDs used in this study, are more prone to enter into
the high-level injection regime because of the green LEDs’ smaller pp0 and µp when compared to those
of blue LEDs. Assuming an electron concentration of n = 2 × 1018 cm−3 and an electron mobility
of 150 cm2/(V·s), which are typical values for conventional n-type GaN [24], allows us to calculate
an n-to-p “asymmetry factor” that can be defined as the ratio of conductivities, σn/σp. Using the
abovementioned hole transport characteristics for epitaxial GaN grown at 1050 ◦C (blue LEDs) and
950 ◦C (green LEDs), the asymmetry factor (σn/σp) has a value of 17.1 for blue LEDs but a value of
50.1 for green LEDs, illustrating the more strongly imbalanced n-to-p transport characteristics of green
LEDs [22]. Figure 1 shows a comparison of the asymmetry of n-to-p transport characteristics of blue
and green LEDs. Inspection of the figure shows that ratios of carrier concentration (n/p) and mobility
(µn/µp), as well as the resultant asymmetry factor σn/σp, are subject to asymmetry, all of which are
much greater for green LEDs (σn/σp = 50.1) than for blue LEDs (σn/σp = 17.1).
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I-V measurements at room temperature, showing the onset of high injection for 450-nm and 520-nm 
GaInN-based blue and green LEDs. As can be seen in the d(Ln(I))/dV plot, there is a clear transition 
point from the low injection to the high injection regime [25], and the onset of high injection is 
observed at a voltage of 2.52 V for the blue LED and 1.91 V for the green LED, which is consistent 
with the prediction. Under high-level injection, an incremental voltage begins to drop over the p-type 
region (including the EBL), resulting in an electric field building up in the p-type region. The electric 
field will naturally occur in the most resistive part of the p-type region, which is the EBL; that is, 
under high injection conditions, the EBL becomes less effective in blocking electrons. The electron 
leakage from the active region is exacerbated by the electric field in the p-type region [25], and thus 

Figure 1. Ratios of carrier concentration (n/p), mobility (µn/µp), and resultant conductivity σn/σp,
defined here as the asymmetry factor, of blue and green light-emitting diodes (LEDs), showing an
asymmetry in carrier transport characteristics.

Given the greater asymmetry of green LEDs, the onset voltage of high injection is expected to
be lower for the green LEDs than that for the blue LEDs. To determine the onset of the high-injection
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point in the I-V characteristic, we determined the point at which the I-V characteristics transition
from the exponential to the linear regime. Figure 2a shows the d(Ln(I))/dV plot converted from the
typical I-V measurements at room temperature, showing the onset of high injection for 450-nm and
520-nm GaInN-based blue and green LEDs. As can be seen in the d(Ln(I))/dV plot, there is a clear
transition point from the low injection to the high injection regime [25], and the onset of high injection
is observed at a voltage of 2.52 V for the blue LED and 1.91 V for the green LED, which is consistent
with the prediction. Under high-level injection, an incremental voltage begins to drop over the p-type
region (including the EBL), resulting in an electric field building up in the p-type region. The electric
field will naturally occur in the most resistive part of the p-type region, which is the EBL; that is, under
high injection conditions, the EBL becomes less effective in blocking electrons. The electron leakage
from the active region is exacerbated by the electric field in the p-type region [25], and thus the lower
onset of high injection in the green LEDs can cause a stronger efficiency droop in the green LEDs than
in the blue LEDs.
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GaInN-based blue and green LEDs, to identify the onset of high injection point which is the transition
point from a low injection to a high injection regime in a pn junction; (b) the external quantum efficiency
as a function of current density of 450-nm and 520-nm GaInN-based blue and green LEDs.

Figure 2b shows the external quantum efficiency (EQE) as a function of current density for the
blue and green LEDs measured at room temperature. The figure is plotted on a log-log scale to show a
wider range of currents. The amount of the efficiency droop is 18% for the blue LED and 47% for the
green LED. The efficiency droop in the green LED is much larger than that in the blue LED, which is
consistent with our expectations. Compared to the blue LED, this larger magnitude of the efficiency
droop in the green LED can be understood by the transport properties (i.e., lower pp0 and µp) of the
p-type GaN layer that is grown at a lower temperature to preserve the integrity of the GaInN MQW.
Note that, according to Equation (1), low pp0 and µp increase the drift-leakage coefficient CDL, and thus
cause a larger droop at high current densities. In addition, the internal polarization electric field in the
epitaxial layers is intensified with the necessary increase of indium content in the GaInN well layer
of green LEDs. The internal polarization field is known to further increase the electron leakage from
the active region [13], which is linked to the value of the δ parameter, δ = nbarrier/nwell, in Equation (1).
Therefore, the green LED may have a larger δ value than the blue LED, resulting in a larger electron
leakage. This could further explain as to why the green LED has a more significant efficiency droop
than the blue LED.

It is worthwhile contemplating that the green LEDs may have a lower onset of high injection
voltage because they have a smaller bandgap energy compared to the blue LEDs. Considering that the
bandgap energy corresponding to the wavelengths of 450 and 520 nm are 2.75 and 2.38 eV for the blue
and green LEDs (∆Eg = 0.37 eV), respectively, the voltage difference of 0.37 V could be assumed as the
contribution from the difference in bandgap energy for the difference in the onset of high injection
voltages. However, the actually measured difference in the onset of high injection voltages between
the green and blue LEDs is 0.61 V, which means that the lower onset of high injection in the green LED
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cannot be solely explained by the difference in the bandgap energy. Other factors, such as a lower pp0

and µp in the green LEDs, need to be taken into account to explain the difference.
The imbalanced carrier concentration and mobility have an apparent impact on the onset of the

efficiency droop JOnset-of-droop, as indicated in Equation (2). The green LEDs that have lower pp0, µp,
and a higher δ value than the blue LEDs’ counterparts should have not only a larger CDL, but also a
lower JOnset-of-droop, according to Equations (1) and (2). The onset of the efficiency droop is observed
at current densities of 2.96 A/cm2 for the blue LED and 0.33 A/cm2 for the green LED, consistent
with our expectation, and with results reported in the technical literature [26–29]. It is worthwhile to
note that the green LEDs typically have a higher SRH non-radiative recombination coefficient ASRH
than the blue LEDs, because of more defect sites in the epitaxial films caused by the larger lattice
mismatch between the GaInN well and GaN barrier [30]. Based on Equation (2), this will shift the
JOnset-of-droop of a green LED to a higher current density. However, in our samples, we found that
the JOnset-of-droop in the green LED is lower than that of the blue LED, indicating that the effect of the
asymmetric carrier concentration and mobility in the green LED on the JOnset-of-droop is stronger than
the effect of SRH recombination.

To further validate our arguments and experiments, all data measured from the five blue and
five green LED samples were statistically evaluated and treated. The results are shown in Figure 3a–c.
All results consistently indicate that the green LEDs, with their more strongly imbalanced carrier
concentration and mobility, have a lower voltage of the onset of high injection, a lower current density
of the onset of droop, and a more significant magnitude of the efficiency droop as compared to blue
LEDs. Note that these distinct differences in the two types of LEDs can be attributed to the difference
occurring in the p-type layer of the LED epitaxial structure.
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Lastly, to assess the effect of asymmetric carrier concentration on the efficiency droop, the
temperature dependence of JOnset-of-droop was considered. Figure 4 shows JOnset-of-droop as a function
of temperature (from 80 to 300 K) for the blue and green LEDs. A gradual decrease in the JOnset-of-droop
values is clearly shown for both LEDs with the decrease of temperature. The n-type and p-type
dopants, as temperature decreases, cannot be fully ionized because of the insufficient ionization at
cryogenic temperatures, called the “freeze-out” of free carriers. The freeze-out of the free carriers
in the n-type and p-type regions has a quite different effect by temperature because the free carrier
concentration is determined by the dopant ionization energy. The ionization energy of Mg acceptor
used in p-type doping (EA,GaN ~170 meV) is much higher than the Si donor ionization energy
(ED,GaN ~15 meV) [31–33]. As a result, the asymmetry in carrier concentration is exacerbated at
cryogenic temperatures, leading to a decrease in the value of pp0 and a decrease in the δ parameter
(in Equation (2)) at cryogenic temperatures (the decrease in δ may not be pronounced since it depends
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on the carrier temperature and not on the lattice temperature). Additionally, the SRH non-radiative
recombination coefficient decreases with decreasing temperature [34]. Taken together, the value of
JOnset-of-droop is expected to decrease with decreasing temperature for both types of LEDs, and was
further confirmed experimentally, as shown in Figure 4.
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4. Conclusions

In conclusion, we compared GaInN-based blue and green LEDs in terms of their p-type
transport properties, as well as their high-injection and efficiency-droop characteristics, including
their temperature dependence. The lower growth temperature for the p-type layer typically used to
preserve the high-In-content GaInN green-emitting active region results in poor hole mobility and
a low equilibrium hole concentration in green LEDs. The n-to-p asymmetry factor, defined as the
ratio of conductivities, σn/σp, has a value of 17.1 for blue LEDs but a value of 50.1 for green LEDs,
illustrating the more strongly imbalanced n-to-p transport characteristics of green LEDs. We found
experimental evidence that the imbalance in carrier concentration and mobility is closely related to
the efficiency droop. According to the electron leakage model, the green LEDs, having a greater
imbalance in carrier concentration and mobility, are expected to have a lower onset of droop current
density, a lower onset of high injection voltage, and a higher magnitude of efficiency droop compared
to the blue LEDs. All experimental results were consistent with these expectations, confirming that
the efficiency droop and high-injection phenomena can be understood based on the differences in
transport characteristics of blue and green LEDs. The findings are consistent with the electron leakage
model, thereby providing further confidence that the model can provide useful guidelines for solving
the efficiency droop problem and for understanding the effects of high temperature and long operating
time on the efficiency of LEDs.
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