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Abstract: A 1D electrochemical-thermal model of an electrode pair of a lithium ion battery is
developed in Comsol Multiphysics. The mathematical model is validated against the literature
data for a 10 Ah lithium phosphate (LFP) pouch cell operating under 1 C to 5 C electrical load at
25 ◦C ambient temperature. The validated model is used to conduct statistical analysis of the most
influential parameters that dictate cell performance; i.e., particle radius (rp); electrode thickness
(Lpos); volume fraction of the active material (εs,pos) and C-rate; and their interaction on the two main
responses; namely; specific energy and specific power. To achieve an optimised window for energy
and power within the defined range of design variables; the range of variation of the variables is
determined based on literature data and includes: rp: 30–100 nm; Lpos: 20–100 µm; εs,pos: 0.3–0.7;
C-rate: 1–5. By investigating the main effect and the interaction effect of the design variables on
energy and power; it is observed that the optimum energy can be achieved when (rp < 40 nm);
(75 µm < Lpos < 100 µm); (0.4 < εs,pos < 0.6) and while the C-rate is below 4C. Conversely; the optimum
power is achieved for a thin electrode (Lpos < 30 µm); with high porosity and high C-rate (5 C).

Keywords: analysis of variance (ANOVA); design optimisation; lithium ion battery;
numerical modelling

1. Introduction

The creation of battery models is essential for better understanding of the impact of design
variables as well as operating conditions on battery performance, in terms of efficiency, degradation
and safety. They are also cost effective tools for determination of an optimised battery design that
can reduce the need for experimental trial and error. Beyond that, most variables that underpin the
operation of a battery are not directly measurable, whereas they can be predicted through a validated
model [1].

Battery models can be broadly categorised into four groups, namely: empirical models
(equivalent circuit and neural network), electrochemical engineering models, multiphysics models,
and molecular/atomistic models [1,2]. These battery models include different levels of details and
differ in terms of complexity, computational cost and reliability. They can be chosen based on the
particular needs for a specific application. Due to the complexity of batteries, electrochemical models
are often viewed as the best approach for investigating the impact of design variables on battery
performance during a charge and discharge process.

The most common electrochemical models in the literature [3] are single particle models
(SPM) [4,5] porous-electrode models [6,7] and pseudo-two-dimensional models (P2D) [8,9]. The main
difference is the level of complexity and the computational time associated with their use. Once an
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efficient model is developed, it can be employed to address a number of real-world challenges, such
as the identification of transport and kinetic parameters, the occurrence of capacity fade, improving
life time, and improving energy/power density [1]. The energy/power density can be improved by
manipulating either the design parameters or operating protocols [1]. Much of the previous work
on improving the performance of batteries has focused on battery packs rather than a single battery
cell design [10]. The important design parameters which can be varied within the manufacturing
process to achieve the optimal battery performance are known to be: electrode thickness [11–14],
porosity [6,10–12,15], particle size [14,16], electrode surface area, geometry and the dimensions of
current collectors [6,17,18].

Given the importance of battery design, Newman et al. and co-workers [11,12] developed
an analytical model of a lithium ion battery to optimise porosity and thickness of the positive
electrode for maximum specific energy, while holding other parameters constant. In another study,
Singh et al. [13] investigated experimentally the amount of energy that may be extracted from a cell
manufactured using thick electrodes (320 µm) compared to cells that employ a thinner electrode
(70 µm) for a graphite/lithium nickel manganese cobalt oxide (Gr/NMC) chemistry. They observed
a significant capacity loss when using the thicker cells at C-rates of C/2 due to poor kinetics.
The authors suggest that the proposed thick electrodes could be advantageous for certain applications
where a continuous low C-rate is required. Research presented by Wu et al. [14], employed an
electrochemical-thermal model of a lithium ion battery for a LiyMn2O4 chemistry. The model was
used to investigate the impact of particle size and electrode thickness on heat generation and the
performance of the battery. They found that a battery containing a thin electrode showed a better
performance in terms of temperature rise and material utilisation, but the effect of particle size was
not monotonic across the discharge rates. In a recent study published by Ramadesigan et al. [6] a
multi-layered porosity distribution was investigated rather than optimising a uniform porosity in
a lithium ion battery design. They developed a simple electrochemical porous electrode model,
which did not include the solid-phase intercalation mechanism. The model was applied for a
cathode made of lithium cobalt oxide. For a fixed value of active material, optimal multi-layered
porosity distribution across the positive electrode was found. The authors managed to decrease the
ohmic resistance by circa: 15–33%, employing the optimal porosity distribution. Golmon et al. [15]
applied a gradient-based optimisation method on a multi-scale battery model to maximise the
usable capacity. The electrochemical-mechanical multi-scale model was an extension of Doyle and
Newman’s electrochemical battery model [19,20]. The variables were particle size and porosity, with
constraints placed on the stress levels in the cathode particles. Other examples can be seen in [16,18].
Darling et al. [16], developed a 1D theoretical model to investigate the influence of different particle
size distributions on the operation of porous intercalation electrodes. Chen et al. [18] developed
a technique to enhance the achieved capacity of Li-based batteries through improvements in both
electronic and ionic conductivity of materials.

Parameter sensitivity study is another area of research performed in modelling
approaches for finding the influential design variables which could potentially improve battery
performance [14,21–25]. Zhang et al. [21,23] developed a coupled P2D electrochemical-thermal model
for a 2.3 Ah cylindrical Li-ion battery by improving the open source FORTRAN code maintained
by Newman’s research group. They established a parameter sensitivity matrix and used clustering
theory to group the parameters according to their average sensitivity. They performed a sensitivity
study of up to 30 parameters under different operating conditions. Out of the 30 parameters, 10
were found to be highly sensitive, seven of those were sensitive, along with 10 low sensitivity and
three insensitive parameters. The most sensitive parameters were found to be anode particle radius,
diffusion coefficient in the negative electrode, stoichiometry of the anode, volume fraction of the
electrolyte and active material in the negative electrode, contact resistance, reaction rate of the negative
and positive electrode as well as the activation energy of the electrolyte ionic conductivity. Moreover,
it was found that the sensitivity of the parameters is strongly dependent on the operating conditions.
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Edouard et al. [22] developed a single particle (SP) electrochemical-thermal model applying the
pseudo-2D mathematical structure. The model was applied to evaluate the sensitivity of the key
parameters that are involved in battery aging. They pointed out that the limiting mechanism in
a battery can switch depending on the operating conditions and battery design [14]. Moreover,
the combined effect of design parameters can be even more significant than their individual effect.
This presents a great challenge for experimentally optimising a battery design. Du et al. [24] introduced
a surrogate modelling framework to map the effect of design parameters, such as cathode particle
size, diffusion coefficient and electrical conductivity on battery performance. They quantified the
relative impact of various parameters through global sensitivity analysis employing a cell-level model
in conjunction with tools such as kriging, polynomial response, and radial-basis neural networks.
Ghaznavi et al. [25] applied a mathematical approach to conduct a sensitivity study on a lithium-sulfur
cell. They focused on the effects of discharge current and conductivity of the positive electrode over a
wide range of values.

To date, much progress has been made in modelling and design optimisation of lithium ion
batteries to map the trade-off between power and energy density. However, in most studies only a few
design variables have been selected and the optimisation is limited to a narrow range of operating
conditions. Moreover, the interaction effect of influential parameters has not been comprehensively
studied. Therefore, there exists a critical need to stablish a framework to access both the individual
and the interaction effect of various parameters on the energy and power of a cell. This study attempts
to quantify the strength of design factors and the combined effect of variables on specific energy as
well as specific power of a battery.

Within this paper, a 1D electrochemical-thermal model of an electrode pair of a lithium ion battery
is developed in Comsol Multiphysics. Each pair is assumed to be a sandwiched model of different
layers, a negative current collector, a negative electrode, a separator, a positive electrode and a positive
current collector. The anode is made of graphite and the cathode material is lithium phosphate (LFP).
The mathematical model is validated against the literature data for a 10 Ah LFP pouch cell operating
under 1 C to 5 C electrical load at 25 ◦C ambient temperature. It is a commercial cell and can be
employed for vehicle applications as it is a large format cell. The validated model is used to conduct
statistical analysis of the most influential parameters that dictate cell performance, i.e., particle size
(rp), electrode thickness (Lpos), volume fraction of the active material (εs,pos) and C-rate, and their
interaction on the two main responses, namely; specific energy and specific power. This is to achieve
an optimised window for energy and power within the defined range of design variables. The design
factors are chosen in a way that they can be varied during the manufacturing process of a cell, in order
to make the developed statistical model more applicable for industry.

In Section 2, the mathematical modelling approach is explained and contains the derivation of
the electrochemical-thermal model along with the statistical analysis. Section 3 presents the model
validation accompanied by simulation results of analysis of variance (ANOVA), which elaborates the
main and combined effect of the factors as well as the optimised design of the cell. Further work and
conclusions are discussed in Sections 4 and 5, respectively.

2. Mathematical Modelling

2.1. Electrochemical-Thermal Model

A single cell is made up of a number of pairs, connected in parallel by current collectors of
both electrodes, and the collective behaviour of these pairs represents the overall cell performance.
Each pair is assumed to be a sandwiched model of different layers, a negative current collector, a
negative electrode, a separator, a positive electrode and a positive current collector. The electrodes are
composed of porous materials, which are filled with electrolyte. The electrolyte can be liquid, solid
or polymer. The porous separator is a membrane between the negative and the positive electrodes,
which allows the transport of lithium ions from one electrode to the other one. Therefore it needs to be
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ionically conductive and electrically insulating to prevent the cell from short circuiting [26,27]. Current
collectors are made from conductive materials. Typical materials for negative and positive current
collectors are copper and aluminium, respectively. During a discharge event of a lithium ion battery
the lithium is deintercalated from the anode, resulting in an equal number of electrons and ions at
the particles/electrolyte interface. The chemical reaction only takes place at the surface of electrode
particles that are in contact with the electrolyte. Lithium ions pass through the electrolyte and the
separator and migrate to the cathode side where they react with the positive electrode. Diffusion of
ions is driven by the lithium ion concentration. Electrons pass through the current collectors and the
external circuit and generate electricity.

In this study, a 1D electrochemical-thermal model is developed for a single electrode-pair of a
lithium ion battery with a LFP cathode. The model is based on a similar, experimentally validated
model presented within Li et al. [28]. The inputs to the model are load current, geometrical design
parameters, material properties and ambient operating temperature, while the outputs from the model
are the responses of the cell to the load, i.e., terminal voltage (V), generated heat (Q), temperature
profile (◦C) and state of charge (SOC). Additional internal variables include: lithium concentration in
the electrodes and the separator, potential distribution of different phases, reaction current, electronic
and ionic current. The primary motivation for using Li et al.’s model [28] for verification, is because the
authors have presented a complete set of electrochemical parameters for the cell along with a definition
of parameter variations with temperature. Since the electrochemical model contains temperature
dependent variables, coupling it with a thermal model yields more accurate results. Furthermore, the
model presented in [28] has been validated using experimental data. The schematic geometry of a
single electrode-pair is shown in Figure 1.
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Figure 1. Schematic of the 1D geometry of a single pair.

The current flowing through a single pair is calculated as follows:

Ipair =
δcell

Npairs
(1)

where δcell is the capacity of a battery cell (including all pairs) and Npairs represents the number of
electrode-pairs in the cell. The dynamic performance of the cell is characterized by the solution of
four partial differential equations describing the time evolution of the lithium concentration profile
in the electrode and electrolyte phases. The field variables to be calculated are Cs, Ce, φs, φe [26,28].
Cs and Ce are lithium concentration in the solid and the electrolyte phase, φs and φe represents the
potential in the solid and electrolyte phase respectively. The variables are evaluated through solving
electric charge conservation, mass conservation, electrochemical kinetics and energy conservation
equations [26,29–33].
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2.1.1. Mass Balance

Lithium in the Solid Phase

Identical particle size of active materials is assumed in the model. The distribution of lithium in
the electrode is described by Fick’s second law:

∂(Cs)

dt
=

Ds

r2
∂

∂r

(
r2 ∂Cs

∂r

)
(2)

where Cs, is the lithium ion concentration at the surface of the electrode and Ds is the lithium diffusion
coefficient in the solid phase. No species source exists at the centre of the electrode particles, hence the
boundary condition is defined as follows:

∂Cs

∂r

∣∣∣∣
r=0

= 0,−Ds
∂Cs

∂r

∣∣∣∣
r=rp

=
jLi

asF
(3)

where rp is the radius of the active material, as is the reaction surface area and jLi represents the
reaction current density.

Lithium in the Electrolyte Phase

The lithium ion distribution in the electrolyte is dependent on the lithium diffusion in the
electrolyte (Ce), the electrode porosity (εe), and the reaction current density (jLi). This phenomenon is
expressed by Fick’s second law:

∂(εeCe)

dt
= ∇·

(
De

e f f∇Ce

)
+

1− t0
+

F
jLi (4)

where F is Faraday’s constant and t0
+ represents the initial transference number. Lithium cannot diffuse

through the current collectors, as set by the following boundary condition:

∂Ce

∂x

∣∣∣∣
x=Lcc,neg

=
∂Ce

∂x

∣∣∣∣
x=L−Lcc,pos

= 0 (5)

2.1.2. Electronic Charge Balance

During a charge and discharge event lithium ions and electrons flow in reverse directions, charge
conservation states that the amount of lithium ions has to be equivalent to the amount of electronic
charge transfer.

Potential in the Solid Phase

The potential in the solid phase is a function of electrode conductivity, current collector
conductivity and reaction current density as presented by the following equation:

∇
(

σe f f∇φs

)
= jLi (6)

At the electrode/current collector interface, the charge flux represents the external current, as
expressed by:

φcc|x=0 = 0, −σcc∇φcc|x=L = −Ipair (7)

Also, there is no charge flux at the electrode/separator interface as stated below:

∇φs|x=Lcc,neg+Lneg
= ∇φs|x=Lcc,neg+Lneg+Lsep

= 0 (8)
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Potential in the Electrolyte Phase

The potential in the electrolyte phase is dependent on the reaction current density as well as the
local concentration of lithium as expressed in the following equation:

∇
(

ke f f∇φe

)
+∇

(
ke f f

D ∇lnCe

)
+ jLi = 0 (9)

where ke f f
D is the effective diffusional conductivity of the species. A zero gradient boundary condition

is imposed at the electrode/current collector interfaces:

∂φe

∂x

∣∣∣∣
x=Lcc,neg

=
∂φe

∂x

∣∣∣∣
x=L−Lcc,pos

= 0 (10)

2.1.3. Electrochemical Kinetics—Reaction Current Density

The lithium concentration and charge distribution in the electrode and electrolyte phases, which
are described through Equations (1)–(10), are coupled through the Butler-Volmer equation:

jLi = asi0

[
exp

(
αaF
RT

η

)
− exp

(
−αcF

RT
η

)]
(11)

The reaction surface area (as), is the interfacial area between the two phases, i.e., the solid active
material and the liquid electrolyte. The interfacial area can be calculated by treating the solid phase as
a collection of uniform spheres, as displayed by the following equation:

as = Np

(
4πrp

2
)

(12)

where Np is the number of spheres per unit volume. The volume fraction of the active material (εs) is
given by:

εs = Np

(
4/3πrp

3
)

(13)

By combining the two equation the reaction surface area is evaluated as follows [34]:

as =
3εs

rP
=

(
1− εe − ε f

)
rp

(14)

where ε f is the volume fraction of the fillers. The exchange current density (i0) is a function of
temperature and SOC and is expressed as:

i0 = ki(Ce)
αa
(

Csur f ,max − Csur f ,e

)αa(
Csur f ,e

)αc
(15)

ki is the reaction rate which is temperature dependent. α is a dimensionless parameter, called the
symmetry factor and defines the ratio between oxidation and reduction. The overpotential (η), is
defined as the difference between the open circuit voltage (OCV) and the operating voltage of the
positive/negative electrode.

ηi = φs,i − φe,i −Ure f ,i (16)

The potential of the positive and negative electrodes are a function of local lithium concentration
and are defined by using empirical expressions. The parameters and equations employed in this study
for developing the electrochemcial-thermal model are elaborated in Appendix A.
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2.2. Statistical Analysis of Design Variables

A statistical model is developed by ANOVA of the numerical data in a full factorial design
framework [35–39]. ANOVA is primarily designed for the analysis of experimental data. However it
is noteworthy that a number of comparable studies have also employed ANOVA on the numerical
results from verified simulation models, for example: [24,40–45]. A full factorial design methodology
is undertaken to analyse the results of the 1D electrochemical-thermal model and to determine
the optimum energy and power by manipulating key design variables of the positive electrode.
As highlighted in recent studies, cells that employ a LFP cathode material, the operation of the cell is
more sensitive to the design of the cathode rather that the anode. This is due to the poor electronic
conductivity and low solid diffusion coefficient of the LFP material [46]. For this reason, this study
focused on understanding the optimisation of the cathode rather than the anode. It is noteworthy that
the methodology employed is transferable to the anode.

2.2.1. Full Factorial Design

The most influential parameters that dictate cell performance are known to be particle size (rp),
electrode thickness (Lpos), volume fraction of the active material (εs,pos) and C-rate. The effects of these
four factors and their interaction on the two main responses, namely; specific energy and specific
power are investigated. The design factors are chosen in a way that they can be varied during the
manufacturing process of a cell, in order to make the developed statistical model more applicable for
industry. In a 3-level full factorial design, each factor is varied over three levels within the determined
ranges, as summarised in Table 1.

Table 1. Different factors and their range, used in the factorial design—positive electrode of a 10 Ah
lithium phosphate (LFP) pouch cell.

Factor Level 1 Level 2 Level 3

Particle radius, rp, (nm) 30 65 100
Electrode thickness Li, (µm) 20 60 100

Volume fraction of the electrode εs,pos 0.3 0.5 0.7
C-rate 1 3 5

The range of variation of the design variables for LFP lithium ion battery is determined based on
the data from literature [11,28,29,33,47–49], which is: rp: 30–100 nm, Lpos: 20–100 µm, εs,pos: 0.3–0.7,
C-rate: 1–5. The number of required simulations in a 3 level full factorial design for four design
variables is equal to 34, i.e., 81 numerical case studies. It is clear that investigating 81 test cases,
having different designs is not feasible through traditional physical design and experimentation.
A simulation based approach highlights one of the advantages of ANOVA in terms of cost and time.
As discussed within [48], for the experimentalist it is very challenging to optimise the cell when
facing with numerous variables. The model can assist in identifying limiting cell properties and once
identified, the experiments can be designed.

2.2.2. Analysis of Variance

The contribution of each factor to the response (energy/power) is evaluated by the ANOVA,
based on which the response is expressed as follows:

y = f
(
rp, Li, εs, C− rate

)
(17)

A semi-empirical regression model is employed for analysing the responses, as given by [35,36]:

y = β0 + ∑ β jxj + ∑ ∑ βijxixj + ε (18)
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where y is the predicted response, the β’s are the coefficients to be determined, the x values are the
factors and ε defines a random error term. The quality of the fitness of the regression model is defined
by the value of the correlation coefficient (R2) value as well as the normal probability plot of the
residuals. For an adequate model R2 should be close to 1 [50]. In general for a well fitted model R2

value should be above 0.9 [35]. Other important outputs from ANOVA are F-values (Fisher variation
ratio) and p-values (probability value) [36]. p-Values define whether the effect of a term is significant
or not. The calculations are based on the confidence level of 95%, meaning that if the (p-value < 0.05),
the factor is significant. In addition, the order of significance for the influential factors is found by
comparing the F-values. A higher F-value indicates that the factor is more significant.

3. Results and Discussion

3.1. Validation of the Coupled Electrochemical—Thermal Model

A 1D electrochemical-thermal model is developed for a single electrode-pair of a lithium ion
battery with LFP cathode. The model is based on a similar, experimentally validated model presented
within Li et al. [28]. The input to the model is load current, geometrical design parameters, material
properties and ambient operating temperature. The parameterisation data and experimental results
presented within [28] allow for the creation of a reference model to ensure the accuracy and robustness
of the model, before proceeding with the statistical analysis. The design parameters of the reference
case are those reported by [28] and are summarised in Table 2.

The output from the model shows a high degree correlation with the results published within [28]
in terms of the terminal voltage response when the cell is discharged, the surface temperature gradient
and other internal parameters (e.g., local SOC, lithium concentration, potential and internal current).
The discharge curve for the 10 Ah LFP pouch cell under 1 C to 5 C at 25 ◦C is presented in Figure 2. It
is seen that there is a good agreement between the simulation results and the experimental data. The
simulation results are generated by the 1D COMSOL model used in this study and the experimental
data are those reported by Li et al. [28].

Table 2. Design parameters of the reference case [28], 10 Ah LFP pouch cell.

Parameter Negative Electrode Positive Electrode

Particle radius, rp (µm) 3.5 0.0365
Thickness, Li (µm) 34 70

Active material volume fraction εs,pos 0.55 0.43
Electrolyte volume fraction/Porosity (εe) 0.33 0.332
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The validated model is used as a tool for simulating the 81 case studies (defined within Table 1)
which are required for conducting the statistical analysis. For each case study the specific energy (Ecell)
and specific power (Pcell) of the cell are defined as [51]:

Ecell = 1/mcell

∫ tdis

0
V(t)·I·dt (19)

Pcell = 1/(tdis·mcell)
∫ tdis

0
V(t)·I·dt (20)

where mcell is the total weight of the cell and tdis is the final time when the cell reaches the cut off
voltage of 2.5 V.

3.2. Results of ANOVA

The results of the fitted model derived from ANOVA for the selected responses, i.e., specific
energy and specific power are shown in Table 3. In this study the R2 values for the specific energy and
power are equal to 96.04% and 100% respectively, verifying the high accuracy of the model.

As mentioned earlier, another important issue to check for the adequacy of the model is the
normal probability plot of the residuals, as illustrated in Figure 3 for the specific energy and the specific
power. The residuals follow a straight line, revealing that the fitted regression models are valid [50,52].

The p-values provide a cut-off beyond which it is asserted that the terms are statistically significant.
Based on the displayed results for R1 in Table 3, except for (rp × Lpos), for which the p-value is higher
than 0.05, the rest of the factors are significant and the achieved specific energy of the cell is highly
influenced by those factors.

Table 3. The analysis of variance (ANOVA) results of the responses, R1 (Specific energy) and R2

(specific power) for the full factorial design.

R1 R2

Factors F-Value p-Value F-Value p-Value

rp 62.41 0.000 39.18 0.000
Lpos 339.36 0.000 132,788.79 0.000
εs,pos 50.68 0.000 1113.13 0.000

C 49.53 0.000 604,485.14 0.000
rp × Lpos 2.39 0.064 2.84 0.034
rp × εs,pos 9.62 0.000 9.83 0.000

rp × C 6.49 0.000 0.47 0.756
Lpos × εs,pos 11.30 0.000 154.15 0.000

Lpos × C 5.06 0.002 19,700 0.000
εs,pos × C 4.86 0.002 4.28 0.005

The ranking of the effective factors in the regression model, within the determined range, based
on their impact on specific energy, R1 is as follows:

R1 : Lpos > rp > εs,pos > C > Lpos × εs,pos > rp × εs,pos > rp × C > Lpos × C > εs,pos × C

In respect to the specific power, based on the presented results for R2 in Table 3, all the factors
except for (rp × C) are significant and the order of significance is as follows:

R2 : C > Lpos > Lpos × C > εs,pos > Lpos × εs,pos > rp > rp × εs,pos > εs,pos × C > rp × Lpos
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Figure 3. Normal probability plot of standardized residual for: (a) the specific energy; (b) the
specific power.

3.2.1. Specific Energy: The Main and Interaction Effects of Factors

The main effect plot reveals the sole effect of the factors individually on a response, in which the
mean value of the response is displayed for each factor level. Figure 4 shows the main effect plot of the
factors on the specific energy. It is seen that as rp increases from 30 nm to 100 nm the specific energy
decreases significantly. This can be attributed to the diffusion time (tdi f ), which is defined as:

tdi f = r2
p/Ds,pos (21)

where Ds,pos is the lithium ion diffusion coefficient in the positive electrode [24]. Using smaller particles
can reduce the diffusion time, which in turn increases the intercalation rate. Consequently, it can
enhance the rate of the electrochemical reaction. On the other hand smaller particles have a larger
surface area per unit volume which leads to a lower kinetic resistance [53].
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Figure 4. Main effect plot for the specific energy as a function of particle size (rp), electrode thickness
(Lpos ), volume fraction of the active material (εs,pos ), C-rate, at different levels.

The proper cell design requires a right balancing of the electrodes and it is known that the capacity
of the electrodes is proportional to the weight of the active materials which itself is function of electrode
thickness and volume fraction of the active materials. Hence, in this study the thickness of the negative
electrode was varied proportional to the film thickness of the positive electrode to keep the right
balancing. By increasing the thickness, the energy keeps increasing as more active material is available.
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As shown in Figure 4, by increasing Lpos from 20 µm to 60 µm the energy increases quite rapidly, but
from 60 µm to 100 µm the rate of energy improvement reduces significantly which can be attributed to
the higher transport resistance of the thick electrodes.

By increasing εs,pos from 0.3 to 0.7, the energy increases first until it reaches to the point at which
the capacity of the positive and the negative electrodes are identical. After that, further increasing
of the active volume fraction of the positive electrode cannot improve the energy any more as the
capacity of the negative electrode will be the limiting factor.

Higher C-rates replicate a higher current, and it is known that the rate of the electrochemical
reaction is higher under this condition. Hence, due to limitations in the ionic and electrical
conductivities, higher kinetic resistances is observed, which in turn causes a significant energy loss [54].
This is in agreement with the results in presented Figure 4, which illustrates by increasing the C-rate
from 1 C to 5 C, the energy drops significantly.

One of the key findings from ANOVA is, clarifying the interplay between the different factors,
and hence establishing a process window for a desired range of a certain predefined response, specific
energy and power in this study. Figure 5 illustrates the second order interactions of any two factors on
the specific energy.Energies 2017, 10, 1278 11 of 21 
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Figure 5. Interaction effect of design parameters, particle size (rp), electrode thickness (Lpos ), volume
fraction of the active material (εs,pos ) and (C-rate) at different levels on the specific energy.

Based on the ANOVA results presented in Table 3, among the second order interactions,
(Lpos × εs,pos) was found to be the most significant factor, and it is clearly displayed in Figure 5. From the
main effect plot, Figure 4, Lpos has a positive effect on the specific energy. However, (Lpos × εs,pos)
plot reveals that at εpos = 0.3–0.5, by increasing Lpos, higher energy can be achieved, whereas the
energy does not follow the same pattern at higher εpos values. For (εpos > 0.5), increasing both εpos

and Lpos at the same time leads to an energy drop and the reduction rate is higher for higher active
volume fraction.

The next important factor is the interaction of (rp × εpos). As seen rp has a negative impact while
Lpos does not show a monotonic effect on the energy. The interaction plot shows that by increasing the
particle size (from 30 to 100 nm) at low εs,pos the energy drops rapidly. However, the sensitivity of the
energy to the particle size is less pronounced at higher εs,pos, where a higher portion of active material
is available and it will compensate the energy loss. rp and C rate both have a negative effect on the
energy. The same trend is displayed in their interaction plot, (rp × C). Moreover, the derived results
show that at higher C-rates the energy is more sensitive to the particle size. Meaning that for high
C-rate application small particle are more desirable while at lower C-rates there is a bigger window for
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the optimum rp. Lower rp increases the intercalation rate, which in turn it takes a shorter time for the
lithium ions to diffuse through the solid particles. This is particularly advantageous for high C-rate
application where the discharge time is quite short.

3.2.2. Specific Power: The Main and Interaction Effects of Factors

Figure 6 presents the main effect plot of the design parameters on the specific power. It is shown
that the particle size of the positive electrode does not have a significant effect on the power. Moreover,
the power reduces for thicker electrodes, which is due to longer transport length of the ions and
electrons. In addition to that, the electrode volume fraction does not have a significant effect on the
power, however by increasing εs,pos from 0.3 to 0.7 the power is slightly reduced. That is because of the
lower ionic conductivity of the positive electrode at high εs,pos. Finally, it is clearly observed that, the
power linearly increases by the C-rate, which is in agreement with the Ohm’s law.Energies 2017, 10, 1278 12 of 21 
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Figure 6. Main effect plot for the specific power, as a function of particle size (rp), electrode thickness
(Lpos ), volume fraction of the active material (εs,pos ), C-rate, at different levels.

The same kind of combined influence as for energy, is shown for the specific power (see Figure 7).
Lpos has a negative effect on the power, whereas C-rate has a positive effect. Their interaction, (Lpos × C),
shows that the thickness of the electrode becomes a more influential factor as the C-rate increases,
whereas at 1C the thickness does not have a significant impact on the power.

The behaviour of the power to the interaction of εpos and C-rate, (εpos × C), is not monotonic.
For example by varying εpos from 0.3 to 0.5, the power does not change irrespective of the C-rate.
However, their combined effect is more pronounced at high active volume fraction when the C-rate is
high. By increasing εpos from 0.5 to 0.7 under 5 C discharge load, the power drops with a higher rate in
comparison to lower C-rates.
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Figure 7. Interaction effect of design parameters, particle size (rp), electrode thickness (Lpos ), volume
fraction of the active material (εs,pos ) and C-rate) at different levels on the specific power.

3.2.3. Optimised Battery Response

The optimised response is derived from the developed regression model through statistical
analysis with much less simulation effort [45]. Such results help to understand the existing interactions
between the variables and to achieve the optimum design for a particular application. Figure 8 presents
the contour plot of the specific energy and the specific power as a function of electrode thickness and
particle size (Figure 8a,b), volume fraction of active material and particle size (Figure 8c,d), as well as
C-rate and particle size (Figure 8e,f).

Discrete regions represent different energy or power levels as stated in the plots. The plots
highlight the impact of two factors on the response simultaneously. By analysing the combined effect
of different factors on the response the optimum range can be achieved. Having rp and Lpos as variables
(Figure 8a,b), the maximum energy is attained for 75 < Lpos < 100 and rp < 40 nm. For rp > 40 nm the
energy constantly reduces. From the power contour, it is observed that as the thickness of the electrode
increases the power decreases. Hence, it is important to select a range of design variables in which the
energy to power ratio is satisfactory for a specific application.

Besides rp and Lpos, εpos has also a significant effect on the energy. As displayed for porous
electrodes, the particle size should be very small, below 40 nm, to achieve the optimum energy and yet
the optimum region is quite restricted. On the other hand, from the power graph it is observed that,
the power is not very sensitive to the interaction of these factors (rp and εpos). On the other hand, from
the power graph it is observed that, the power is not very sensitive to the interaction of these factors
(rp and εpos), and irrespective of the particle size, a higher power is obtained as the porosity increases.
C-rate is another important factor to be considered when designing a battery. In general, the design of
batteries operating at high C-rates is more crucial for achieving high power and energy. For example,
at 1 C-rate, by changing the particle size from 30 nm to 100 nm, the energy drops by 21.6%, whereas
the energy reduction reaches 55% when operating under a 5C discharge. In contrast to the energy, the
power is not highly affected by the particle size. However, C-rate has a greater impact on it and as the
C-rate increases the power is monotonically increasing.

The combined effect of (Lpos, εs,pos) as well as (Lpos, C) on the batteries responses is presented
in Figure 9. The energy plot based on (Lpos and εs,pos) shows a circle for the optimum energy where
70 < Lpos < 100 and 0.4 < εs,pos < 0.62, and outside this area the energy decreases. Moreover,
from the power contour it is observed that for low porous electrode, 0.6 < εs,pos < 0.7, a lower power
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is obtained. In general, for having a reasonable power at high εs,pos, the electrode should be quite thin.
Otherwise the power reduction is substantially high, especially at higher C-rates.
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Figure 8. Contour plot of: (a) the specific energy as a function of (rp and Lpos ); (b) the specific power
as a function of (rp and Lpos ); (c) the specific energy as a function of (rp and εs,pos ); (d) the specific
power as a function of (rp and εs,pos ); (e) the specific energy as a function of (rp and C-rate); (f) the
specific power as a function of (rp and C-rate).

The maximum energy is achieved for C-rates less than 4. It is observed that as the C-rate increases
the energy decreases and the optimum range for the energy becomes restricted. At 5C, to achieve the
maximum energy, Lpos has to be higher than 60 µm. In contrast to the energy, the power is higher
at higher C-rates. However, it is very sensitive to the electrode thickness. For example the highest
power can be achieved for Lpos < 20 µm and as the thickness increases the cell will end up to a lower
power region.
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Figure 9. Contour plot of: (a) the specific energy as a function of (Lpos, εs,pos ); (b) the specific power as
a function of (Lpos, C-rate); (c) the specific energy as a function of (Lpos, εs,pos ); (d) the specific power
as a function of (Lpos, C-rate).

4. Further Work

In this paper, we employed a 3-level full factorial design on the numerical results obtained from
an electrochemical-thermal model. The influence of four design variables were investigated to achieve
the optimal responses (here specific energy and power). However, the developed model is not limited
to the defined design variables and responses. By changing the factors, or adding new design variables
to the existing model, a new set of simulation studies can be run and used for further analysis. As an
example, it would be of interest to investigate whether the optimal design for achieving the highest
energy and power is influenced by the operating temperature of the cell. Another area of interest
is to investigate the impact of particle size as well as porosity distribution on the obtained energy
and power.

Moreover, battery degradation rate is another interesting system response to be considered.
However, studying the degradation process, needs improvements to the current model by adding the
impact of solid-electrolyte interface (SEI) growth and its effect on the capacity fade within the battery.

Finally, as mentioned earlier in this study, the optimised design of the cell was achieved through
analysing 81 test cases. Given this number, it seems quite unlikely to get all the required data through
experiments. On the other hand, to make a comparable test case, all of the materials (including the
separator and electrolyte) must be similar to those of the commercial cell. Furthermore, the production
procedure for the cell itself has to be similar. Understanding such detailed design information for a
commercial cell is known to be difficult because of issues of confidentiality. However, manufacturing
a new proto-type cell (manufactured by the University) with optimised design accompanied by an
experimental evaluation is another step to be considered to ultimately validate the proposed optimised
cell design and simulation framework.
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5. Conclusions

In this study a 1D electrochemical-thermal model of an electrode pair of a lithium ion battery is
developed in Comsol Multiphysics. The mathematical model is validated against the literature data
for a 10 Ah LFP pouch cell operating under 1 C to 5 C electrical load at 25 ◦C ambient temperature.
The validated model is used to conduct statistical analysis of the most influential parameters that
dictate cell performance, i.e., particle size (rp), electrode thickness (Lpos), volume fraction of the active
material (εs,pos) and C-rate, and their interaction on the two main responses, namely; specific energy
and specific power. This is to achieve an optimised window for energy and power within the defined
range of design variables. The range of variation of the design variables for LFP lithium ion battery
is determined based on data from literature (rp: 30–100 nm, Lpos: 20–100 µm, εs,pos: 0.3–0.7, C-rate:
1–5). A statistical model is developed by ANOVA of the numerical data in a full factorial design frame
work. A full factorial design methodology is carried out to analyse the obtained results of the 1D
electrochemical-thermal model and to determine the optimum energy and power by manipulating key
design variables of the positive electrode. The summary of the statistical results are as follows:

The significant factors for the specific energy are ranked as:

Lpos > rp > εs,pos > C > Lpos × εs,pos > rp × εs,pos > rp × C > Lpos × C > εs,pos × C

Similarly, for the specific power it is defined as:

C > Lpos > Lpos × C > εs,pos > Lpos × εs,pos > rp > rp × εs,pos > εs,pos × C > rp × Lpos

In conclusion, the main effect and the interaction effect of all design variables on the energy and
power, it is observed that the optimum energy can be achieved when (rp < 40 nm), (75 µm < Lpos <

100 µm), (0.4 < εs,pos < 0.6) and while the C-rate is below 4 C. The optimum power is achieved for a
thin electrode (Lpos < 30 µm), with high porosity and high C-rate (5 C). It is clear that the optimum
energy and power cannot be achieved at the same time, hence the battery should be designed so that
the power to energy ratio for a specific application is satisfactory. Finally, it should be mentioned that
the developed model is not limited to the defined design variables and the responses. By changing the
factors, or adding new design variables to the existing model, a new set of simulation can be run and
used for further analysis.
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Nomenclature

List of Symbols
as reaction surface area
C Li+ concentration (mol·m−3)

D diffusion coefficient (m2·s−1)
Ecell specific energy (Wh/kg)
F Faraday’s constant (C·mol−1)
I current load (A)

Ipair current of a single-pair electrode (A)
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i0 exchange current density (A·m−2)
jLi reaction current density (A·m−2)
ki reaction rate
L thickness of the electrode (µm)

mcell total weight of the cell (kg)
Npairs number of electrode-pairs
Pcell specific power (W/kg)
Q heat generation (W)

R universal gas constant
(

J·mol−1·K−1
)

r radial coordinate in spherical particle (µm)
rp particle radius (µm)

T temperature ◦C
t time (s)
tdis discharge time (s)
t0
+ transference number

Ure f ,i Open Circuit Voltage
V terminal voltage (V)

Greek Letters
α symmetry factor
δcell capacity of a cell (Ah)
ε volume fraction
η Overpotential (V)

ke f f
D diffusional conductivity

(
S ·m−1)

σ electronic conductivity
(
S·m−1)

κ ionic conductivity
(
S·m−1)

φ Potential (V)
Subscripts/Superscripts
cc Current collector
e electrolyte
f filler
eff effective
neg negative
pos positive
s solid
sep separator
surf surface
Terms and Abbreviation
ANOVA analysis of variance
exp experimental
OCV open circuit voltage
sim simulation
SOC state of charge

Appendix A

The design parameters of the reference case are presented Table A1 below. The following parameters have
been employed to develop the reference model.
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Table A1. Electrochemical parameters applied for modelling of the 10 Ah LFP pouch cell.

Parameter Negative Electrode Separator Positive Electrode

Thickness, L (µm) 34 25 70

Particle size, rp (µm) 3.5 - 0.0365

Volume fraction of the active material, εs 0.55 - 0.43

Volume fraction of the electrolyte, εe 0.33 0.54 0.332

aximum lithium concentration in the solid phase,
Cs, max (mol·m−3)

31,370 - 22,806

Electrolyte lithium concentration, Ce, max
(mol·m−3)

- 1200 -

Bruggeman porosity exponent, bruggn 1.5 1.5 1.5

Dynamic Parameters

Lithium diffusion coefficient in the negative
electrode, Ds, neg (m2·s−1) Ds, neg = 3.9× 10−14 exp

(
−35000

R

(
1
T −

1
298.15

))
Lithium diffusion coefficient in the positive
electrode, Ds, neg (m2·s−1)

Ds, pos =
1.18×10−18

(1+y)1.6 exp
(
−35000

R

(
1
T −

1
298.15

))
Lithium diffusion coefficient in the electrolyte,
Ds, neg (m2·s−1) De = 1e− 4× 10−4.43( 54.0

T−229.0−.05Ce
)2.2×10−4Ce

Reaction rate in the negative electrode, kneg

(m·s−1)
kneg = 3× 10−11 exp

(
−20000

R

(
1
T −

1
298.15

))
Reaction rate in the positive electrode, kpos (m·s−1) kpos = 1.4× 10−12 exp(−y) exp

(
−30000

R

(
1
T −

1
298.15

))
Open circuit potential of the negative electrode

Uneg, re f = 0.6379 + 0.5416 exp(−305.5309x) + 0.044tanh
(
− x−0.1958

0.1088

)
− 0.1978tanh

(
x−0.0117

0.0529

)
− 0.0175tanh

(
x−0.5692

0.0875

)

Open circuit potential of the positive electrode

Upos, re f = 3.4323− 0.4828 exp
(
−80.2493(1− y)1.3198

)
− 3.2474

× 10−6 exp
(

20.2645(1− y)3.8003
)
+ 3.2482

× 10−6 exp(20.2646(1− y)3.7995

Entropy change of the negative electrode
dUneg

dT = 344.1347148× exp(−32.9633287x+8.316711484)
1+0.749.07566003 exp(−34.79099646x+8.887143624)

− 0.8520278805x + 0.362299229x2 + 0.2698001697

Entropy change of the positive electrode
dUpos

dT = −0.35376y8 + 1.3902y7 − 2.2585y6 + 1.9635y5 − 0.98716y4 + 0.28857y3

− 0.046272y2 + 0.0032158y− 1.9186× 10−5

Local state of charge of the negative electrode x = SOCneg =
Cs, sur f ,neg
Cs,max,neg

Local state of charge of the positive electrode y = SOCpos =
Cs, sur f ,pos
Cs,max,pos

Appendix B

The simulated case studies used in this study are summerised in the Table A2.

Table A2. The simulated case studies for the full factorial design.

Case Study Particle Size
rpos (nm)

Electrode Thickness
Lpos (µm) εpos C-Rate

1 30 20 0.3 1
2 30 20 0.3 3
3 30 20 0.3 5
4 30 20 0.5 1
5 30 20 0.5 3
6 30 20 0.5 5
7 30 20 0.7 1



Energies 2017, 10, 1278 19 of 22

Table A2. Cont.

Case Study Particle Size
rpos (nm)

Electrode Thickness
Lpos (µm) εpos C-Rate

8 30 20 0.7 3
9 30 20 0.7 5
10 30 70 0.3 1
11 30 70 0.3 3
12 30 70 0.3 5
13 30 70 0.5 1
14 30 70 0.5 3
15 30 70 0.5 5
16 30 70 0.7 1
17 30 70 0.7 3
18 30 70 0.7 5
19 30 100 0.3 1
20 30 100 0.3 3
21 30 100 0.3 5
22 30 100 0.5 1
23 30 100 0.5 3
24 30 100 0.5 5
25 30 100 0.7 1
26 30 100 0.7 3
27 30 100 0.7 5
28 35 20 0.3 1
29 35 20 0.3 3
30 35 20 0.3 5
31 35 20 0.5 1
32 35 20 0.5 3
33 35 20 0.5 5
34 35 20 0.7 1
35 35 20 0.7 3
36 35 20 0.7 5
37 35 70 0.3 1
38 35 70 0.3 3
39 35 70 0.3 5
40 35 70 0.5 1
41 35 70 0.5 3
42 35 70 0.5 5
43 35 70 0.7 1
44 35 70 0.7 3
45 35 70 0.7 5
46 35 100 0.3 1
47 35 100 0.3 3
48 35 100 0.3 5
49 35 100 0.5 1
50 35 100 0.5 3
51 35 100 0.5 5
52 35 100 0.7 1
53 35 100 0.7 3
54 35 100 0.7 5
55 100 20 0.3 1
56 100 20 0.3 3
57 100 20 0.3 5
58 100 20 0.5 1
59 100 20 0.5 3
60 100 20 0.5 5
61 100 20 0.7 1
62 100 20 0.7 3
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Table A2. Cont.

Case Study Particle Size
rpos (nm)

Electrode Thickness
Lpos (µm) εpos C-Rate

63 100 20 0.7 5
64 100 70 0.3 1
65 100 70 0.3 3
66 100 70 0.3 5
67 100 70 0.5 1
68 100 70 0.5 3
69 100 70 0.5 5
70 100 70 0.7 1
71 100 70 0.7 3
72 100 70 0.7 5
73 100 100 0.3 1
74 100 100 0.3 3
75 100 100 0.3 5
76 100 100 0.5 1
77 100 100 0.5 3
78 100 100 0.5 5
79 100 100 0.7 1
80 100 100 0.7 3
81 100 100 0.7 5
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