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Abstract: Frequency regulation is essential for the stability of a power grid with high load fluctuation
and integration of new energies. Constrained by the large ramping, a generator alone is not capable
of conducting load frequency controls effectively and economically. In this paper, an energy storage
system (ESS) is introduced to coordinate with generators in automatic generation control (AGC),
where ESS and the generator respectively deal with high-frequency load fluctuation and low-portion.
We develop a system configuration framework for such a hybrid system, including the operation
strategy and capacity optimization. Due to the complexity of the hybrid system, the operation process
is captured by a simulation model which considers practical constraints as well as remaining energy
management of ESS. Taking advantage of the gradient-based approximation algorithm, we are then
able to optimize the capacity of a hybrid system. According to the numerical experiments with real
historical AGC data, the hybrid system is shown to perform well in cost reduction and to achieve the
regulation tasks.

Keywords: frequency regulation; energy storage system; simulation optimization

1. Introduction

The integration of intermittent new energy resources and stochastic load into power grids has
introduced significant randomness and fluctuations to both the generation and the demand side, which
unfortunately will result in frequency deviation and decrease the stability of power systems. As such,
frequency regulation, which is an effective means to maintain system frequency within a reasonable
range, is becoming increasingly important.

Conventionally, a generator is utilized as the major tool in frequency regulation operations in
AGC (Automatic Generation Control) (see [1]). However, the regulation capacity of generators is
quite limited because of ramping rate. In the case of rapid fluctuations, generators cannot follow all
the AGC signals as this would incur huge ramping costs. With the development of energy storage
techniques, an energy storage system (ESS) has been applied to a wide spectrum of application with
different requirements on power and energy density as well as response time [2,3], such as load
shaving [4], primary control reserve [5] and wind energy compensation [6]. Among those applications,
the literature [7] identifies primary control reserve to be the one with highest benefit for ESS owners.
In addition, sophisticated systems combining different types of batteries, such as superconducting
magnetic energy storage (SMES) [8,9] and redox flow batteries [10], have shown good performance
in reducing overshoots of frequency deviations caused by sudden demand variations [11], tie-power
deviations, and steady-state time errors [12]. Previous literature have widely researched on the sizing
of ESS in the application of frequency regulation, for example, in micro grid with wind turbines [13]
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and in distributed generation joint with photovoltiac power [14], and also the control strategy of ESS
in frequency regulation based on SOC (state of charge) [15,16], and coordination control of distributed
energy storage [17]. Although these works considered various power generations, they neglected the
potential benefits of power generations’ participation in frequency regulation, so as to prevent a large
ESS investment.

Despite their many functional advantages, moderately-sized ESS is incapable of providing
consistent frequency regulation [18] because of the non-zero mean AGC signals and energy loss
during charge-discharge cycles, while a large-sized ESS would take a huge investment cost. Therefore,
a hybrid system combining ESS and a traditional thermal generator is introduced in [18] about
frequency relation by decomposing AGC signals into low-frequency and high-frequency portions by
a low-pass filter. The technical details are given in [18], and as a further research on that topic our
work studies the operation strategy and sizing of ESS for such a hybrid system. The operation strategy
guide real-time output of generator and ESS, and then the capacity of ESS is optimized to guarantee
the frequency regulation tasks with minimum costs. Literature [19] also jointly considers these two
research objectives in frequency regulation application but only regarding a battery energy storage
system (BESS), and without any generator involved.

A brief introduction of the hybrid system is first presented, and then we show how the hybrid
system output is controlled in operation level. Based on this the system capacity is optimized. Due to
the complexity of hybrid system control, the operation process is captured in a Monte Carlo simulation
model, which considers practical constraints such as output adjustment range, amplitude limiting and
redistribution. Furthermore, we also introduced the remaining energy management (REM) in operation
strategy so as to maintain the sustainability of ESS regulation capacity. With respect to the optimization
on ESS capacity, based on the dependence of ESS capacity on the filtering coefficient, we propose an
optimization framework on the basis of Simultaneous Perturbation Stochastic Approximation (SPSA)
algorithm to find the optimal filtering coefficient. By carrying out the hybrid system in historical AGC
data, we validate the hybrid system performance in both achieving frequency regulation tasks and
cost reduction.

2. Hybrid Frequency Regulation System

To participate in AGC, generators are relatively powerless to follow rapid frequency fluctuation
and are only appropriate when the required power output changes slightly. In contrast, ESSs are able to
follow power orders that change rapidly because of its quick response ability. However, moderate-size
ESS is incapable of providing consistent frequency regulation since most of the AGC signals present
non-zero mean property, and even when the signals are zero-mean, a large energy capacity is required
because of the energy loss during charge-discharge cycles. Thus, a large ESS is usually inevitable
when ESS alone is involved in AGC, incurring large investment costs. Instead, establishing a hybrid
frequency regulation system with both generator and ESS could improve the regulation performance
and contribute to cost reduction in a power system. To that end, filtering techniques should be used
to process the original power control orders, and then generators are dispatched with low-frequency
AGC signal portion while ESS is assigned to execute the high-frequency portion. The filtering and
subsequent control process is shown in Figure 1.

To establish such a hybrid system, the generator regulation capacity as well as the ESS capacities
which should be invested for the AGC system should be determined. All these capacities are directly
related to the AGC signals dispatched to them, where the filtering coefficient α plays an important
part. Given the system capacity and a control strategy, the operation costs can be estimated as well
as the initial investment costs. These two costs are the major concern in frequency regulation system
practice, so they are the major optimization objective in our proposed hybrid system. Considering
the dependence of regulation capacity, the filtering coefficient α is the decision variable we need to
optimize during the frequency regulation process. Figure 2 presents a detailed research framework for
our presented hybrid system.
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Figure 1. Control structure of the hybrid frequency regulation system.

Figure 2. The research framework for the hybrid system.

Due to the complexity of the entire operation process, which is analytically intractable,
we proposed a simulation model to study the hybrid system. The complex operation process includes
the real-time output control of the generator and ESS, and it is impossible to track every single
control operation and cost. By simulating the operation process, we estimate the operation costs
in a monthly time scale. In the simulation model, we include the capacity determination activity
and the control process which directly influence the operation costs. Upon observing the total costs,
we conduct a gradient-based algorithm to judge whether the performance of the hybrid system has
reached optimality, otherwise the algorithm iteratively selects a better filtering coefficient for total cost
evaluation. We will provide a more detailed description of the optimization algorithm in Section 4.
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3. Simulation Model for Operation Process

The simulation model takes the filtering coefficient α and AGC signals as input. The filtering
coefficient is continuous variable α ∈ [0, 1], while the AGC signals are the main sources of randomness.
Based on historical AGC signal data, we establish a sampling method to generate random signals in
simulations. To estimate the operation costs, the control strategy is also necessary. This paper considers
practical constraints such as the adjustment range of generator and ESS, amplitude limiting and also
remaining energy management (REM). We will reveal that the strategy shows good performance in
maintaining ESS energy and reducing the ramping power of the generator.

3.1. AGC Signal Sampling

We demonstrate a sampling method in this section that is based on the historical data, and take
the sampled signals as simulation input. To that end we have to describe the probability model of
the control process, which is the initial step of Monte Carlo Simulation. Therefore, we analysed the
historical AGC signals data of PJM from 18 December 2012 to 18 January 2013. The signals are collected
every 2 s, thus there are 43,200 samples for one day. The left of Figure 3 shows the distribution of these
signals, while the right figure indicates the distribution of incremental signals. Note that the ordinate
of right figure is the logarithm of frequency, and we can see that it is more reasonable to draw samples
from a normal distribution as in Figure 3b. Therefore, the incremental signal is fitted as a normal
distribution, from which the AGC signals are sampled. The fitting results have passed the KS test.

Figure 3. This figure shows (a) the frequency of AsGC signals which is between −1 and 1;
(b) the logarithm of frequency of automatic generation control (AGC) signal increments with minimum
value around −1.8 and maximum value around 1.5.

3.2. Determine the Regulation Capacity

Throughout this paper, we use boldface letters for vector parameters and plain letters for
scalar parameters. Let PAGC be the original AGC power orders which is sampled from the fitted
distribution above in a simulation model, and PL

AGC and PH
AGC are the low- and high-frequency

portions. The following equation is satisfied:

PAGC = PL
AGC + PH

AGC (1)

With first-order low-pass filter, the frequency domain relationships among PL
AGC, PH

AGC, and PAGC
are described as in Equation (2) and time domain relationships are described as in Equation (3), where
T is the time constant of the filter and ∆t is the frequency sample interval.

PL
AGC =

1
1 + sT

· PAGC (2)
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PL
AGC(k) =

T
T + ∆t

PL
AGC(k− 1) +

∆t
T + ∆t

PAGC(k)

PH
AGC(k) =

T
T + ∆t

(PAGC(k)− PL
AGC(k− 1))

(3)

Let α = T
T+∆t and α ∈ [0, 1], Equation (3) can be written as

PL
AGC(k) = α · PL

AGC(k− 1) + (1− α) · PAGC(k)

PH
AGC(k) = α · (PAGC(k)− PL

AGC(k− 1))
(4)

To cover all the AGC signals, the regulation capacity of generator Pmax
G,AGC and the power capacity

of ESS Pmax
S should be larger than max PL

AGC(k) and max PH
AGC(k) respectively. Thus, we have

Pmax
G,AGC = maxk |PL

AGC(k)| and Pmax
S = maxk |PH

AGC(k)|. In the simulation model, we sample AGC
signals for one month and pick out the maximum value of high-frequency portion and low-frequency
portion signals respectively.

3.3. Control Strategy

We propose a control strategy in simulation model, which takes practical constraints into
consideration, such as the adjustment range and amplitude limiting, and also captures the remaining
energy management so as to maintain the sustainability of ESS regulation capacity. First of all,
according to the regulation capacity of the generator and ESS, as well as the ramping rate of the
generator and the remaining energy of ESS, the adjustment range for both the generator and ESS are
computed. Then the AGC signals are compared with the range so that it is examined whether it is
necessary to limit the amplitude or not, and if the amplitude is limited, the signal re-distribution is also
conducted. Finally, the remaining energy of ESS is managed by making an adjustment to the output of
the generator and ESS.

3.3.1. Power Adjustment Range Computation

According to the regulation capacity and ramping constraints of the generators, the output power
adjustment ranges of the generators at time k is as follows:

Pmax,+
G,AGC(k) = min{Pmax

G,AGC, PL
AGC(k− 1) + ∆Pmax,+

G,AGC}

Pmax,−
G,AGC(k) = max{−Pmax

G,AGC, PL
AGC(k− 1)− ∆Pmax,−

G,AGC}
(5)

Pmax,+
G,AGC(k) and Pmax,−

G,AGC(k) are the maximum and minimum regulation power of generator in time k,
with ∆Pmax,+

G,AGC and ∆Pmax,−
G,AGC being the maximum upstream and downstream ramping power within ∆t.

The adjustment range of ESS is not only related to the power capacity Pmax
S , but also related to the

remaining energy, which is as follows:

Pmax,+
S (k) = min{Pmax

S ,
(Ek − Emin)

∆t
· η+}

Pmax,−
S (k) = max{−Pmax

S ,
Ek − Emax

∆t · η− }
(6)

Pmax,+
S (k) and Pmax,−

S (k) are the maximum and minimum output power for ESS, assuming the
discharge power is positive and the charging power is negative. In the equation, Ek indicates the
remaining energy of ESS at time k, and Emin and Emax are the minimum and maximum energy of ESS
that should be maintained to prevent over-charge and over-discharge. In this paper we set Emin to
be 5% of ESS energy capacity while Emax is set to be 95%. η+ and η− are the discharge and charge
efficiency respectively.
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3.3.2. Amplitude Limit and Redistribution

By comparing the adjustment range and AGC signals, the amplitude limiting operations are
conducted when the AGC signals exceed the adjustment ranges. Let ∆PH+

AGC(k) and ∆PH−
AGC(k),

∆PL+
AGC(k) and ∆PL−

AGC(k) be as follows:

∆PH+
AGC(k) = Pmax,+

S (k)− PH
AGC(k)

∆PH−
AGC(k) = PH

AGC(k)− Pmax,−
S (k)

∆PL+
AGC(k) = Pmax,+

G,AGC(k)− PL
AGC(k)

∆PL−
AGC(k) = PL

AGC(k)− Pmax,−
G,AGC(k)

(7)

Negative ∆PH+
AGC(k) or ∆PH−

AGC(k) indicates that the high-frequency AGC signals are beyond the
adjustment range of ESS; thus, the AGC order are amplitude-limited and over-dimension signals are
redistributed to the generator. The same operation rules also apply to the generator, and the amplitude
limiting and redistribution operations instruction are shown in Table 1.

Table 1. The operation guidance for the amplitude limiting and redistribution.

∆PL+
AGC(k) < 0

∆PL−
AGC(k) > 0

∆PL+
AGC(k) > 0

∆PL−
AGC(k) > 0

∆PL+
AGC(k) > 0

∆PL−
AGC(k) < 0

∆PH+
AGC(k) < 0

∆PH−
AGC(k) > 0

Limit both G and S. Limit S;
Redistribute S→G. Limit both G and S.

∆PH+
AGC(k) > 0

∆PH−
AGC > 0

Limit G;
Redistribute G→S. No adjustment.

Limit G;
Redistribute G→S.

∆PH+
AGC(k) > 0

∆PH−
AGC(k) < 0

Limit both G and S. Limit S;
Redistribute S→G. Limit both G and S.

G: generator; S: energy storage system; G→S: redistribute from generator to ESS; S→G: redistribute from ESS
to generator.

3.3.3. Remaining Energy Management

Amplitude limiting and redistribution guarantee that AGC orders are within the capacity of the
generators and ESS, noting that after these activities, negative ∆PAGC(k) will be trimmed to be positive.
However, while these steps do not prevent over-charging and over-discharging, the remaining energy
cannot be guaranteed to lie within a reasonable interval. Once the remaining energy reaches extreme
values, i.e., the given maximum and minimum values of the remaining energy, the ESS may lose its
capacity to regulate the frequency.

The remaining energy management operations are based on the current state of charge (SOC)
and adjustment ranges, and the main instructions for conducting recharging or discharging policy are
as follows:

• If the remaining energy is very low, e.g., 0–30% of Ecap, recharge ESS with full capacity, i.e.,
∆PH−

AGC(k), and if the remaining energy is relatively low, e.g., 30–50%, recharge ESS with partial
capacity, i.e., 0.5∆PH−

AGC(k).
• If the remaining energy is very high, e.g., 70–100%, release the energy with full capacity, i.e.,

∆PH+
AGC(k), and if the remaining energy is relatively high, e.g., 50–70%, release the energy with

partial capacity, i.e., 0.5∆PH+
AGC(k).

It is noted that, after amplitude limiting and redistribution operations, the parameters ∆PH+
AGC and

∆PH−
AGC are trimmed to be non-negative values; thus, in a word, the strategy prevents ESS from being

over-discharged when SOC is low and over-charged when SOC is high.
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4. Optimize the Hybrid System

Monte Carlo simulation has been widely adopted in power system research, for example, electric
vehicles [20] and thermal unit control [21], because of its flexibility to deal with complex operating
conditions and system considerations such as load uncertainty [22]. Simulation is able to capture every
known logical detail and every perspective of stochasticity of complex stochastic system, and it is
much cheaper and faster to predict and evaluate system performance [23]. Considering the complexity
of the control strategy and stochasticity of the AGC signal, we modelled the whole process by a
simulation model described above. Simulation optimization studies how to find the optimal solution
to a system modelled by simulation, which usually has to deal with noisy, expensive computation and
black-box [23]. We refer readers to [23] for current simulation optimization algorithms and applications.

The simulation model takes the filtering coefficient and AGC signals as input and the output
is the total cost of the system in a fixed time period. Thus, given the filtering coefficient α we can
evaluate the related performance, and by comparing a wide range of feasible α we can find the
optimal one. However, since α is continuous parameter, and it can need a large computation effort to
simulate sufficient potential values in order to reach optima. Therefore, a gradient-based simulation
optimization algorithm is used in this paper. The algorithm Simultaneous Perturbation Stochastic
Approximation (SPSA) is a modified SA algorithm which is based on the gradient approximation
methods. The algorithm will generate a random perturbation so that each iteration selects a
random direction to search for the global optima. The proof for strong convergence and asymptotic
normality are provided in [24]. The algorithm version for the constrained problem is provided in [25].
The problem in this paper is a constrained problem because of α ∈ [0, 1]. The method to deal with the
constraint is to incorporate a heavy penalty if α exceeds the range [0,1] as

Penalty = M× [max(α− 1, 0) + max(−α, 0)] (8)

where M is a very large number and when α is beyond [0, 1] a large penalty will be incurred.
The algorithm used in this paper is shown in Table 2.

Table 2. The framework of Simultaneous Perturbation Gradient Approximation (SPSA) algorithm to
the hybrid system configuration and optimization.

Initial.
Set parameter a, c and select an initial filtering coefficient α. Step k = 1, and the
maximum number of step K = 500.

Iteration.
Repeat 1. Generate a random perturbation ∆ according to Bernoulli distribution B(−1,1);

2. Find α+ and α− in the adjacent area of α, with
α+ = α + c

k+1 ∆, α− = α− c
k+1 ∆

3. Estimate the total cost of α+ and α− in the simulation model, e.g., C(α+) and
C(α−). Then the loss function with constraint penalty is obtained as

L(α+) = C(α+) + M× [max(α+ − 1, 0) + max(−α+, 0)]
L(α−) = C(α−) + M× [max(α− − 1, 0) + max(−α−, 0)]

where M is a very large constant;
4. Compute the gradient g(α) = L(α+)−L(α−)

2× c
k+1×∆ ;

5. Update the filtering coefficient α = α− a
0.1∗K+k+1 g(α);

6. k = k + 1.
End End if k = K or L(α+)− L(α−) < ε for some small ε; else return to 1.

Stop.

Also the algorithm can be seen intuitively in Figure 4.
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Figure 4. The optimization process of the Simultaneous Perturbation Stochastic Approximation
(SPSA) algorithm.

5. Numerical Experiments

5.1. Simulation Input

We conduct numerical experiments with data originating from PJM from 18 December 2012 to
18 January 2013. The AGC orders are collected every 2 s. We fitted the signal increment distribution
based on the historical data, which includes over 1 million signals. The fitted results are a normal
distribution N(−4.03× 10−7, 0.0082). Besides, we also found that a positive (negative) signal increment
is more likely followed by a positive (negative) increment, and the probability is about 0.92. Thus, we
sample signal increment Pinc

AGC(k) ∼ N(−4.03× 10−7, 0.0082), and make sure that a positive (negative)
increment is followed by a positive (negative) increment with probability 0.92. After a random sample
from U(−1, 1) for the initial signal PAGC(1), we can get the sampled AGC signal

PAGC(k) = PAGC(k− 1) + Pinc
AGC(k) (9)

Here are some illustrations of the real daily signals and sample signals in Figure 5, which
intuitively show the effectiveness of the sampling methods by comparison. (a) and (b) are AGC
signals from two different days from the historical data, while (c) and (d) are two samples from our
sample methods.

Figure 5. Illustration of real AGC signals curve (a,b), and sampled AGC signals curve (c,d).
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ESS parameters in simulation originate from [26]. ESS discharging efficiency is η+ = 0.85, whereas
charging efficiency is also η− = 0.85. The lifetime of energy-converting devices is Tli f e = 10 years, and
the maximum charging and discharging cycles of storage battery is Ncycle = 4000. ESS power cost is
ppcs = $400, 000/MW, and energy cost is pstorage = $600, 000/MW.

The rated power of generators is Prated
G = 10 MW in simulation, and upper and lower ramping

rates are 10% of rated power. We take advantage of the method in [18] to estimate extra costs of
generators participating in AGC, i.e., costs involved in AGC lead to decreased generator operation
efficiency, whereas decreased operation efficiency leads to increased costs to generate the same amount
of energy. Frequent operations and variation in operation points both lead to decreased generator
efficiency, with the cost per MWh by frequent operations set to p f req−op = $1/MWh. Considering that
the maximum value of AGC power orders is 10% of generator rated power, the operation point of
generators is around 90%. The decreased generator efficiency is relatively not that large; thus, the extra
cost related to change in operation points is set to the constant pop−change = $0.2/MWh. For a general
case, pop−change can be estimated using a generator efficiency curve.

5.2. Costs and Optimization Results

We carry out the SPSA algorithm with the instance introduced above, and the parameter of the
algorithm is determined according to the [27] as well as trial and error. The operation cost considered
in this instance includes costs caused by frequent operations (ramping up and down) and variation in
operation points. The ramping cost is evaluated by

c1 = ∑
k

p f req−op|PL
AGC(k + 1)− PL

AGC(k)|∆t (10)

and the cost related to the departure of generator output power from optimal operation point is

c2 = ∑
k
(PG,O + PL

AGC(k))∆t (11)

where PG,O is the operation point and PG,O = Prated
G − Pmax

G,AGC, and Prated
G is the rated power of generator.

Besides the two operation costs above, it is noted that the simulation model could capture operation
costs of other forms.

The initial costs are needed to invest the ESS with respect to power capacity and energy capacity.
The power costs come from power conversion devices (PCS) and energy costs come from energy
storage units, herein

cS = cPCS + cstorage = pPCSPmax
S + pstorageEcap (12)

Our evaluated total cost will then be

ctotal = c1 + c2 + cS (13)

The iterations and optimization results are shown in Figure 6, and we select α = 0.9 as the
initial filtering coefficient. As we can see, the algorithm converges to the optimal value with less than
100 iterations and then fluctuates up and down around the average value to the end. The fluctuations
are due to the noise in the simulation caused by the random AGC signals. By taking the average of
the results after the 100th iteration, we obtain the optimal filtering coefficient α∗ = 0.9805. In the next
sections, we will evaluate the hybrid system’s performance on achieving the regulation tasks and
reducing the costs with respect to the real AGC signal data.



Energies 2017, 10, 1302 10 of 14

Figure 6. Iteration of algorithm with respect to optimal solution: (a) filtering coefficient and optimal
value; (b) total costs.

5.3. Frequency Regulation Performance

We input the optimal filtering coefficient in simulations with historical AGC signal data of PJM
from 18 December 2012 to 18 January 2013, and consequently we get the regulation power capacity for
generator is 0.985 MW and 0.405 MW for ESS considering the AGC signal is between −1 MW to 1 MW,
and the energy capacity of ESS is set accordingly 0.405 MWh. Figure 7 illustrates the hybrid system
regulation output on 1 January 2013. The power difference indicates the uncovered AGC signals;
hence, we see that the involvement of ESS in AGC has enhanced the ability of frequency regulation.
After fully simulating the operations of a hybrid system with the one-month real data, we realize that,
on average, the power differences are reduced by 91%.

Figure 7. The power difference under the hybrid system (a) and the AGC system without energy
storage system (ESS) (b).

5.4. Generator Ramping Reduction

We then examined the generator ramping reduction of the hybrid system. Figure 8 is the generator
ramping power with and without ESS in the frequency regulation system given the optimal filtering
coefficient 0.9805. The reduction is obvious according to the figure, and, in addition, the average
ramping reduction of the hybrid system with the one-month real data is over 25%.
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Figure 8. The generator ramping under hybrid system (a) and AGC system without ESS (b).

5.5. Remaining Energy Management

The regulation ability of ESS is directly influenced by the remaining energy; therefore, maintaining
the remaining energy within a reasonable range becomes essential for ESS to provide sustainable
regulation power. As we can see from Figure 9, with remaining energy management (REM), the energy
is maintained above 30% while remaining energy fluctuates below 10% most of the time when there
are no such management activities.

Figure 9. The remaining energy curve with and without remaining energy management (REM).

6. Conclusions

In this paper, we studied the coordination of ESS with a generator in AGC in frequency regulation.
Although the fast response ability of ESS makes it suitable for frequency regulation, it is expensive to
invest in large-size ESS. A hybrid regulation system with both a generator and ESS can take advantage
of the benefits of both devices so that the regulation tasks can be achieved with less costs. We adopted
a Monte Carlo simulation model to study the capacity optimization of generator and ESS, and took
the operation process and control strategy as an input. Various practical constraints are considered
in the operation process, such as the amplitude limiting and remaining energy management of ESS.
Based on the simulation model, the total costs of the hybrid system to invest and operate are estimated
on a given filtering coefficient α. Further, a gradient-based algorithm is introduced to search for the
optimal system configuration, specifically the α, based on which the capacities of generator and ESS
are optimized. We show in numerical experiments that the algorithm can converge to the optimal
solution efficiently. The performances of the hybrid system in terms of achieving the regulation tasks
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and costs reduction are also shown in the experiments with respect to the generator ramping and the
power differences between AGC signals and hybrid system output. As the key to ESS operation, the
remaining energy management is proved to be crucial in maintaining the ESS energy.

We model the operation process based on the Monte Carlo simulation method, in order to
incorporate many influence factors in the model. We captured the influence of regulation demand and
some practical constraints on capacity optimization of the hybrid system, while other factors, such as
the growth of demand in the short-term and long-term future, are not incorporated yet because of
a lack of related data. Due to the complexity, we optimize the capacity of the hybrid system with a
determined operation strategy and parameters in this paper. However, there is a great potential to
make progress in jointly optimizing the capacity and operation strategy.
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Abbreviations

The following abbreviations and nomenclature are used in this manuscript:

AGC Automatic Generation Control
ESS Energy Storage System
REM Remaining Energy Management
α Filtering coefficient
PAGC Original AGC signals
PL

AGC The low-frequency portion of AGC signals after filtering with kth element being PL
AGC(k)

PH
AGC The high-frequency portion of AGC signals after filtering with kth element being PH

AGC(k)
Pmax

G,AGC The regulation capacity of generator
Pmax

S The power capacity of ESS
Ecap The energy capacity of ESS
Pmax,+

G,AGC(k) or Pmax,−
G,AGC(k) The upstream or downstream adjustment bound for generator at time k

Pmax,+
S (k) or Pmax,−

S (k) The upstream or downstream adjustment bound for ESS at time k
Ek ESS remaining energy at time k
Emax The upper limit for remaining energy maintained
Emin The lower limit for remaining energy maintained
η+ or η− The discharge and charge efficiency
∆PH+

AGC(k) or ∆PH−
AGC(k) The upper and lower adjustment range for ESS

∆PL+
AGC(k) or ∆PL−

AGC(k) The upper and lower adjustment range for generator
M A very large number for constraint penalty
cS Energy storage costs
p f req−op The unit cost for 1 MW ramping in generator
PG,O The operation point of generator
cPCS The unit cost for 1 MW storage capacity
cstorage The unit cost for 1 MWh energy capacity
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