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Abstract: Reduced-order modeling approaches for gas flow in dual-porosity dual-permeability
porous media are studied based on the proper orthogonal decomposition (POD) method combined
with Galerkin projection. The typical modeling approach for non-porous-medium liquid flow
problems is not appropriate for this compressible gas flow in a dual-continuum porous media.
The reason is that non-zero mass transfer for the dual-continuum system can be generated artificially
via the typical POD projection, violating the mass-conservation nature and causing the failure of
the POD modeling. A new POD modeling approach is proposed considering the mass conservation
of the whole matrix fracture system. Computation can be accelerated as much as 720 times
with high precision (reconstruction errors as slow as 7.69 × 10−4%~3.87% for the matrix and
8.27 × 10−4%~2.84% for the fracture).

Keywords: proper orthogonal decomposition (POD); dual continuum; mass conservation; fractured
porous media; unconventional gas

1. Introduction

A dual-porosity, dual-permeability (dual-continuum) model is an important conceptual model
for unconventional oil/gas flow in fractured reservoirs [1–4]. Its computational consumption is very
large for solving the two coupled sets of partially differential equations for fluid flows in the matrix
and the fracture [5,6], which is not endurable in engineering for analyzing the long-term transient
characteristics of flow in fractured porous media. Due to the high computational cost, many analytical
solutions have been proposed [7–11]. However, analytical solutions can only be obtained under much
idealized assumptions, such as slight compressibility, infinite radial flow, homogenization etc., so that
their applications are very limited to simplified cases of oil flow. For gas flow, the slight compressibility
assumption is no longer held, leading to nonlinear equations which cannot be analytically solved.
Therefore, gas flow simulation in dual-continuum porous media has the same computational problem
as has also existed with other problems [12] and has its own problems such as strong nonlinearity.
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It is urgent to develop an efficient numerical method for gas flow in dual-porosity, dual-permeability
porous media.

Proper orthogonal decomposition (POD) is an efficient numerical method to largely accelerate
the computational speed via project governing equations onto low dimensional eigen spaces to
establish a reduced-order model. It has been widely utilized for many non-porous-medium flow
problems [13–15] and also proved to be efficient for some liquid flow cases in single-continuum porous
media [16,17]. In reference [16], Ghommem et al. discussed a high-precision mode decomposition
method for a time-dependent incompressible single-phase flow, but did not describe the acceleration
performance of the method. In reference [17], a POD Galerkin model is proposed for an incompressible
single-phase flow. Only four samples and two modes used in the model can predict hundreds of
cases with high-precision and fast-computation. This research is all on incompressible single-phase
flow. The flow domain is a single-continuum porous media. To the best knowledge of the authors, no
work has been reported for a POD model of compressible single-phase gas flow in dual-continuum
porous media, which has much higher computational cost than single-continuum porous media. Thus,
POD has larger potential to accelerate the numerical computation of gas flow in dual-continuum
porous media. In this study, we proposed a POD acceleration method for gas flow in fractured porous
media based on a dual-porosity, dual-permeability model for the first time. The principle for the POD
modeling of this complex flow system is discussed to guide the improvement of the POD modeling of
a dual-continuum, porous-medium compressible flow system. The precision and acceleration of the
improved POD model are examined.

2. Problems Arising from the Typical POD Modeling Approach

2.1. Model Derivation via the Typical Approach

For statement convenience, we only consider ideal gas flow in two-dimensional Cartesian
coordinates in this paper. Darcy’s law is as follows:

uM = −KxxM
∂pM
∂x

, vM = −KyyM
∂pM
∂y

(1)

uF = −KxxF
∂pF
∂x

, vF = −KyyF
∂pF
∂y

(2)

Governed by the Darcy’s law, mass conservation equations for gas flow in dual-porosity
dual-permeability porous media become:

φM
∂pM

∂t
=

∂

∂x

(
KxxM pM

∂pM
∂x

)
+

∂

∂y

(
KyyM pM

∂pM
∂y

)
+

RT
W

qM − αKM pM(pM − pF) (3)

φF
∂pF
∂t

=
∂

∂x

(
KxxF pF

∂pF
∂x

)
+

∂

∂y

(
KyyF pF

∂pF
∂y

)
+

RT
W

qF + αKM pM(pM − pF) (4)

where φ, p, q, Kxx, Kyy are porosity, pressure, injection/production rate and two components of
conductivity (diagonal permeability tensor divided by dynamic viscosity µ). The subscripts M and F
represent the matrix and fracture respectively. KM is the intrinsic conductivity of the matrix for the
matrix–fracture interaction term. T is temperature. W is the molecular weight of gas. R is the universal
gas constant (8.3147295 J/(mol·K)). α is the shape factor of the fracture, taking the form proposed
by Kazemi [18]:

α = 4

(
1
L2

x
+

1
L2

y

)
(5)

where Lx and Ly are the lengths of the fracture spacing in the x and y directions respectively. The last
terms of Equations (3) and (4) are interaction terms between matrix and fracture.
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To establish the POD model for this flow system, pressure is assumed to be the following
linear combination:

p =
N

∑
n=1

an ϕn (6)

where p consists of pM and pF with corresponding spatial modes for matrix pressure (ϕM
n ) and fracture

pressure (ϕF
n), respectively, so that pM =

N
∑

n=1
an ϕM

n and pF =
N
∑

n=1
an ϕF

n , an are the temporal coefficients,

and N is the number of POD modes. Substitute Equation (6) to Equations (3) and (4) to obtain the
variable-separated Equations (7) and (8):

φM
N
∑

n=1
ϕM

n
dan
dt =

N
∑

n=1

N
∑

l=1
anal

[
∂

∂x

(
KxxM ϕM

l
∂ϕM

n
∂x

)
+ ∂

∂y

(
KyyM ϕM

l
∂ϕM

n
∂y

)]
+ RT

W qM − αKM
N
∑

n=1

N
∑

l=1
anal ϕ

M
l
(

ϕM
n − ϕF

n
) (7)

φF
N
∑

n=1
ϕF

n
dan
dt =

N
∑

n=1

N
∑

l=1
anal

[
∂

∂x

(
KxxF ϕF

l
∂ϕF

n
∂x

)
+ ∂

∂y

(
KyyF ϕF

l
∂ϕF

n
∂y

)]
+ RT

W qF + αKM
N
∑

n=1

N
∑

l=1
anal ϕ

M
l
(

ϕM
n − ϕF

n
) (8)

According to the typical procedure of POD modeling, one should project the matrix equation,
Equation (7), onto ϕM

m and project the fracture equation, Equation (8), onto ϕF
m, respectively (m = 1~N),

and add these two projection equations together to solve the unique temporal coefficients an (n = 1~N).
The procedure will be explained as follows. First of all, the projections of Equations (7) and (8) are
expressed as:

∫ ly
0

∫ lx
0 ϕM

m φM
N
∑

n=1
ϕM

n
dan
dt dxdy

=
∫ ly

0

∫ lx
0 ϕM

m
N
∑

n=1

N
∑

l=1
anal

[
∂

∂x

(
KxxM ϕM

l
∂ϕM

n
∂x

)
+ ∂

∂y

(
KyyM ϕM

l
∂ϕM

n
∂y

)]
dxdy

+
∫ ly

0

∫ lx
0 ϕM

m
RT
W qMdxdy−

∫ ly
0

∫ lx
0 ϕM

m αKM
N
∑

n=1

N
∑

l=1
anal ϕ

M
l
(

ϕM
n − ϕF

n
)
dxdy

(9)

∫ ly
0

∫ lx
0 ϕF

mφF
N
∑

n=1
ϕF

n
dan
dt dxdy

=
∫ ly

0

∫ lx
0 ϕF

m
N
∑

n=1

N
∑

l=1
anal

[
∂

∂x

(
KxxF ϕF

l
∂ϕF

n
∂x

)
+ ∂

∂y

(
KyyF ϕF

l
∂ϕF

n
∂y

)]
dxdy

+
∫ ly

0

∫ lx
0 ϕF

m
RT
W qFdxdy +

∫ ly
0

∫ lx
0 ϕF

mαKM
N
∑

n=1

N
∑

l=1
anal ϕ

M
l
(

ϕM
n − ϕF

n
)
dxdy

(10)

where lx and ly are the domain length in the x and y directions, respectively. Note that ϕ is only the
spatial function and a is only the temporal function. Using this property, the above two equations can
be transformed to:

N
∑

n=1

dan
dt

∫ ly
0

∫ lx
0 φM ϕM

m ϕM
n dxdy =

N
∑

n=1

N
∑

l=1
anal

∫ ly
0

∫ lx
0 ϕM

m

[
∂

∂x

(
KxxM ϕM

l
∂ϕM

n
∂x

)
+ ∂

∂y

(
KyyM ϕM

l
∂ϕM

n
∂y

)]
dxdy

+ RT
W
∫ ly

0

∫ lx
0 ϕM

m qMdxdy− α
N
∑

n=1

N
∑

l=1
anal

∫ ly
0

∫ lx
0 KM ϕM

m ϕM
l
(

ϕM
n − ϕF

n
)
dxdy

(11)

N
∑

n=1

dan
dt

∫ ly
0

∫ lx
0 φF ϕF

m ϕF
ndxdy =

N
∑

n=1

N
∑

l=1
anal

∫ ly
0

∫ lx
0 ϕF

m

[
∂

∂x

(
KxxF ϕF

l
∂ϕF

n
∂x

)
+ ∂

∂y

(
KyyF ϕF

l
∂ϕF

n
∂y

)]
dxdy

+ RT
W
∫ ly

0

∫ lx
0 ϕF

mqFdxdy + α
N
∑

n=1

N
∑

l=1
anal

∫ ly
0

∫ lx
0 KM ϕF

m ϕM
l
(

ϕM
n − ϕF

n
)
dxdy

(12)
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The first integrations on the right hand side of Equations (11) and (12) can be transformed using
integration by part: ∫ ly

0

∫ lx
0 ϕM

m

[
∂

∂x

(
KxxM ϕM

l
∂ϕM

n
∂x

)
+ ∂

∂y

(
KyyF ϕM

l
∂ϕM

n
∂y

)]
dxdy

=
∫ ly

0

[(
ϕM

m KxxM ϕM
l

∂ϕM
n

∂x

)
lx
−
(

ϕM
m KxxM ϕM

l
∂ϕM

n
∂x

)
0

]
dy

+
∫ lx

0

[(
ϕM

m KyyM ϕM
l

∂ϕM
n

∂y

)
ly
−
(

ϕM
m KyyM ϕM

l
∂ϕM

n
∂y

)
0

]
dx

−
∫ ly

0

∫ lx
0 ϕM

l

(
KxxM

∂ϕM
n

∂x
∂ϕM

m
∂x + KyyM

∂ϕM
n

∂y
∂ϕM

m
∂y

)
dxdy

(13)

∫ ly
0

∫ lx
0 ϕF

m

[
∂

∂x

(
KxxF ϕF

l
∂ϕF

n
∂x

)
+ ∂

∂y

(
KyyF ϕF

l
∂ϕF

n
∂y

)]
dxdy

=
∫ ly

0

[(
ϕF

mKxxF ϕF
l

∂ϕF
n

∂x

)
lx
−
(

ϕF
mKxxF ϕF

l
∂ϕF

n
∂x

)
0

]
dy

+
∫ lx

0

[(
ϕF

mKyyF ϕF
l

∂ϕF
n

∂y

)
ly
−
(

ϕF
mKyyF ϕF

l
∂ϕF

n
∂y

)
0

]
dx

−
∫ ly

0

∫ lx
0 ϕF

l

(
KxxF

∂ϕF
n

∂x
∂ϕF

m
∂x + KyyF

∂ϕF
n

∂y
∂ϕF

m
∂y

)
dxdy

(14)

By substituting these two expressions back to the first term of right hand side of Equations (11) and (12),
one can obtain the following expressions:

N
∑

n=1

N
∑

l=1
anal

∫ ly
0

∫ lx
0 ϕM

m

[
∂

∂x

(
KxxM ϕM

l
∂ϕM

n
∂x

)
+ ∂

∂y

(
KyyM ϕM

l
∂ϕM

n
∂y

)]
dxdy

=
∫ ly

0

[(
ϕM

m KxxM pM
∂pM
∂x

)
lx
−
(

ϕM
m KxxM pM

∂pM
∂x

)
0

]
dy

+
∫ lx

0

[(
ϕM

m KyyM pM
∂pM
∂y

)
ly
−
(

ϕM
m KyyM pM

∂pM
∂y

)
0

]
dx

−
N
∑

n=1

N
∑

l=1
anal

∫ ly
0

∫ lx
0 ϕM

l

(
KxxM

∂ϕM
n

∂x
∂ϕM

m
∂x + KyyM

∂ϕM
n

∂y
∂ϕM

m
∂y

)
dxdy

(15)

N
∑

n=1

N
∑

l=1
anal

∫ ly
0

∫ lx
0 ϕF

m

[
∂

∂x

(
KxxF ϕF

l
∂ϕF

n
∂x

)
+ ∂

∂y

(
KyyF ϕF

l
∂ϕF

n
∂y

)]
dxdy

=
∫ ly

0

[(
ϕF

mKxxF pF
∂pF
∂x

)
lx
−
(

ϕF
mKxxF pF

∂pF
∂x

)
0

]
dy

+
∫ lx

0

[(
ϕF

mKyyF pF
∂pF
∂y

)
ly
−
(

ϕF
mKyyF pF

∂pF
∂y

)
0

]
dx

−
N
∑

n=1

N
∑

l=1
anal

∫ ly
0

∫ lx
0 ϕF

l

(
KxxF

∂ϕF
n

∂x
∂ϕF

m
∂x + KyyF

∂ϕF
n

∂y
∂ϕF

m
∂y

)
dxdy

(16)

For the Dirichlet boundary condition, the boundary pressure gradients in Equations (15) and (16)
can be expressed as:

∂pk
∂x

∣∣∣
lx
=

(pk)nx+1,j−(pk)nx,j
∆x/2 =

(pk)nx+1,j−
N
∑

n=1
an(ϕk

n)nx,j

∆x/2

∂pk
∂x

∣∣∣
0
=

(pk)1,j−(pk)0,j
∆x/2 =

N
∑

n=1
an(ϕk

n)1,j−(pk)0,j

∆x/2

∂pk
∂y

∣∣∣
ly
=

(pk)i,ny+1−(pk)i,ny
∆y/2 =

(pk)i,ny+1−
N
∑

n=1
an(ϕk

n)i,ny

∆y/2

∂pk
∂y

∣∣∣
0
=

(pk)i,1−(pk)i,0
∆y/2 =

N
∑

n=1
an(ϕk

n)i,1−(pk)i,0

∆y/2

(17)

where i and j are the index of the grid points in the x and y directions, respectively; nx and ny are grid
numbers; and ∆x and ∆y are corresponding grid spaces. K = M for the matrix and F for the fracture.
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For the Neumann boundary condition, boundary pressure gradients can be expressed via Darcy’s
law (Equations (1) and (2)). Substitute Equations (15) and (16) and the boundary conditions to
Equations (11) and (12), and the projection equations can be expressed as follows:

Projection equation of the matrix:

N
∑

n=1

dan
dt HUM

m,n = HSM
m + HBM

m +
N
∑

n=1
an
(

HBVM
m,n − HBPM

m,n
)
−

N
∑

n=1

N
∑

l=1
anal

(
HDM

m,n,l + αHIM
m,n,l

)
(18)

Projection equation of the fracture:

N

∑
n=1

dan

dt
HUF

m,n = HSF
m + HBF

m +
N

∑
n=1

an

(
HBVF

m,n − HBPF
m,n

)
−

N

∑
n=1

N

∑
l=1

anal

(
HDF

m,n,l − αHIF
m,n,l

)
(19)

where HUk
m,n =

ny
∑

j=1

nx
∑

i=1

(
φk ϕk

m ϕk
n

)
i,j

, HSk
m = RT

W

ny
∑

j=1

nx
∑

i=1

(
ϕk

mqk

)
i,j

,

HBk
m = 2

(∆x)2

ny
∑

j=1

[(
Kxxk ϕk

m p2
k

)
nx+1,j

DiriXk
nx+1,j +

(
Kxxk ϕk

m p2
k

)
0,j

DiriXk
0,j

]
+ 2

(∆y)2

nx
∑

i=1

[(
Kyyk ϕk

m p2
k

)
i,ny+1

DiriYk
i,ny+1 +

(
Kyyk ϕk

m p2
k

)
i,0

DiriYk
i,0

] ,

HBVk
m,n = 1

∆x

ny
∑

j=1

[
uk

0,j

(
ϕk

m ϕk
n

)
0,j

(
1− DiriXk

0,j

)
− uk

nx,j

(
ϕk

m ϕk
n

)
nx+1,j

(
1− DiriXk

nx+1,j

)]
+ 1

∆y

nx
∑

i=1

[
vk

i,0

(
ϕk

m ϕk
n

)
i,0

(
1− DiriYk

i,0

)
− vk

i,ny

(
ϕk

m ϕk
n

)
i,ny+1

(
1− DiriYk

i,ny+1

)] ,

HBPk
m,n = 2

(∆x)2

ny
∑

j=1

[(
Kxxk ϕk

m pk

)
nx+1,j

(
ϕk

n

)
nx,j

DiriXk
nx+1,j +

(
Kxxk ϕk

m pk

)
0,j

(
ϕk

n

)
1,j

DiriXk
0,j

]
+ 2

(∆y)2

nx
∑

i=1

[(
Kyyk ϕk

m pk

)
i,ny+1

(
ϕk

n

)
i,ny

DiriYk
i,ny+1 +

(
Kyyk ϕk

m pk

)
i,0

(
ϕk

n

)
i,1

DiriYk
i,0

] ,

HDk
m,n,l =

ny
∑

j=1

nx
∑

i=1

[
ϕk

l

(
Kxxk

∂ϕk
n

∂x
∂ϕk

m
∂x + Kyyk

∂ϕk
n

∂y
∂ϕk

m
∂y

)]
i,j

,

HIM
m,n,l =

ny
∑

j=1

nx
∑

i=1

[
KM ϕM

m ϕM
l
(

ϕM
n − ϕF

n
)]

i,j, HIF
m,n,l =

ny
∑

j=1

nx
∑

i=1

[
KM ϕF

m ϕM
l
(

ϕM
n − ϕF

n
)]

i,j.

k = M for the matrix and F for the fracture. Diri is 1 for the Dirichlet boundary and 0 for the
Neumann boundary. To uniquely solve the value of the POD coefficients, Equations (18) and (19) should
be added to obtain the final POD projection equation of the dual-porosity, dual-permeability system:

N

∑
n=1

dan

dt
HUm,n = HBm + HSm +

N

∑
n=1

an(HBVm,n − HBPm,n) +
N

∑
n=1

N

∑
l=1

anal(αHIm,n,l − HDm,n,l) (20)

where HUm,n = HUM
m,n + HUF

m,n, HBm = HBM
m + HBF

m, HSm = HSM
m + HSF

m,

HBVm,n = HBVM
m,n + HBVF

m,n, HBPm,n = HBPM
m,n + HBPF

m,n, HDm,n,l = HDM
m,n,l + HDF

m,n,l ,

HIm,n,l = HIF
m,n,l − HIM

m,n,l .

2.2. Numerical Methods and Parameters

Equation (20) is the POD model for the gas flow in dual-porosity, dual-permeability porous media
using the typical modeling approach. The temporal advancement of coefficients an can be expressed
by the following linear algebraic equations:

N

∑
n=1

Am,nan(t + ∆t) = Bm (21)
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where Bm = HBm + HSm +
N
∑

n=1
an(t)(Am,n + HBVm,n − HBPm,n) +

N
∑

n=1

N
∑

l=1
an(t)al(t)(αHIm,n,l − HDm,n,l), Am,n = HUm,n/∆t.

Starting with initial coefficients an(t0), the coefficients for every time step an(t + ∆t) can be calculated
via Equation (21). an(t0) comes from the inner product of initial pressure onto POD modes:

an(t0) =

[
pM
pF

]
·
[

ϕM
n

ϕF
n

]
(22)

The symbol “·” means inner product. Equation (22) exists because of an important
property of POD modes, namely that they are unitary vectors orthogonal to each other, i.e.,[

ϕM
n

ϕF
n

]
·
[

ϕM
m

ϕF
m

]
=

{
1 n = m
0 n 6= m

. To calculate the temporal coefficients of the POD model in

Equation (21), Am,n and Bm should be firstly calculated by POD modes. The modes are generated from
the following sampling and eigenvalue decomposition process:

(1) Through the numerical computation of Equations (3) and (4), a sample matrix of pressure can be
collected at different moments as:

S =

[
pM(t1) · · · pM(tNs)

pF(t1) · · · pF(tNs)

]
(23)

where Ns is the number of samples. To ensure stability and accuracy at a large time step, we
used the semi-implicit finite difference method (FDM) to compute Equations (3) and (4). With the
samples, a kernel for the eigenvalue decomposition can be calculated as follows:

C =
1

Ns

∫ ly

0

∫ lx

0
STSdxdy (24)

(2) Take the eigenvalue decomposition for the kernel to obtain eigenvalues and eigenvectors:

CV =


λ1

λ2
. . .

λNs

V (25)

where λ1 > λ2 > . . . > λNs are the eigenvalues; and V is the corresponding eigenvector matrix.
(3) Calculate the POD modes using the eigenvectors and samples:[

ϕM
1 ϕM

2 · · · ϕM
Ns

ϕF
1 ϕF

2 · · · ϕF
Ns

]
= SV/‖SV‖ (26)

where “‖‖” means L2 norm.

A numerical case is designed for the gas flow in the dual-porosity, dual-permeability porous
media. The computational domain and boundary conditions are shown in Figure 1. Permeability
is assumed to be isotropic with spatial distribution (Figure 2). The gas property was chosen to be
methane as it is the main composition of natural gas. Uniform mesh was used. Sampling was made
every 10 time steps. Other parameters are listed in Table 1.
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Table 1. Additional parameters for computation.

Parameter Value Unit

φM 0.5 /
φF 0.02 /

pM(t0) 1,013,250 Pa
pF(t0) 1,013,250 Pa

p1 2,026,500 Pa
p2 101,325 Pa
qM 0 Kg/(m3·s)
qF 0 Kg/(m3·s)

KM 8.9177127 × 10−11 m2/(Pa·s)
W 16 × 10−3 Kg/mol
R 8.3147295 J/(mol·K)
T 298 K
µ 11.067 × 10−6 Pa·s
nx 100 /
ny 100 /
Ns 2433 /
lx 100 m
ly 100 m
Lx 0.2 m
Ly 0.2 m



Energies 2017, 10, 1380 8 of 17

Table 1. Cont.

Parameter Value Unit

∆x 1 m
∆y 1 m
∆t 1296 s

Simulation time
scope 365 days

2.3. Problem Analyses

The typical POD model for gas flow in dual-porosity, dual-permeability porous media
(Equations (6) and (21)) is computed using the above parameters. To examine the deviation
quantitatively, the relative error for pressures in the matrix and the fracture are defined as follows:

εM = ‖pM
POD − pM

FDM‖/‖pM
FDM‖ × 100% (27)

εF = ‖pF
POD − pF

FDM‖/‖pF
FDM‖ × 100% (28)

where pM
FDM and pF

FDM are matrix pressure and fracture pressure computed by FDM in
Equations (3) and (4), pM

POD and pF
POD are corresponding pressures computed by the POD model.

The details of the FDM algorithm are as follows. The temporal advancement for the whole equation
system is a semi-implicit method. The diffusion terms in Equations (3) and (4) are discretized using
the second-order cell-centered finite difference scheme. A staggered grid, where velocity components
are placed on the cell surfaces of the pressure grid, is used to ensure the computational stability.
The discrete equations via these FDM algorithms can be easily solved using the linear solver of
algebraic equations.

It is unusual that the typical POD model can only be computed when the top one POD modes
of matrix and fracture (ϕM

1 and ϕF
1 ) are used. If more POD modes are used in the POD model, the

computation will be broke up. For the POD results using the top one POD modes, the relative
errors are very large all over the whole transient process (18.89~38.67% for the fracture pressure and
16.26~38.98% for the matrix pressure), as shown in Figure 3. It is further confirmed in Figures 4 and 5
that the reconstructed pressure fields for both the fracture and matrix cannot reproduce pressure fields
accurately at the two moments: t1 and t2. Thus, the typical POD model has quite low robustness and
low precision, and it should be improved.
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Figure 5. Pressure fields comparison for typical POD modeling at t2: black solid line-FDM; red dashed
line-POD. (a) Fracture (εF = 38.67%); (b) Matrix (εM = 38.98%).

Before the improvement of the above POD model, the reason for the low robustness and low
precision should be revealed firstly to clarify the direction of improvement. We revisited the governing
equations (Equations (3) and (4)) of the gas flow in dual-porosity, dual-permeability porous media
and realized that these two equations actually reflect the mass transfer of gas between the matrix
and fracture. The term −αKM pM(pM − pF) in Equation (3) represents the mass leaving the matrix.
The term αKM pM(pM − pF) in Equation (4) represents the mass entering the fracture. The mass
of gas in the matrix and fracture changes every second, but the total mass for the whole system
does not change. Mass is only transferred from the matrix part to the fracture part so that the net
mass transfer should be zero. Therefore, the projection of the net mass transfer should also be zero.
However, in the typical POD modeling approach, the transfer term in Equation (3) is projected onto
ϕM while the transfer term in Equation (4) is projected onto ϕF so that the projection of the net
mass transfer I = −

∫ ly
0

∫ lx
0 αKM pM(pM − pF)ϕMdxdy +

∫ ly
0

∫ lx
0 αKM pM(pM − pF)ϕFdxdy could not

be zero. This non-zero term is generated from the projection process but not from its physical nature.
Thus, the typical POD modeling is correct in mathematics but incorrect in physics because it induces
artificial mass transfer of the whole system, which does not exist in nature.

To verify the above theoretical analyses, we examine the value of I and compare its magnitude with
other terms. It is obvious that I = αHIm,n,l∆x∆y according to the definition of integration. Therefore,
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αHIm,n,l in Equation (20) can represent the projection of the net mass transfer I. For convenience of
comparison, we define a ratio of the net mass transfer to the diffusion term:

r = α
N

∑
l=1

N

∑
n=1

N

∑
m=1

HIm,n,l/
N

∑
l=1

N

∑
n=1

N

∑
m=1

HDm,n,l (29)

The ratio is −3.62 × 102, −1.98 × 103 and 4.85 × 103 for N = 1, 2, 3 respectively in Table 2.
This means that the effect of the matrix–fracture interaction is hundreds or thousands of times larger
than the effect of the diffusion, so that the behavior is indeed controlled by the matrix–fracture
interaction in the typical POD modeling. However, this interaction effect is artificially generated from
the projection of the transfer term −αKM pM(pM − pF) and αKM pM(pM − pF) separately in the matrix
equation and fracture equation. Thus, the large unphysical mass transfer term causes the computation
of the typical POD model to have very low precision (N = 1) or even to be broken up (N > 1). It is
confirmed by the above comparison that the previous theoretical analyses are correct quantitatively.
To obtain a reliable and accurate POD model for the dual-porosity, dual-permeability system, the
artificial mass transfer should be avoided.

Table 2. Magnitude comparison between the net mass transfer and the diffusion term.

N 1 2 3

r −3.62 × 102 −1.98 × 103 4.85 × 103

3. A New POD Modeling Approach Based on System Mass Conservation

3.1. Establishment of the New POD Model

According to the theoretical analysis and numerical comparison in Section 2.3, we realized that
the separate projections of the interaction terms in matrix Equation (3) and fracture Equation (4) in the
typical POD modeling approach introduces artificial mass transfer between matrix and fracture which
does not exist in nature. Although it is correct in mathematics, the typical approach violates the mass
conservation of the whole dual-continuum system in physics. A new POD modeling approach should
be developed obeying both mathematics and physics.

From the analyses in Section 2.3, we recall that the mass is only exchanged between the matrix
part and the fracture part, but the net mass transfer for the whole system is zero. This kind of mass
conservation is automatically ensured in FDM but not automatically ensured in the typical POD
modeling approach. To guarantee the mass conservation in the POD modeling, we propose a new
approach in which the summation of Equations (3) and (4) is made before their projection. After the
summation, the mass conservation equation of the whole system is:

∂(φM pM+φF pF)
∂t = ∂

∂x

(
KxxM pM

∂pM
∂x + KxxF pF

∂pF
∂x

)
+ ∂

∂y

(
KyyM pM

∂pM
∂y + KyyF pF

∂pF
∂y

)
+ RT

W (qM + qF)
(30)

This equation can be projected onto either ϕM
m or ϕF

m. Using a general symbol ϕ∗m (* = M or F
representing the matrix or fracture respectively) in a similar projection process to that in Section 2.1,
the projection equation of Equation (30) can be expressed as follow:

M

∑
n=1

dan

dt
HUnew

m,n = HSnew
m + HBnew

m +
M

∑
n=1

an
(

HBVnew
m,n − HBPnew

m,n
)
−

M

∑
n=1

M

∑
l=1

anal HDnew
m,n,l (31)

where HUnew
m,n =

ny
∑

j=1

nx
∑

i=1

(
φM ϕ∗m ϕM

n + φF ϕ∗m ϕF
n
)

i,j, HSnew
m = RT

W

ny
∑

j=1

nx
∑

i=1
[ϕ∗m(qM + qF)]i,j,
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HBnew
m = 2

(∆x)2

ny
∑

j=1

 (ϕ∗m)nx+1,j

[(
KxxM p2

M
)

nx+1,jDiriXM
nx+1,j +

(
KxxF p2

F
)

nx+1,jDiriXF
nx+1,j

]
+(ϕ∗m)0,j

[(
KxxM p2

M
)

0,jDiriXM
0,j +

(
KxxF p2

F
)

0,jDiriXF
0,j

] 
+ 2

(∆y)2

nx
∑

i=1

 (ϕ∗m)i,ny+1

[(
KyyM p2

M
)

i,ny+1DiriYM
i,ny+1 +

(
KyyF p2

F
)

i,ny+1DiriYF
i,ny+1

]
+(ϕ∗m)i,0

[(
KyyM p2

M
)

i,0DiriYM
i,0 +

(
KyyF p2

F
)

i,0DiriYF
i,0

] 
,

HBVnew
m,n = 1

∆x

ny
∑

j=1


(ϕ∗m)0,j

[
uM

0,j
(

ϕM
n
)

0,j

(
1− DiriXM

0,j

)
+ uF

0,j
(

ϕF
n
)

0,j

(
1− DiriXF

0,j

)]
−(ϕ∗m)nx+1,j

[
uM

nx,j
(

ϕM
n
)

nx+1,j

(
1− DiriXM

nx+1,j

)
+ uF

nx,j
(

ϕF
n
)

nx+1,j

(
1− DiriXF

nx+1,j

)]


+ 1
∆y

nx
∑

i=1


(ϕ∗m)i,0

[
vM

i,0
(

ϕM
n
)

i,0

(
1− DiriYM

i,0

)
+ vF

i,0
(

ϕF
n
)

i,0

(
1− DiriYF

i,0

)]
−(ϕ∗m)i,ny+1

[
vM

i,ny
(

ϕM
n
)

i,ny+1

(
1− DiriYM

i,ny+1

)
+ vF

i,ny
(

ϕF
n
)

i,ny+1

(
1− DiriYF

i,ny+1

)]


,

HBnew
m = 2

(∆x2

ny
∑

j=1

 (ϕ∗m)nx+1,j

[
(KxxM pM)nx+1,j

(
ϕM

n
)

nx,jDiriXM
nx+1,j + (KxxF pF)nx+1,j

(
ϕF

n
)

nx,jDiriXF
nx+1,j

]
+(ϕ∗m)0,j

[
(KxxM pM)0,j

(
ϕM

n
)

1,jDiriXM
0,j + (KxxF pF)0,j

(
ϕF

n
)

1,jDiriXF
0,j

] 
+ 2

(∆y)2

nx
∑

i=1


(ϕ∗m)i,ny+1

[(
KyyM pM

)
i,ny+1

(
ϕM

n
)

i,nyDiriYM
i,ny+1 +

(
KyyF pF

)
i,ny+1

(
ϕF

n
)

i,1DiriYF
i,ny+1

]
+(ϕ∗m)i,0

[(
KyyM pM

)
i,0

(
ϕM

n
)

i,1DiriYM
i,0 +

(
KyyF pF

)
i,0

(
ϕF

n
)

i,1DiriYF
i,0

] 
,

HDnew
m,n,l =

ny
∑

j=1

nx
∑

i=1

[
∂ϕ∗m
∂x

(
KxxM ϕM

l
∂ϕM

n
∂x + KxxF ϕF

l
∂ϕF

n
∂x

)
+ ∂ϕ∗m

∂y

(
KyyM ϕM

l
∂ϕM

n
∂y + KyyF ϕF

l
∂ϕF

n
∂y

)]
i,j

,

Equation (31) does not contain the projection of interaction terms, such as HIm,n,l in Equation (20),
so that no artificial mass transfer exists. Thus, it represents the mass conservation of the whole system
in physical nature. The derivation also obeys mathematical laws strictly.

3.2. Model Verification

A new POD model based on the mass conservation of the whole system is established in Section 3.1
theoretically. Its precision and computational speed should be verified by the same numerical case
in Section 2.2. First of all, the projection operator ϕM

m or ϕF
m needs to be discussed to determine the

exact model expression. For convenience of comparison, the relative errors in Equations (27) and (28)
are averaged in time. The time-averaged errors of the matrix pressure and the fracture pressure are
listed in Tables 3 and 4. The time-averaged errors have slight differences between the projections
onto ϕM

m and ϕF
m when the numbers of the POD modes are from 1 to 4. However, the POD model

based on the projection of ϕF
m cannot obtain results for N ≥ 5 due to the break-up of the computation.

This is because the gas in the matrix flows much more slowly than the gas in the fracture, i.e., pF
changes much faster than pM in the same time scope. Thus, the values of pF in samples are in a very
small range, leading the base ϕF to contain more numerical errors than ϕM (the numerical errors are
generated from the POD decomposition). Thus, the blow up using more modes (N ≥ 5) indicates that
only the first four modes of the base ϕF contain information on fracture pressure while the following
modes (N ≥ 5) are all numerical errors with no physical meaning. Thus, the new POD modeling
approach can only use the projection of matrix mode, i.e., the superscript “*” in Equation (31), and
is “M”.

Table 3. Time-averaged error of matrix pressure for different projection operators.

εM (%) N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

Project onto ϕM
m 2.7527 1.3319 2.5884 0.9123 0.8826 0.9110

Project onto ϕF
m 2.7469 1.8863 1.9840 1.1248 N/A N/A
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Table 4. Time-averaged error of fracture pressure for different projection operators.

εF (%) N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

Project onto ϕM
m 1.9049 0.9131 1.8079 0.6702 0.7182 0.7062

Project onto ϕF
m 1.8990 1.3435 1.3795 0.7912 N/A N/A

After the determination of the projection onto ϕM
m , the number of POD modes should also be

determined because it affects the precision of the POD model. The importance of the mode number
can be represented by the energy spectrum:

ηn =
n

∑
j=1

λj/
N

∑
i=1

λi × 100% (32)

where ηn is the cumulative energy contribution of the top n POD modes (φ1∼φn) to total energy. Once
ηn achieves 100%, it indicates that all information has been captured by these top n POD modes.
As shown in Figure 6, the cumulative energy contribution achieves 100% from the 5th or 6th mode so
that the POD modes at least after the 6th mode should be neglected. The exact mode number needs an
examination of the relative error for the whole transient process.
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The temporal evolutions of relative errors using different POD modes are shown in Figure 7.
Relative errors for the matrix and fracture pressures fluctuate at the initial stage and then rapidly
decrease to a stable value at any number of POD modes. They decrease with increasing number of
POD modes and become stable after five modes. The addition of the 6th mode causes the error to
increase slightly (Figure 7f), indicating that the 6th mode has no positive contribution to precision
promotion. Thus, the top five modes should be adopted in the new POD model.
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(b) top 2 modes; (c) top 3 modes; (d) top 4 modes; (e) top 5 modes; (f) top 6 modes.

To further examine the local precision of the new POD model, it is necessary to compare the local
flow fields at two typical moments (0.15 days and 365 days). At 0.15 days, the reconstruction errors
of the POD are maximum. At 365 days, the reconstruction errors of the POD stay low and stable.
As shown in Figures 8 and 9, the reconstructed pressure fields and velocity fields in the fracture and
matrix from the new POD model always agree well with those from FDM. The local distributions of
the reconstructed flow fields by POD only have small deviations with the flow fields computed by
FDM, regardless of whether the reconstruction errors are large (εF = 2.84%, εM = 3.87% at 0.15 days)
or small (εF = 0.83%, εM = 1.02% at 365 days). Thus, it is confirmed that the new POD model can
reproduce all the transient characteristics of pressure and velocity for gas flow in the dual-porosity,
dual-permeability system with high precision.
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Figure 8. Flow field comparison for matrix and fracture at 0.15 days: black solid line-FDM; red dashed
line-POD (εF = 2.84%, εM = 3.87%).
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Figure 9. Flow field comparison for matrix and fracture at 365 days: black solid line-FDM; red dashed
line-POD (εF = 0.83%, εM = 1.02%).

The aim of POD modeling is not only high-precision reconstruction, but also a large-acceleration
of computation. Hence, the verification of computational speed is important. The comparison of code
running time, i.e., CPU time, is listed in Table 5. For the same period of simulation time (365 days in
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this case), simulation via FDM needs one hour (i.e., 3600 s), but the simulation via the new POD model
only needs 5 s. The acceleration of computational speed is as high as 720 times, indicating that the
computational time is largely saved. The new POD modeling approach is a good way to decrease CPU
time for numerical computation for gas flow in dual-porosity, dual-permeability porous media.

Table 5. Acceleration ability of the new POD model.

FDM New POD Model

CPU time 3600 s 5 s

4. Conclusions

POD modeling for gas flow in dual-porosity, dual-permeability porous media was studied for the
purpose of the acceleration of computation with high-precision for potential engineering applications.
Some conclusions related to the principle of POD modeling for this type of flow can be made as follows:

(1) For dual-porosity, dual-permeability porous media, the typical method should be avoided to
project the matrix equation and fracture equation separately. Otherwise, an artificial mass transfer
term, which is 103~102 times larger than the diffusion term, will be generated to cause the failure
of the POD modeling, because it violates the mass conservation of the whole system.

(2) A mass conservation POD modeling method is proposed to ensure that no artificial mass transfer
is generated by the POD projection process. Original governing equations should be projected
onto the POD modes of matrix pressure to maintain a robust POD model.

(3) The new POD model obeying the mass-conservation nature of the whole system can promote
computational speed as much as 720 times under high precision: εF

max = 2.84%, εM
max = 3.87%;

εF
min = 8.27× 10−4%, εM

min = 7.69× 10−4%; εF
stable = 0.83%, εM

stable = 1.02%.
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