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Abstract: This paper proposes a super capacitor energy storage-based modular multilevel converter
(SCES-MMC) for mine hoist application. Different from the conventional MMCs, the sub-modules
employ distributed super capacitor banks, which are designed to absorb the regenerative energy
of mine hoist and released in the traction condition, so as to improve energy utilization efficiency.
The key control technologies are introduced in detail, followed by analysis of the configuration and
operation principles. The feasibility of the proposed SCES-MMC topology and the control theory are
also verified. Simulation results show that SCES-MMC can adapt to the variable frequency speed
regulation of the motor drive, which shows good application prospects in the future for medium-
and high-voltage mine hoist systems.

Keywords: super capacitor energy storage (SCES); modular multilevel converter (MMC); mine hoist;
state of charge; regenerative energy; energy harvesting

1. Introduction

The mine hoist conveyor is typically one of the largest consumers of electric power, besides of the
excavator systems, of all equipment in the mining industry. As the only inoue-to-downhole access,
the output performance of mine hoist electric transmission systems may not only play key roles in
economical mine production, but may also affect equipment and personal safety [1,2]. In view of the
large power rating requirements for mine hoist electric transmission systems, medium-voltage source
converters (VSC) have increasingly gained importance due to their high power density, excellent
efficiency, and high reliability [3–5]. For the last two decades, three-level neutral-point-clamped (NPC)
VSCs have been the standard solution in the medium-voltage range for industrial applications [6,7].
Since the regenerative energy in an electric mine hoister and excavator may be as high as 60 percent of
the motoring power [8,9], active front-end rectifiers (AFE) are usually adopted to feed the regenerative
energy back into the power distribution grid in order for it not to be wasted. However, the practical
constraints in the controller bandwidth may place restrictions on the system’s regenerative power
handling. Therefore, protective circuits, such as DC choppers and crowbars, are usually added to the
system for suppressing the DC bus over-voltage during regeneration [10].

Compared with NPC-VSC, modular multilevel converter (MMC) provides advantages such
as high modularity, lower switching efficiency, high efficiency, better output voltage performance,
etc. Thus, in addition to its successful commercial implementation in high voltage direct current
(HVDC) transmission projects [11–13], it also shows good application prospects in fields such as
power quality control [14,15]. However, AC drive-based MMCs are only suitable for industrial fans,
pumps and other applications of small speed range close to the rated value. In order to solve the
low-frequency torque ripple issues of conventional MMC motor drive systems, many scholars have
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carried out extensive research and proposed control strategies for common mode voltage/current
multi-component injection and pulse optimization [16–19]. However, the above method does not
fundamentally eliminate the limitations of MMC variable frequency-speed regulation control. On the
other hand, domestic mine accidents have been frequent in recent years. If the high-voltage converter
could continue to operate for a short time under outage conditions, the reliability of the mine hoist
equipment would be significantly improved. In addition, when the mine hoist is braking, the electric
transmission system will be in the generation condition, and the regenerating energy will charge the
DC bus capacitor. An energy storage-enabled MMC seems an ideal solution for the abovementioned
issues, since the super capacitors show better power density and a longer service life compared to
traditional batteries. Thus, the super capacitor energy storage based MMC (SCES-MMC) is more
suitable for mine hoist application. However, published technical papers focus mainly on battery
energy storage system (BESS)-based MMCs [20,21]. In view of the above issues, this paper adopts the
SCES-MMC for energy-harvesting applications. The super capacitor banks within the SCES-MMC
operates as a power source to ensure the mine hoist keeps working for a short time when power
failures occur unexpectedly. As a result, the safety of the mine hoist equipment can be significantly
improved to avoid mine accidents. In addition, when the mine hoist is braking, the regenerative energy
is quickly transferred to the SCES to avoid DC bus overvoltage.

This paper is organized as follows. Section 2 presents the structural characteristics and operation
principles of SCES-MMC topology. In Section 3, the system control strategies including motor frequency
controls and state of charge (SOC) balancing controls are explored in detail. To validate the feasibilities
and effectiveness of the proposed topology and theory, extensive simulation results are demonstrated
in Section 4. Finally, Section 5 reports the main conclusions.

2. Topology and Operation Principles

2.1. Topology Analysis

A typical topology for three-phase SCES-MMC is shown in Figure 1, where Ls is the output
equivalent AC inductance, o is the neutral point of reference potential between the positive P and
negative N of the DC bus. The SCES-MMC is three-phase balanced, and its phase-leg consists of 2n
sub-modules SMjk (phase j =a, b, c, SMs number k = 1, 2, . . . , 2n) and leg inductance La. Figure 1b
shows the basic building blocks-SCES-SM, which consists of two IGBTs (T1, T2), two anti-parallel
diodes (D1, D2), a capacitor CSM, a super capacitor bank interface circuit.
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Figure 1. Configuration of three-phase SCES-MMC and its sub-module: (a) Three-phase SCES-MMC 
topology; (b) SCES-SM. 
Figure 1. Configuration of three-phase SCES-MMC and its sub-module: (a) Three-phase SCES-MMC
topology; (b) SCES-SM.
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Figure 2 demonstrates three widely-applied topologies for SCES-SM interface circuits: direct
connection, bidirectional buck/boost converter and dual active bridge converter. The main difference
between the latter two is the isolating transformer. To simplify the analysis, Figure 2a is selected as
the SCES-SM interface circuit, but this does not affect the correctness of the theory. Additionally,
the distributed super capacitors CSC results in an SCES-MMC with a highly modular structure
and redundant capability, which further improves the reliability of the SCES-MMC for mine hoist
applications. What is more, the circulating energy of SCES-MMC is exchanged between phase-legs
through the common DC bus. Therefore, the SCES-SMs’ state of charge (SOC) may also be applied for
system controls.
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Figure 2. Topology of SCES-SM interface circuit: (a) Direct connection (b) Bidirectional buck/boost
converter (c) Dual active bridge converter.

2.2. Operation Principles of SCES-MMC

The switching states of the SCES-SM are shown in Table 1, and the output voltage of SCES-SM
is switched between zero and USC by controlling T1 and T2, where USC is the DC voltage of the
SCES-SM. At the same time, SOC control of the corresponding super capacitor banks (SCBs) may also
be implemented in this process.

Table 1. Switching states of SCES-SM.

Mode T1/D1 T2/D2 iSM Output Voltage SOC

Charging 0/1 0/0 >0 USC increasing
Discharging 1/0 0/0 <0 USC decreasing

Bypass 0 1 >0 0 maintaining
Bypass 0 1 <0 0 maintaining

According to the reference direction shown in Figure 1, AC current of phase-j during normal
operation is expressed as

iPj =
1
3

IDC +
1
2

isj + iZj (1)

iNj =
1
3

IDC − 1
2

isj + iZj (2)

isj = iPj − iNj (3)

iCj =
1
3

IDC + iZj (4)
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where iPj and iNj are the upper and lower arm currents, respectively; IDC is the DC bus current. The arm
current flows through both the upper and lower legs consist of half of the AC output current isj and the
common-mode current iCj, which consists of the DC component IDC/3 and the circulating component
iZj. The former refers to the active power for charging and discharging the SM capacitors, while the
latter indicates the reactive power causing the SM capacitor voltage ripples. Similarly, the resulting
AC and DC voltages are determined by

uPj =
UDC

2
− uj − La

diPj

dt
− RaiPj (5)

uNj =
UDC

2
+ uj − La

diNj

dt
− RaiNj (6)

uj =
uNj − uPj

2
− La

2
dij

dt
− Ra

2
ij (7)

UDC = uPj + uNj + 2La
diCj

dt
+ 2RaiCj (8)

where uj is the AC output phase voltage, UDC is the rated DC bus voltage, Ra is the equivalent series
arm resistor, and uPj and uNj denote the upper and lower arm voltages, respectively.

2.3. Power Flow Analysis

Figure 3 illustrates the power flow modes, where PSCES refers to the power absorbed/released
by SCES, the load side power Pload is represented by Ptrac when under traction conditions, or by Preg

when under regeneration conditions. The fundamental power exchange relation is as follows

PLoad = Pdc + PSCES (9)
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With regard to bidirectional power flow characteristics, SCES-SM charging/discharging is realized
through different operation modes. The two basic operation modes in SCES-MMC are defined
as follows.

1. Normal operation mode: |PLoad| > |Pdc|

Mode (a): PLoad = Pdc, PSCES = 0;

Mode (b): Pdc > 0, PSCES > 0 (discharging), Ptrac > 0 (traction condition);

Mode (c): Pdc < 0, PSCES < 0 (charging), Preg> 0 (regeneration condition);
2. Fault operation mode: Pdc = 0

Mode (d): PLoad = PSCES.

In mode (a), SCES does not participate in the work. As a result, the operation principles of
SCES-MMC are similar to the conventional MMCs. Load side power is fed exclusively from the DC
bus of the SCES-MMC. Notably, when the mine hoist motor is braking, the regenerative energy maybe
consumed on the DC bus due to the uncontrolled rectifier, as shown in Figure 3a.

In mode (b), the load side motor is under traction conditions, and the SCES functions as the DC
source; thus, SCBs discharge to provide part of the AC load power, as shown in Figure 3b.

In mode (c), the load side motor is under regenerative conditions, and the SCES absorbs part of the
regenerative power from the mine hoist motor. However, extra regenerative power is still consumed
on the DC bus.

In contrast to conventional MMCs, when power outage faults occur, SCES will play the role of
sole DC source, and feed the AC side load under similar control strategies as those shown in Figure 3d;
thus, the mine hoist motor system is capable of continuing to work for a short time. This is a major
advantage of SCES-MMC in terms of enhancing system reliability.

3. System Control Strategies

The SCES-MMC operates differently from regular MMCs. Since the SCBs within each SCES-SM
are able to act as the DC source for supplying the AC load, the power will be delivered not only from
the DC bus but also the SCES. Therefore, the SCES-MMC control strategy, when applied to the mine
hoist motor drive system, includes two main parts, namely, motor variable frequency speed regulation
(VFSR) control and SOC control.

3.1. Variable Frequency Speed Control

The typical operating states of the mine hoist include acceleration, uniform speed, and
deceleration; thus, speed regulation is one of the main control targets. Based on the active flux observer
(AFO)-based variable frequency speed regulation control proposed in [22,23], the SCES-MMC VFSR
control strategy proposed in this paper is shown in Figure 4, where ω* and ω are the reference mine
hoist rotor speed and the observed rotor speed obtained by the active flux observer (AFO) proposed
in [22,23], respectively. The reference current i*q, i*d is calculated according to the mathematical model
of synchronous motors, as proposed in [22]. Proportional integral regulator PI refers to the current
loop controller. Consequently, the upper- and lower-arm voltages u∗

Pj and u∗
Nj are calculated based on

Equations (5) and (6).
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3.2. SOC Control

SOC control is one of the main differences from conventional MMCs. It is essential to control the
circulating current of SCES-MMC to maximize the efficiency of the SOC controls. According to the
configuration features, The SOC control structure of SCES-MMC generally includes SOC control of
upper/lower arm sub-modules and SOC balancing control of phase-legs, as shown in Figure 5, where
K2 to K5 refer to closed-loop controllers such as PI controllers.
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Figure 5a,b shows the block diagram of individual SOC balancing controls, so as to make the
SCES-SM SCBs SOC on the same leg equal to its corresponding average arm SOC (SOCPj, SOCNj).
sign() denotes the signum function, and the average arm SOC SOCPj, SOCNj are expressed as follows:

SOCPj =
1
n

n

∑
k=1

SOCjk (10)
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SOCNj =
1
n

2n

∑
k=n+1

SOCjk (11)

The arm SOC balancing control aims to eliminate the deviation between the average arm SOCs.
Similarly, the SOC balancing control of the phase-legs aims to eliminate the deviation between the
average SOC (SOCj,ave) of each phase and the three-phase average SOC (SOCave). Therefore, SOCj,ave
and SOCave are given by:

SOCj,ave =
1

2n

2n

∑
k=1

SOCjk (12)

SOCave =
1
3

c

∑
j=a

SOCj,ave (13)

The above SOC control is implemented by the control of the circulating current, and the reference
circulating current i∗Zj is calculated from the outputs of the above two SOC balancing control i∗Zj1 and
i∗Zj2, as follows

i∗Zj = i∗Zj1 + i∗Zj2 (14)

The controller of the circulating current inner loop aims to make the actual circulating current izj
equal to the reference current i∗Zj, and then to realize the SOC balancing control, with the reference
voltage U∗

j,cir being the output of the controller.
In summary, system control structures for the SCES-MMC are shown as Figure 6, where the

reference voltage of the phase arm is calculated as follows:

U∗
Pjk =

u∗
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4. Verifications of SCES-MMC

To verify the feasibility of the proposed SCES-MMC mine hoist system and control strategies,
a simulation model of a nine-level SCES-MMC was created, as shown in Figure 7. The multi-pulse
rectifier and chopper cell are employed to supply the constant DC bus voltage UDC. The simulation
model parameters of SCES-MMC are listed in Table 2, and the initial SOC value of the SCBs is 100%.
The super capacitor parameter design and selection method are similar to [24], and the modulation
method adopted in this simulation is carrier phase-shifted sinusoidal pulse-width-modulation,
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combined with the third harmonic injection method of [25]. In addition, assuming that the synchronous
motor reaches the rated speed at 0.6 s and starts decelerating at 0.9 s, the SCES-MMC output
performance is shown in Figure 8.

Figure 8a,b shows that the frequency of the voltage and the current will gradually rise to its rated
value under variable frequency speed regulation control. The SCES-MMC comes to its steady state at
0.6 s, and then gradually decays when the system enters the deceleration condition at 0.9 s. From the
speed characteristics of the synchronous motor shown in Figure 8c, it can be seen that, before 0.6 s,
the SCBs begin to release energy when the motor speed is rising and the system SOC is decreasing, as
shown in Figure 8d. Then, the motor speed starts to drop when the synchronous motor brakes at 0.9 s,
and the regenerative power in this process will also help charge the SCB of each SCES-SM, hence its
SOC will rise.

Table 2. Simulation parameters of SCES-MMC.

System Parameters Value

AC line-to-line voltage 1.45 kV
DC link voltage 3.6 kV

Rated power 5.3 MW
Leg inductance 5.0 mH

SM capacitor voltage 0.45 kV
Super capacitor capacitance 20 F

Rated speed 52 rpm
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Figure 7. Configuration of SCES-MMC simulation model.

Due to the high capacitance of the SCBs, even if a large amount of energy is released/absorbed,
there is no significant fluctuation in the sub-module capacitor voltage USM, as shown in Figure 8e,f.

Figure 9 illustrates the power distribution laws of the proposed SCES-MMC. From the
above-mentioned analysis, it can be concluded that the SCBs in the SCES-MMC will be discharged to
provide about 69% of the AC load power requirement. Thus, less DC power is required compared
to those without super capacitor banks. Since SCES is involved in absorbing part of the regenerative
power from the mine hoist motor, under regeneration conditions, the power dissipated in the
SCES-MMC is also less than for conventional MMCs. This makes it possible to minimize the capacity
requirements of the AC grid and energy loss of the mine hoist system.
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Figure 8. Output performance of SCES-MMC: (a) AC output voltage; (b) AC output current; (c) Motor
speed; (d) Average SOC of SCBs; (e) Voltage of the SCBs—phase a; (f) Voltage of the SCBs—phase b.
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5. Conclusions

A super capacitor energy storage-based modular multilevel converter (SCES-MMC) topology
for mine hoist applications has been investigated in this paper. In contrast to conventional MMCs,
the sub-modules employ distributed SCBs, which are designed to absorb the regenerative energy
of the mine hoist, and release it under traction conditions. Due to the high power density of the
super capacitor, the sub-modules’ capacitor voltage will not significantly fluctuate. The configuration
and operation principles, together with control technologies were studied in detail. Moreover, the
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feasibility of the proposed SCES-MMC topology and the control theory were also verified. Simulation
results show that SCES-MMC makes reasonable use of the energy of the system through the distributed
SCBs, improving the energy utilization efficiency, and shows good application prospects in future
medium-/high-voltage mine hoist systems.
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Abbreviations

The following abbreviations are used in this manuscript:

AC alternating current
DC direct current
HVDC high voltage direct current
VSC voltage source converter
NPC neutral-point-clamped
AFE active front end
SCES super capacitor energy storage
MMC modular multilevel converter
SM sub-module
SCB super capacitor bank
SOC state of charge
IGBT insulated gate bipolar transistor
VFSR variable frequency speed regulation
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