

Article

Optimal Analytical Solution for a Capacitive Wireless Power Transfer System with One Transmitter and Two Receivers

Ben Minnaert * D and Nobby Stevens

Research Group DraMCo, ESAT, Technology Campus Ghent, KU Leuven, 9000 Gent, Belgium; Nobby.Stevens@kuleuven.be

* Correspondence: ben.minnaert@kuleuven.be; Tel.: +32-9-331-6547

Received: 24 August 2017; Accepted: 15 September 2017; Published: 19 September 2017

Abstract: Wireless power transfer from one transmitter to multiple receivers through inductive coupling is slowly entering the market. However, for certain applications, capacitive wireless power transfer (CWPT) using electric coupling might be preferable. In this work, we determine closed-form expressions for a CWPT system with one transmitter and two receivers. We determine the optimal solution for two design requirements: (i) maximum power transfer, and (ii) maximum system efficiency. We derive the optimal loads and provide the analytical expressions for the efficiency and power. We show that the optimal load conductances for the maximum power configuration are always larger than for the maximum efficiency configuration. Furthermore, it is demonstrated that if the receivers are coupled, this can be compensated for by introducing susceptances that have the same value for both configurations. Finally, we numerically verify our results. We illustrate the similarities to the inductive wireless power transfer (IWPT) solution and find that the same, but dual, expressions apply.

Keywords: capacitive wireless power; inductive wireless power; maximum power transfer; multiports; power transfer; three-port networks; wireless power transfer

1. Introduction

Wireless power transfer technologies can be divided into two categories: the far-field and near-field technologies. The former includes the transfer of energy by means of, for example, microwaves, light waves and radio waves [1–4]. The latter uses quasi-static fields to transfer the energy. Inductive wireless power transfer (IWPT) uses a time-varying magnetic field, generated by an alternating current in a coil [5]. This varying magnetic field couples the coil to another coil, enabling wireless power transfer. Magnetic resonance, which uses more than two coils, is based on the same principle [6]. IWPT technology is being applied to a broad range of applications [7].

With capacitive wireless power transfer (CWPT), energy can be transferred wirelessly by means of the electric field. Applications are the charging of, for example, electric vehicles [8], automatic guided vehicles [9], biomedical implants [10], integrated circuits [11] and low-power consumer applications [12]. Compared to IWPT, it has several advantages, such as a reduced cost and weight and the ability to transfer energy through metal [13,14]. Just as for IWPT, CWPT allows for the charging of multiple receivers at once with one transmitter. Several small receiver plates can overlay the large transmitter plates. Figure 1 shows the schematic set-up of a bipolar CWPT system with one transmitter and two receivers.

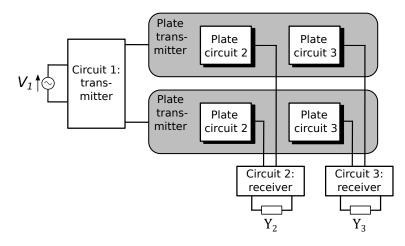


Figure 1. Schematic overview of a capacitive wireless power transfer (CWPT) system with one transmitter and two receivers.

For a wireless power transfer system, two configurations are typically being pursued [15,16]. One can construct a wireless power transfer system that maximizes the amount of transferred power to the receiver, for example, for biomedical implants. The other option is to maximize the efficiency of the power transfer, for example, for the charging of electric vehicles. It is important to note that the configurations differ from each other. In this work, we analytically determine the optimal solution for both maximum power transfer and efficiency for a CWPT system with one transmitter and two receivers.

This has already been done for IWPT [17–22], but to our knowledge, it has not yet been described for CWPT. More specifically, our contributions are as follows:

- We determine analytically the optimal solution for the maximum efficiency and maximum power solution for a CWPT system with one transmitter and two receivers.
- We derive the optimal loads for each configuration and provide closed-form expressions for the maximum efficiency and power transfer.
- We demonstrate that we can compensate for coupling between the receivers by adding specific susceptances.
- We illustrate the similarities to IWPT.

2. Methodology

In this section, we first perform a circuit analysis of a general CWPT circuit with one transmitter and two receivers. Next, the maximum power and maximum efficiency solution are analytically calculated.

2.1. Circuit Analysis

A CWPT system with one transmitter and two receivers (Figure 1) can be represented by the circuit in Figure 2 [23,24]. We make an abstraction of the remote electronics (e.g., power conditioner, rectifier, etc.) to focus on the wireless link itself. On the basis of Norton's theorem, we can represent the supply of the CWPT system with a time-harmonic current source I_1 with angular frequency ω_0 . The losses in the circuit are represented by the parallel conductances g_{11} , g_{22} and g_{33} . Wireless power transfer for two receivers may be realized by modeling the load as admittances Y_2 and Y_3 . The CWPT link can be described by the coupled capacitances C_1 , C_2 and C_3 [14,23,24].

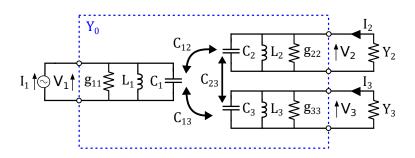


Figure 2. Equivalent circuit to a capacitive wireless power transfer (CWPT) system with one transmitter and two receivers.

The goal of the power transfer system is to wirelessly transfer power from the transmitter to both receivers. This is realized by the coupling between the transmitter capacitance C_1 and the receiver capacitances C_2 and C_3 , expressed by their mutual capacitance C_{12} and C_{13} , respectively. However, there can also be a coupling between the receiver capacitances C_2 and C_3 , given by C_{23} . Usually, the coupling between the receivers will be negligible compared to the coupling between the transmitter and receiver, but we will nevertheless also derive the optimal solution for the non-negligible coupling C_{23} . The coupling factor k_{ij} (i,j = 1,2,3) is defined by

$$k_{ij} = \frac{C_{ij}}{\sqrt{C_i C_j}} \tag{1}$$

In order to improve the power transfer, we construct resonant circuits by adding a shunt inductor L_i (*i* = 1,2,3) to each circuit, with a value of

$$L_i = \frac{1}{\omega_0^2 C_i} \tag{2}$$

Instead of a shunt inductance, a series inductance can also be chosen to construct the resonant circuit. We perform the analysis for a shunt inductance, as it simplifies the calculations and allows for a better overview of the results. The methodology of our work remains the same for both topologies.

We define P_1 as the active input power, supplied by the source. P_2 and P_3 are the output powers, delivered to the loads Y_2 and Y_3 , respectively. We analytically determine the optimal loads Y_2 and Y_3 for two configurations:

- In the first configuration, we maximize the amount of power $P_{out} = P_2 + P_3$ transferred from the source to the loads.
- In the second configuration, our goal is to maximize the efficiency of the system η , defined by

$$\eta = \frac{P_2 + P_3}{P_1} \tag{3}$$

The circuit in Figure 2 can be considered as a three-port network with peak voltage phasors V_i and peak current phasors I_i (i = 1,2,3) at the ports, as defined in the figure. Using Kirchhoff's current laws, we obtain the relations between the voltages and currents of the three-port network:

$$I_{1} = \left(g_{11} + j\omega C_{1} + \frac{1}{j\omega L_{1}}\right)V_{1} - j\omega C_{12}V_{2} - j\omega C_{13}V_{3}$$
(4)

$$I_2 = -j\omega C_{12}V_1 + \left(g_{22} + j\omega C_2 + \frac{1}{j\omega L_2}\right)V_2 - j\omega C_{23}V_3$$
(5)

$$I_3 = -j\omega C_{13}V_1 - j\omega C_{23}V_2 + \left(g_{33} + j\omega C_3 + \frac{1}{j\omega L_3}\right)V_3$$
(6)

Considering the three-port network, with matrices V and I defined as

$$\mathbf{V} = \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix}, \mathbf{I} = \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix}$$
(7)

We can represent the network by an admittance matrix Y_0 , indicated by the dashed rectangle in Figure 2, as

$$\mathbf{I} = \boldsymbol{Y}_0 \cdot \mathbf{V} \tag{8}$$

At the resonance frequency ω_0 , taking into account Equation (2), the admittance matrix Y_0 is given by

$$\mathbf{Y}_{\mathbf{0}} = \begin{bmatrix} g_{11} & -jx_{12} & -jx_{13} \\ -jx_{12} & g_{22} & -jx_{23} \\ -jx_{13} & -jx_{23} & g_{33} \end{bmatrix}$$
(9)

where we have introduced the notation $x_{ij} = \omega_0 C_{ij}$ for convenience.

In the next sections, we analytically determine the maximum power and maximum efficiency solution. For ease of notation, we introduce the following definitions:

$$\chi_{C,12} = \frac{x_{12}}{\sqrt{g_{11}g_{22}}} \tag{10}$$

$$\chi_{C,13} = \frac{x_{13}}{\sqrt{g_{11}g_{33}}} \tag{11}$$

$$\theta_{\rm C} = \sqrt{1 + \chi_{\rm C,12}^2 + \chi_{\rm C,13}^2} \tag{12}$$

2.2. Maximum Power Transfer

We determine the optimal loads $Y_i = G_i + jB_i$ (i = 2,3) to maximize the total power output P_{out} of the system, where G_i and B_i are the load conductance and susceptance, respectively. We first consider the case in which the receivers are uncoupled.

2.2.1. Uncoupled Configuration

When the receivers are uncoupled ($C_{23} = 0$), the elements x_{23} in the admittance matrix of Equation (9) are zero. In other words, no receiver is influenced by the presence of the other receiver. With this assumption, we can consider the system as two separate CWPT systems, each with one transmitter and one receiver. It was demonstrated in [16], using values of inductance given by Equation (2), that the optimal loads to achieve both maximum power and efficiency occur when the imaginary parts of the system equate to zero. For the configuration with uncoupled receivers, we can therefore replace the admittances Y_2 and Y_3 with the conductances G_2 and G_3 . We can then write

$$I_2 = -G_2 V_2$$
 (13)

4 of 16

$$I_3 = -G_3 V_3$$
 (14)

and, with Equation (8), we can write

$$\begin{bmatrix} I_1 \\ -G_2 V_2 \\ -G_3 V_3 \end{bmatrix} = \begin{bmatrix} g_{11} & -jx_{12} & -jx_{13} \\ -jx_{12} & g_{22} & -jx_{23} \\ -jx_{13} & -jx_{23} & g_{33} \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix}$$
(15)

or

$$\begin{bmatrix} I_1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} g_{11} & -jx_{12} & -jx_{13} \\ -jx_{12} & g_{22} + G_2 & -jx_{23} \\ -jx_{13} & -jx_{23} & g_{33} + G_3 \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix}$$
(16)

Inverting the 3×3 matrix allows us to find the following expressions for the voltages:

$$V_1 = \frac{(G_2 + g_{22})(G_3 + g_{33})}{D} I_1 \tag{17}$$

$$V_2 = \frac{jx_{12}(G_3 + g_{33})}{D}I_1 \tag{18}$$

$$V_3 = \frac{jx_{13}(G_2 + g_{22})}{D}I_1 \tag{19}$$

with

$$D = g_{11}(g_{22} + G_2)(g_{33} + G_3) + x_{12}^2(g_{33} + G_3) + x_{13}^2(g_{22} + G_2)$$
(20)

The input power P_1 is given by [25]:

$$P_1 = \frac{1}{2} \Re(V_1 I_1^*) \tag{21}$$

where I_1^* is the complex conjugate of I_1 . The maximum attainable power, sometimes called the "available power of the generator", is given by [25]:

$$P_{max} = \frac{|I_1|^2}{8g_{11}} \tag{22}$$

To simplify the further calculations, we use the normalized power p_i (i = 1,2,3):

$$p_i = \frac{P_i}{P_{max}} \tag{23}$$

Using Equation (17), we obtain for the normalized input power p_1 :

$$p_1 = 4g_{11} \frac{(G_2 + g_{22})(G_3 + g_{33})}{D}$$
(24)

The active output power P_i (i = 2,3) is given by [25]:

$$P_i = \frac{1}{2} \Re(V_i I_i^*) \tag{25}$$

Using Equations (18) and (19), we obtain

$$p_2 = 4g_{11} \frac{x_{12}^2 G_2 (G_3 + g_{33})^2}{D^2}$$
(26)

$$p_3 = 4g_{11} \frac{x_{13}^2 G_3 (G_2 + g_{22})^2}{D^2}$$
(27)

We derive $p_2 + p_3$ to G_2 and G_3 and equate to zero, using the same methodology as [17–19]:

$$\frac{\partial(p_2 + p_3)}{\partial G_2} = 0 \tag{28}$$

$$\frac{\partial(p_2 + p_3)}{\partial G_3} = 0 \tag{29}$$

We find the loads to obtain the maximum power transfer:

$$G_{2,power} = g_{22}\theta_C^2 \tag{30}$$

$$G_{2,power} = g_{22}\theta_C^2$$

$$G_{3,power} = g_{33}\theta_C^2$$
(30)
(31)

Substituting these conductances into Equations (26) and (27) results in the maximum normalized output power *p*out, power:

$$p_{out,power} = \frac{\chi_{C,12}^2 + \chi_{C,13}^2}{\theta_C^2}$$
(32)

Analogously, we obtain the corresponding normalized input power p_1 in this maximum power configuration:

$$p_{1,power} = 2 \frac{1 + \theta_C^2}{\theta_C^2} \tag{33}$$

From Equation (3), we obtain the corresponding efficiency:

$$\eta_{power} = \frac{\theta_{\rm C}^2 - 1}{2(1 + \theta_{\rm C}^2)} \tag{34}$$

2.2.2. Coupled Configuration

We now consider the case in which the receivers are coupled ($C_{23} \neq 0$). The only difference to the uncoupled case is that the elements x_{23} in the admittance matrix (9) are non-zero. Because this only adds purely imaginary elements to the admittance matrix Y_0 , the real part of the maximum power solution for the loads equals that for the uncoupled case. Adding appropriate susceptances to the circuit allows us to compensate for the extra purely imaginary elements, resulting in the same maximum power output (Equation (32)) for the same conductances $G_{2,power}$ and $G_{3,power}$ as for the uncoupled configuration. We then determine the values for these susceptances.

We consider the circuit of Figure 3. B_2 and B_3 are the susceptances added to compensate for the non-zero coupling between C_2 and C_3 . The admittance matrix $Y_{coupled}$ of the three-port network that includes B_2 and B_3 is given by

$$Y_{coupled} = \begin{bmatrix} g_{11} & -jx_{12} & -jx_{13} \\ -jx_{12} & g_{22} + jB_2 & -jx_{23} \\ -jx_{13} & -jx_{23} & g_{33} + jB_3 \end{bmatrix}$$
(35)

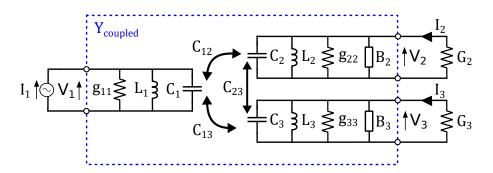


Figure 3. Schematic overview of a capacitive wireless power transfer (CWPT) system with one transmitter and two receivers, where we have added the susceptances B_2 and B_3 to compensate for the coupling between C_2 and C_3 . The dashed rectangle indicates the three-port network characterized by the admittance matrix $Y_{coupled}$.

Equation (16) now becomes

$$\begin{bmatrix} I_1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} g_{11} & -jx_{12} & -jx_{13} \\ -jx_{12} & g_{22} + G_2 + jB_2 & -jx_{23} \\ -jx_{13} & -jx_{23} & g_{33} + G_3 + jB_3 \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix}$$
(36)

Inverting the 3×3 matrix allows us to find the following expressions for the voltages:

$$V_1 = \frac{(G_2 + jB_2 + g_{22})(G_3 + jB_3 + g_{33}) + x_{23}^2}{D_{coupled}}I_1$$
(37)

$$V_2 = \frac{jx_{12}(G_3 + jB_3 + g_{33}) - x_{13}x_{23}}{D_{couvled}}I_1$$
(38)

$$V_3 = \frac{jx_{13}(G_2 + jB_2 + g_{22}) - x_{12}x_{23}}{D_{coupled}}I_1$$
(39)

with

$$D_{coupled} = g_{11}(G_2 + jB_2 + g_{22})(G_3 + jB_3 + g_{33}) + x_{12}^2(G_3 + jB_3 + g_{33}) + x_{13}^2(G_2 + jB_2 + g_{22}) + g_{11}x_{23}^2 + 2jx_{12}x_{13}x_{23}$$
(40)

We note that the above equations reduce to the expressions for the uncoupled configuration when B_2 , B_3 and x_{23} are equal to zero. In order to compensate for the coupling between C_2 and C_3 , Equations (37)–(39) for the voltages of the three-port network have to be the same as the relations for the uncoupled configurations, that is, Equations (17)–(19), respectively. By analytically solving the system of equations thus obtained for B_2 and B_3 , we find a unique solution:

$$B_2 = \frac{x_{13}x_{23}(g_{22} + G_2)}{x_{12}(g_{33} + G_3)} \tag{41}$$

$$B_3 = \frac{x_{12}x_{23}(g_{33} + G_3)}{x_{13}(g_{22} + G_2)} \tag{42}$$

Substituting G_2 and G_3 with the values for $G_{2,power}$ and $G_{3,power}$, we obtain

$$B_2 = \frac{g_{22}x_{13}}{g_{33}x_{12}}x_{23} \tag{43}$$

$$B_3 = \frac{g_{33}x_{12}}{g_{22}x_{13}}x_{23} \tag{44}$$

Because the susceptances B_2 and B_3 are positive, they correspond to capacitances C_{B2} and C_{B3} , respectively, given by

$$C_{B2} = \frac{g_{22}C_{13}}{g_{33}C_{12}}C_{23} \tag{45}$$

$$C_{B3} = \frac{g_{33}C_{12}}{g_{22}C_{13}}C_{23} \tag{46}$$

We note that, as expected, the compensating capacitances C_{B2} and C_{B3} become zero when there is no coupling present between the receivers (i.e., $C_{23} = 0$).

Because C_{B2} and C_{B3} compensate for the coupling between C_2 and C_3 , the input and output power and the efficiency are the same as the values for the uncoupled configuration. An overview can be found in the second column of Table 1.

Quantity	Maximum Power Configuration	Maximum Efficiency Configuration
<i>G</i> ₂	$g_{22}\theta_C^2$	$g_{22}\theta_C$
G ₃	$g_{33}\theta_C^2$	$g_{33} heta_C$
<i>B</i> ₂	$\frac{g_{22}x_{13}x_{23}}{g_{33}x_{12}}$	$\frac{g_{22}x_{13}x_{23}}{g_{33}x_{12}}$
<i>B</i> ₃	$\frac{g_{33}x_{12}x_{23}}{g_{22}x_{13}}$	$\frac{g_{33}x_{12}x_{23}}{g_{22}x_{13}}$
p_1	$2rac{1+ heta_{ m C}^2}{ heta_{ m C}^2}$	$\frac{4}{\theta_C}$
pout	$\frac{\chi^2_{\rm C,12} + \chi^2_{\rm C,13}}{\theta^2_{\rm C}}$	$4rac{\chi^2_{{ m C},12}+\chi^2_{{ m C},13}}{ heta_{C}(1+ heta_{C})^2}$
η	$\frac{\theta_C^2 - 1}{2(1 + \theta_C^2)}$	$\frac{\theta_{\rm C}^2 - 1}{(1 + \theta_{\rm C})^2}$

Table 1. Overview of the different quantities for the maximum power and the maximum efficiency solution.

2.3. Maximum Efficiency

We determine the optimal loads Y_2 and Y_3 to maximize the efficiency η of the total system, as defined in Equation (3). We first consider the case in which the receivers are uncoupled.

2.3.1. Uncoupled Configuration

When the receivers are uncoupled ($C_{23} = 0$), the elements x_{23} in the admittance matrix (Equation (9)) are zero. The optimal loads are again purely real [16]: G_2 and G_3 .

Using Equations (24)–(27) and

$$\eta = \frac{p_2 + p_3}{p_1} \tag{47}$$

We find

$$\eta = \frac{x_{12}^2 G_2 (G_3 + g_{33})^2 + x_{13}^2 G_3 (G_2 + g_{22})^2}{D(G_2 + g_{22})(G_3 + g_{33})}$$
(48)

We derive η to G_2 and G_3 and equate to zero:

$$\frac{\partial \eta}{\partial G_2} = 0 \tag{49}$$

$$\frac{\partial \eta}{\partial G_3} = 0 \tag{50}$$

We find the values for the conductances G_2 and G_3 for the maximum efficiency configuration:

$$G_{2,\eta} = g_{22}\theta_C \tag{51}$$

$$G_{3,\eta} = g_{33}\theta_C \tag{52}$$

2.3.2. Coupled Configuration

We now consider the case in which the receivers are coupled ($C_{23} \neq 0$). With the same reasoning as for the maximum power configuration, we can add susceptibilities B_2 and B_3 to compensate for the coupling between C_2 and C_3 . The derivation for calculating the values of B_2 and B_3 is identical to the maximum power configuration until arriving at Equations (41) and (42). We then substitute G_2 and G_3 with the values for $G_{2,\eta}$ and $G_{3,\eta}$.

We obtain for the maximum efficiency configuration the same compensating capacitances as for the maximum power configuration:

$$C_{B2} = \frac{g_{22}C_{13}}{g_{33}C_{12}}C_{23} \tag{53}$$

$$C_{B3} = \frac{g_{33}C_{12}}{g_{22}C_{13}}C_{23} \tag{54}$$

This is to be expected. The goal of the added susceptances B_2 and B_3 is to compensate for the coupling between the receivers, in any configuration, whether it is to achieve maximum power transfer, maximum efficiency, or any other configuration. In other words, achieving the maximum power transfer or maximum efficiency for a given CWPT system with one transmitter and two receivers only requires us to change the real part of the load of the receivers. The compensating capacitances C_{B2} and C_{B3} are the same for both configurations.

The maximum attainable efficiency η_{max} , in the uncoupled case as well as in the coupled case, when applying $G_{2,\eta}$ and $G_{3,\eta}$ as loads, is given by

$$\eta_{max} = \frac{\theta_{\rm C}^2 - 1}{(\theta_{\rm C} + 1)^2} \tag{55}$$

Substituting $G_{2,\eta}$ and $G_{2,\eta}$ into Equations (26) and (27) results in the normalized output power $p_{out,\eta}$:

$$p_{out,\eta} = 4 \frac{\chi^2_{C,12} + \chi^2_{C,13}}{\theta_C (\theta_C + 1)^2}$$
(56)

Substituting $G_{2,\eta}$ and $G_{2,\eta}$ into Equation (24) results in the normalized input power $p_{1,\eta}$:

$$p_{1,\eta} = \frac{4}{\theta_C} \tag{57}$$

An overview of the different values can be found in Table 1.

3. Discussion

In this section, we first numerically verify our results. Next, we analyze the maximum power and maximum efficiency solution in more detail, and illustrate the similarities with IWPT.

3.1. Numerical Verification

First, we notice that, if one receiver is absent or uncoupled (e.g., $C_{13} = C_{23} = 0$), the results of Table 1 correspond to the solutions for a CWPT system with one transmitter and one receiver [16].

We now verify the above analytical derivation by circuit simulation. We consider the system of Figure 2 with one transmitter and two capacitive coupled receivers. If we assume a system composed of a large aluminum transmitter with aluminum receiver plates of 10 cm \times 10 cm, coated with polyethylene as a dielectric material, at a distance of 2.5 mm between transmitter and receiver, we can assume the representative values of Table 2 [14,24].

Table 2. For the circuit simulation, we consider the following values for a capacitive wireless power transfer (CWPT) system with one transmitter and two receivers.

Quantity	Value	Quantity	Value
<i>8</i> 11	1.0 mS	833	2.0 mS
822	1.5 mS	f	10 MHz
C_1	300 pF	C_{12}	200 pF
C_2	250 pF	C_{13}	100 pF
$\overline{C_3}$	200 pF	C ₂₃	50 pF

Using Equations (1), (2), and (10)–(12), the values of the coupling factors, resonance inductances, and auxiliary variables are calculated (Table 3).

Quantity	Value	Quantity	Value
L_1	0.84 µH	<i>k</i> ₁₂	73%
L_2	1.01 µH	k_{13}	41%
L_3	1.27 μΗ	k ₂₃	22%
XC,12	10.3	θ_C	11.2
<i>XC,</i> 13	4.44	-	-

We first verify the optimal loads for the maximum power configuration. From Table 1, we calculate the following:

- The optimal loads G_{2,power} and G_{3,power} for achieving maximum power transfer.
- The capacitances C_{B2} and C_{B3} , necessary to compensate for the coupling between both receivers.
- The corresponding normalized input and output power.
- The efficiency η_{power} of the system.

The calculated values are listed in Table 4.

This system was simulated in SPICE for varying loads G_2 and G_3 . Figure 4 shows the normalized power output p_{out} . A maximum $p_{out,power}$ of 0.992 was obtained at the loads $G_{2,power}$ and $G_{3,power}$ of 189 and 252 mS, respectively. This was in accordance with the analytical result from Table 4. Additionally, the obtained efficiency η_{power} of 49.2% at this point corresponded with the analytical calculated value.

Quantity	Maximum Power Configuration	Maximum Efficiency Configuration
G ₂	189 mS	16.8 mS
G_3	252 mS	22.5 mS
C_{B2}	18.8 pF	18.8 pF
C_{B3}	133 pF	133 pF
p_1	2.02	0.356
Pout	0.992	0.298
n	49.2%	83.6%

Table 4. Calculated values for the considered capacitive wireless power transfer (CWPT) system for

the maximum power and the maximum efficiency configuration.

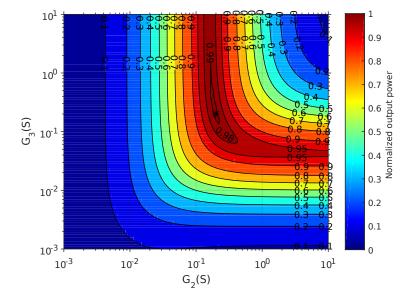


Figure 4. The normalized output power p_{out} as a function of the load conductances G_2 and G_3 for the capacitive wireless power transfer (CWPT) system with one transmitter and two receivers of Table 2. The asterisk indicates the location of the maximum normalized output power of 0.992.

Secondly, we consider the maximum efficiency configuration for the same system. From Table 1, we find the values listed in Table 4. By SPICE simulation, we calculated the efficiency of the system for varying loads G_2 and G_3 (Figure 5). A maximum efficiency η_{max} of 83.6% was achieved at the loads $G_{2,\eta}$ and $G_{3,\eta}$ of 16.8 and 22.5 mS, respectively, which was in accordance with the analytical derived result. The corresponding normalized output power $p_{out,\eta}$ was 0.298, corresponding with the expected value (Table 4).

Finally, we verify that the calculated values of the capacitances C_{B2} and C_{B3} indeed compensate for the coupling between the receivers. We simulated both the maximum power and the maximum efficiency configuration for the uncoupled configuration; we considered the same system as described by Table 2, but now with C_{23} equal to zero and no compensating capacitances C_{B2} and C_{B3} present. We obtained the same calculated values of the coupled scenario (Tables 3 and 4). Circuit simulations with SPICE produced the same results as in Figures 4 and 5, indicating that C_{B2} and C_{B3} indeed compensate for the coupling between the receivers.

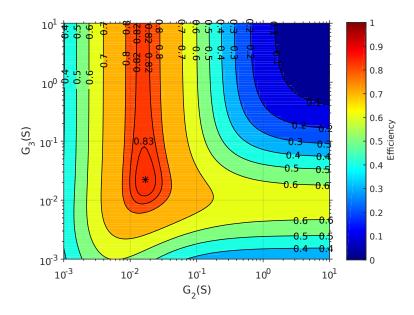


Figure 5. The efficiency η as a function of the load conductances G_2 and G_3 for the capacitive wireless power transfer (CWPT) system with one transmitter and two receivers of Table 2. The asterisk indicates the location of the maximum efficiency of 83.6%.

3.2. Analysis of the Results

From Table 1, it can be seen that the optimal conductances for the maximum power configuration are always larger than for the maximum efficiency configuration, as $\theta_C > 1$. Additionally, the normalized input power p_1 is higher in the maximum power scenario than in the maximum efficiency scenario. From Figures 4 and 5, it can be seen that for the numerical example, both the output power and efficiency are near the maximum, which varies more when changing G_2 than when changing G_3 . The reason is that the coupling between the transmitter and the first receiver is higher than the coupling between the transmitter and the second receiver. A further, more detailed analysis is beyond the scope of this work.

In our numerical example, the coupling factor between both receivers is 22%, that is, $k_{23} = 0.22$. We demonstrated that capacitances C_{B2} and C_{B3} are necessary to compensate for this coupling between the receivers.

We illustrate the influence of the presence of these compensating capacitances with an example. We calculate the normalized output power p_{out} and the efficiency η for non-ideal loads of $G_2 = 1$ mS and $G_3 = 10$ mS. The normalized output power p_{out} with compensating capacitances C_{B2} and C_{B3} is 0.0376. If no compensating capacitances are present, p_{out} is 0.0246, about 7% lower. The efficiency η with and without compensating capacitances is 50.8% and 41.5%, respectively, an absolute difference of 9.3%.

In the neighborhood of the maximum power point and maximum efficiency point, the difference between p_{out} and η , respectively, is negligible for the circuit with and without compensating capacitances for this example.

An important limitation of our proposed model is that it is restricted to static CWPT set-ups. The model assumes that all elements, including the coupled capacitances, are lumped elements and are fixed, whereas in reality, the capacitances are distributed elements and are dependent on the position of the receivers. For the implementation of our model, the values of the capacitances and coupling coefficients can be determined by measurement [24]. However, these values are not fixed. Indeed, the values of the capacitances and coupling coefficients are not independent of each other [24]. For example, a change in the position of one receiver will not only influence the coupling coefficients for that receiver, but also the values of the capacitances. Even the value of the capacitance C_1 of the transmitter and the value of the coupling coefficient between the transmitter and the second

receiver can vary as a result of the change in position of the first receiver. This implies that our model is only valid for static applications, for example, the charging of space-confined systems, such as low-power consumer applications [12] or three-dimensional integrated circuits [11], for which the receivers have predefined locations. For moving receivers, such as electric vehicles [26], robot arms and in-track-moving systems [12], our model is not valid. For future work, we plan to extend our model by applying distributed elements.

3.3. Duality to IWPT

Given the duality principle in network theory [25], which finds its origin in the symmetry of Maxwell's equation for the electric and magnetic fields, parallels can be drawn between CWPT and IWPT. Table 5 gives an overview of the relevant dual quantities for CWPT and IWPT.

Table 5. Dual quantities between capacitive wireless power transfer (CWPT) and inductive wireless power transfer (IWPT).

СШРТ	IWPT	
Current, I	Voltage, V	
Admittance, Y	Impedance, Z	
Conductance, G	Resistance, R	
Susceptance, B	Reactance, X	
Parallel	Series	

The dual network of Figure 3 is given in Figure 6. A transmitter is supplied by a voltage source V_1 . The inductances L_i (i = 1,2,3) are coupled and expressed by their mutual inductance L_{ij} ; the coupling factor k_{ij} is defined as

$$k_{ij} = \frac{L_{ij}}{\sqrt{L_i L_j}} \tag{58}$$

The loads of the two receivers are R_2 and R_3 . Resonance capacitors C_i and resistances r_{ii} (i = 1,2,3) are added in series to each circuit. The reactances X_2 and X_3 compensate for the coupling between L_2 and L_3 . Just as for the CWPT set-up, this circuit is limited to static set-ups and does not include, for example, the leakage flux in the primary circuit.

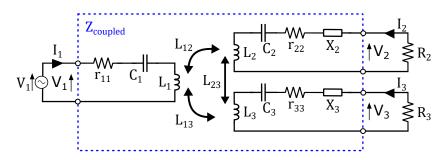


Figure 6. Schematic overview of an inductive wireless power transfer (IWPT) system with one transmitter and two receivers, with the reactances X_2 and X_3 to compensate for the coupling between L_2 and L_3 . The dashed rectangle indicates the three-port network characterized by the impedance matrix $Z_{coupled}$.

Given the duality principle, we can for IWPT define the following analogous variables:

$$x_{ij} = \omega L_{ij} \tag{59}$$

$$\chi_{I,12} = \frac{\chi_{12}}{\sqrt{r_{11}r_{22}}} \tag{60}$$

$$\chi_{I,13} = \frac{\chi_{13}}{\sqrt{r_{11}r_{33}}} \tag{61}$$

$$\theta_I = \sqrt{1 + \chi_{I,12}^2 + \chi_{I,13}^2} \tag{62}$$

With these definitions and by applying the duality principle, we obtain the quantities of Table 6, analogous to in [17–19]. We notice the similarities for the corresponding quantities for CWPT in Table 1. For example, the load conductance G_2 for CWPT is given by $g_{22}\theta_C^2$ and $g_{22}\theta_C$ for the maximum power and efficiency configuration, respectively. The dual load for IWPT, the resistance R_2 , is given by $r_{22}\theta_I^2$ and $r_{22}\theta_I$ for the maximum power and efficiency configuration, respectively. The dual load for IWPT, the resistance R_2 , is given by $r_{22}\theta_I^2$ and $r_{22}\theta_I$ for the maximum power and efficiency configuration, respectively, which corresponds to the dual values of CWPT. Analogously, for CWPT, the elements that compensate for the receiver's coupling are susceptances, whereas for IWPT, they are reactance elements given by the same, but dual, expressions of CWPT.

Table 6. Overview of the different quantities for the maximum power and the maximum efficiency solution for an inductive wireless power transfer (IWPT) system with one transmitter and two receivers.

Quantity	Maximum Power Configuration	Maximum Efficiency Configuration
<i>R</i> ₂	$r_{22}\theta_I^2$	$r_{22}\theta_I$
R_3	$r_{33} heta_I^2$	$r_{33} heta_I$
<i>X</i> ₂	$\frac{r_{22}x_{13}x_{23}}{r_{33}x_{12}}$	$\frac{r_{22}x_{13}x_{23}}{r_{33}x_{12}}$
X_3	$\frac{r_{33}x_{12}x_{23}}{r_{22}x_{13}}$	$\frac{r_{33}x_{12}x_{23}}{r_{22}x_{13}}$
p_1	$2rac{1+ heta_{I}^{2}}{ heta_{I}^{2}}$	$\frac{4}{\theta_I}$
pout	$\frac{\chi^2_{I,12} + \chi^2_{I,13}}{\theta^2_I}$	$4rac{\chi^2_{l,12}+\chi^2_{l,13}}{ heta_l(1+ heta_l)^2}$
η	$\frac{\theta_I^2\!-\!1}{2(1\!+\!\theta_I^2)}$	$\frac{\theta_I^2 \!-\! 1}{(1\!+\!\theta_I)^2}$

4. Conclusions

We determined analytically the closed-form expressions for a CWPT system with one transmitter and two receivers for two relevant configurations: (i) maximum power transfer, and (ii) maximum system efficiency. The results are summarized in Table 1. We also determined the susceptances to compensate for coupling between the receivers and demonstrated that they remain unaltered for both configurations. We numerically verified our results and, using the duality principle of network theory, illustrated the similarities with the analogue IWPT system.

Acknowledgments: This work was executed within MoniCow, a research project bringing together academic researchers and industry partners. The MoniCow project was co-financed by imec (iMinds) and received project support from Flanders Innovation & Entrepreneurship.

Author Contributions: Ben Minnaert initiated the study, performed the calculations and conducted the simulations. Nobby Stevens provided the general supervision of the calculations and simulations. Ben Minnaert wrote the manuscript. Nobby Stevens commented on and revised the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

IWPT Inductive wireless power transfer

CWPT Capacitive wireless power transfer

References

- 1. Lu, X.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Wireless charging technologies: Fundamentals, standards, and network applications. *IEEE Commun. Surv. Tutor.* **2016**, *18*, 1413–1452, doi:10.1109/COMST.2015.2499783.
- 2. Shinohara N. Wireless Power Transfer via Radiowaves; John Wiley & Sons: New York, NY, USA, 2014.
- 3. Huang, K.; Zhou, X. Cutting the last wires for mobile communications by microwave power transfer. *IEEE Commun. Mag.* **2015**, *53*, 86–93, doi:10.1109/MCOM.2015.7120022.
- 4. Rabie, K.M.; Adebisi, B.; Rozman, M. Outage probability analysis of WPT systems with multiple-antenna access point. In Proceedings of the IEEE 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Prague, Czech Republic, 20–22 July 2016.
- 5. Mou, X.; Sun, H. Wireless power transfer: Survey and roadmap. In Proceedings of the 81st IEEE Vehicular Technology Conference (VTC Spring), Glasgow, UK, 11–14 May 2015; pp. 1–5.
- Rozman, M.; Fernando, M.; Adebisi, B.; Rabie, K.M.; Kharel, R.; Ikpehai, A.; Gacanin, H. Combined Conformal Strongly-Coupled Magnetic Resonance for Efficient Wireless Power Transfer. *Energies* 2017, 10, 498, doi:10.3390/en10040498.
- Carvalho, N.B.; Georgiadis, A.; Costanzo, A.; Stevens, N.; Kracek, J.; Pessoa, L.; Roselli, L.; Dualibe, F.; Schreurs, D.; Mutlu, S.; et al. Europe and the future for WPT: European contributions to wireless power transfer technology. *IEEE Microw. Mag.* 2017, *18*, 56–87, doi:10.1109/MMM.2017.2680078.
- Dai, J.; Ludois, D.C. Wireless electric vehicle charging via capacitive power transfer through a conformal bumper. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15–19 March 2015; pp. 3307–3313.
- Miyazaki, M.; Abe, S.; Suzuki, Y.; Sakai, N.; Ohira, T.; Sugino, M. Sandwiched parallel plate capacitive coupler for wireless power transfer tolerant of electrode displacement. In Proceedings of the IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Nagoya, Japan, 19–21 March 2017; pp. 29–32.
- Sodagar, A.M.; Amiri, P. Capacitive coupling for power and data telemetry to implantable biomedical microsystems. In Proceedings of the 4th International IEEE/EMBS Conference on Neural Engineering, Antalya, Turkey, 29 April–2 May 2009; pp. 411–414.
- 11. Culurciello, E.; Andreou, A.G. Capacitive inter-chip data and power transfer for 3-D VLSI. *IEEE Trans. Circuits Syst. II Express Briefs* **2006**, *53*, 1348–1352, doi:10.1109/TCSII.2006.885073.
- 12. Theodoridis, M.P. Effective capacitive power transfer. *IEEE Trans. Power Electron.* 2012, 27, 4906–4913, doi:10.1109/TPEL.2012.2192502.
- 13. Jawad, A.M.; Nordin, R.; Gharghan, S.K.; Jawad, H.M.; Ismail, M. Opportunities and Challenges for Near-Field Wireless Power Transfer: A Review. *Energies* **2017**, *10*, 1022, doi:10.3390/en10071022.
- 14. Minnaert, B.; Stevens, N. Conjugate image theory applied on capacitive wireless power transfer. *Energies* **2017**, *10*, 46, doi:10.3390/en10010046.
- 15. Monti, G.; Costanzo, A.; Mastri, F.; Mongiardo, M. Optimal design of a wireless power transfer link using parallel and series resonators. *Wirel. Power Transf.* **2016**, *3*, 105–116, doi:10.1017/wpt.2016.7.
- 16. Dionigi, M.; Mongiardo, M.; Monti, G.; Perfetti, R. Modelling of wireless power transfer links based on capacitive coupling. *Int. J. Numer. Model.* **2017**, *30*, doi:10.1002/jnm.2187.
- 17. Monti, G.; Che, W.; Wang, Q.; Costanzo, A.; Dionigi, M.; Mastri, F.; Mongiardo, M.; Perfetti, R.; Tarricone, L.; Chang, Y. Wireless Power Transfer With Three-Ports Networks: Optimal Analytical Solutions. *IEEE Trans. Circuits Syst. I Regul. Pap.* **2016**, *64*, 494–503, doi:10.1109/TCSI.2016.2603187.
- 18. Monti, G.; Che, W.; Wang, Q.; Dionigi, M.; Mongiardo, M.; Perfetti, R.; Chang, Y. Wireless power transfer between one transmitter and two receivers: optimal analytical solution. *Wirel. Power Transf.* **2016**, *3*, 63–73, doi:10.1017/wpt.2016.3.

- Mongiardo, M.; Wang, Q.; Che, W.; Dionigi, M.; Perfetti, R.; Chang, Y.; Monti, G. Wireless power transfer between one transmitter and two receivers: Optimal analytical solution. In Proceedings of the IEEE Asia-Pacific Microwave Conference (APMC), Nanjing, China, 6–9 December 2015; pp. 1–3.
- Zhang, T.; Fu, M.; Ma, C.; Zhu, X. Optimal load analysis for a two-receiver wireless power transfer system. In Proceedings of the IEEE Wireless Power Transfer Conference (WPTC), Jeju, South Korea, 8–9 May 2014; pp. 84–87.
- 21. Ean, K.K.; Chuan, B.T.; Imura, T.; Hori, Y. Impedance matching and power division algorithm considering cross coupling for wireless power transfer via magnetic resonance. In Proceedings of the IEEE 34th International Telecommunications Energy Conference (INTELEC), Scottsdale, AZ, USA, 30 September–4 October 2012; pp. 1–5.
- 22. Zhong, C.; Luo, B.; Ning, F.; Liu, W. Reactance compensation method to eliminate cross coupling for two-receiver wireless power transfer system. *IEICE Electron. Express* 2015, *12*, 1–10, doi:10.1587/elex.12.20150016.
- 23. Hong, J.S.G.; Lancaster, M.J. *Microstrip Filters for RF/Microwave Applications*, 1st ed.; John Wiley & Sons: New York, NY, USA, 2001; pp. 235–253.
- 24. Huang, L.; Hu, A.P. Defining the mutual coupling of capacitive power transfer for wireless power transfer. *Electron. Lett.* **2015**, *51*, 1806–1807, doi:10.1049/el.2015.2709.
- 25. Montgomery, C.G.; Dicke, R.H.; Purcell, E.M. *Principles of Microwave Circuits*; McGraw-Hill Book Company: New York, NY, USA, 1948.
- 26. Vincent, D.; Sang, P.H.; Williamson, S.S. Feasibility study of hybrid inductive and capacitive wireless power transfer for future transportation. In Proceedings of the IEEE Transportation Electrification Conference and Expo (ITEC), Chicago, IL, USA, 22–24 June 2017.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).