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Abstract: With the rapid development of high-speed and heavy-haul railways throughout China,
modern large power locomotives and electric multiple units (EMUs) have been applied in main
railway lines. The high power requirements have brought about the problem of insufficient power
supply capacity (PSC) of traction power supply systems (TPSSs). Thus, a convenient method of PSC
assessment is meaningful and urgently needed. In this paper, a novel algorithm is proposed based on
the Thévenin equivalent in order to calculate the PSC. In this algorithm, node voltage equations are
converted into port characteristic equations, and the Newton-Raphson method is exploited to solve
them. Based on this algorithm, the PSC of a typical high-speed railway is calculated through the
repeated power flow (RPF). Subsequently, the effects of an optimized organization of train operations
are analyzed. Compared to conventional algorithms, the proposed one has the advantages of fast
convergence and an easy approach to multiple solutions and PV curves, which show vivid and visual
information to TPSS designers and operators. A numerical analysis and case studies validate the
effectiveness and feasibility of the proposed method, which can help to optimize the organization of
train operations and design lines and enhance the reliability and safety of TPSSs.

Keywords: electric railway; power flow; power supply capacity (PSC); Thévenin equivalent;
repeated power flow (RPF); traction power supply system (TPSS)

1. Introduction

Electric railways, as an environmentally friendly and efficient means of producing passenger
and freight services, have been selected by many countries [1]. Modern high-speed railway lines are
being designed and built throughout China, Japan, and some European countries, and there is also
an incremental interest in high-speed railway services in Southeast Asia and the United States [2].
China has the greatest amount of high-speed railways in service in the world, over 22,000 km by the
end of 2016. With the rapid development of high-speed and heavy-haul railways, modern high power
locomotives and electric multiple units (EMUs) have been designed and applied in main railway
lines [3–5]. Their high power consumption has brought about a problem of insufficient power supply
capacity (PSC) [6] of the single-phase 25 kV or 2 × 25 kV alternating current (AC) traction power
supply systems (TPSSs) that are widely adopted to feed trains [7]. If a TPSS does not have enough
PSC, locomotives and EMUs would not be able to operate normally. For the sake of the safe and
efficient operation of electric railways, it is essential to calculate and assess the PSCs of TPSSs; hence,
a technical scheme is urgently required. A power flow algorithm is expected to converge at the power
limit for application to the repeated power flow (RPF), which repeatedly solves power flow equations
at a succession of points along a specified power change pattern [8–13].

TPSSs are special distribution systems and have their own features, e.g., more conductors and
earth return involved, that are different from three-phase public grids. A number of power flow
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algorithms have been proposed for TPSSs in the past decades, as listed in Table 1. Though the
algorithms of [3,14–22] are applicable, the Multiple conductor Nodal Fixed-point Algorithm (MNFA),
involving the multiple conductor model, a nodal analysis, and fixed-point iteration [23–30],
has acquired the widest use because of its accuracy and convenience for programming. However,
the MNFA cannot offer convincing evidence of the power limit for PSC assessment. In a practical
implementation, if the MNFA fails to converge, the PSC is considered exceeded. Hence, the maximum
power which makes the MNFA converge is treated as the power limit. Instead, the divergence may
result from the inability to converge on existent solutions. Therefore, the divergence of the MNFA is
not a rigorous proof of PSC insufficiency. Though the slope of the tangent line of a power–voltage
curve (PV curve) can be an auxiliary criterion [31], it is still not cogent and explicit enough. On the
other hand, the continuation power flow (CPF) [31–35] overcomes such disadvantage through tracing
the solution curve, and is capable of multiple solutions. The multiple solutions can form PV curves
and show vivid and visual information to power system planners and operators. However, the CPF
has been rarely used in TPSSs, and its implementation is more complicated than conventional power
flow algorithms. Programmers need knowledge of the numerical continuation and the techniques of
parameterization, prediction, correction, and step length control. Recently, a novel power flow method
called holomorphic embedding [36] has drawn researchers’ attention, owing to its ability to give the
right solution or prove the nonexistence of solutions. Its mathematical foundation is complex analysis
instead of iterative methods, and advanced mathematical theory is used. Some application cases have
been reported [37–40].

Table 1. Features of traction power supply system (TPSS) power flow algorithms.

Algorithm Model Accuracy Applicability to Feeding Scheme Convergence Speed

[14] Accurate All Linear
[15–17] Accurate All Quadratic

[3,18–21] Accurate AT 1 feeding Linear
[22] Accurate AT feeding Quadratic

MNFA 2 More accurate All Linear
PA More accurate All Quadratic

1 AT: auto transformer. 2 MNFA: Multiple conductor Nodal Fixed-point Algorithm.

In this paper, a novel power flow algorithm (named Port Algorithm, PA) is proposed for the PSC
calculation of TPSSs based on the Thévenin equivalent. The main features of the PA are included in
Table 1 with comparison to the previous algorithms. The main contributions of this work are as follows:

1. The Thévenin equivalent of a TPSS feeding section is introduced, which concentrates efforts
on train nodes instead of all nodes. Fewer variables need consideration than in the previous
algorithms. It can help with not only power flow analysis, but also the TPSS harmonic impedance
calculation in resonance analysis.

2. Node voltage equations are converted into port characteristic equations according to the Thévenin
equivalent. The Newton-Raphson method is exploited to solve those equations, which has faster
convergence than the MNFA. Besides, it has an easier approach to multiple solutions than the CPF.

3. The RPF based on the PA is utilized to calculate the PSC of a typical China high-speed railway
TPSS. Some practical recommendations are proposed to optimize the organization of train
operations. The minimum intervals of adjacent trains are estimated.

The rest of this paper is organized as follows. The PA is described in Section 2, including the
Thévenin equivalent and port characteristic equations solving. Its properties are verified by numerical
results compared with the MNFA in Section 3. In Section 4, the RPF procedure is given based on the
PA, and case studies are conducted to verify the proposed method. The conclusions are summarized
in Section 5.
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2. Algorithm Description

Figure 1a presents the overall process of the previous algorithms. It usually includes two
steps: formulating node voltage or mesh current equations according to input data, and then
solving the equations through numerical methods. Distinct from those, the PA inserts an additional
step: converting the node voltage equations to port characteristic equations with the help of
the Thévenin equivalent (see Figure 1b). This step concentrates efforts on train nodes instead of
all nodes. Fewer variables need consideration than in the previous algorithms. In this section,
the Thévenin equivalent and port characteristic equations are described first, then the equation-solving
implementation is provided.

Energies 2018, 11, 126 3 of 16 

 

2. Algorithm Description 

Figure 1a presents the overall process of the previous algorithms. It usually includes two steps: 

formulating node voltage or mesh current equations according to input data, and then solving the 

equations through numerical methods. Distinct from those, the PA inserts an additional step: 

converting the node voltage equations to port characteristic equations with the help of the Thévenin 

equivalent (see Figure 1b). This step concentrates efforts on train nodes instead of all nodes. Fewer 

variables need consideration than in the previous algorithms. In this section, the Thévenin equivalent 

and port characteristic equations are described first, then the equation-solving implementation is 

provided. 

Formulate node voltage / 
mesh current equations

Solve equations

 
(a) 

Formulate node voltage 
equations

Formulate port characteristic 
equations

Solve equations

 
(b) 

Figure 1. Overall steps of algorithms. (a) Previous algorithms; (b) Port Algorithm (PA). 

2.1. Thévenin Equivalent of Feeding Section 

Figure 2 shows an independent feeding section which is a basic unit of a TPSS, and its Thévenin 

equivalent network, where Ei, Ii, and Vi stand for the open-circuit voltage, current, and voltage of port 

i, respectively. Z is the n × n impedance matrix of the equivalent network. The port characteristic 

equations are 

1

n

i i ik k
k

E V Z I


    (1) 

where Zik represents the element in row i and column k of Z. The values of i and k are 1, 2, …, n, and 

will remain the same for the rest of this paper. 

Traction 
Substation

Contact wire

Rail

Train 1 …Train 2 Train n

 
(a) 

+

Train 1

+−

I1
E1 V1

−

+

Train 2

+−

I2
E2 V2

−

+

Train n

+−

In
En Vn

−

···

Zn×n

 
(b) 

Figure 2. Thévenin equivalent of feeding section. (a) Original feeding section; (b) Thévenin equivalent 

network. 

Figure 1. Overall steps of algorithms. (a) Previous algorithms; (b) Port Algorithm (PA).

2.1. Thévenin Equivalent of Feeding Section

Figure 2 shows an independent feeding section which is a basic unit of a TPSS, and its Thévenin
equivalent network, where Ei, Ii, and Vi stand for the open-circuit voltage, current, and voltage of port
i, respectively. Z is the n × n impedance matrix of the equivalent network. The port characteristic
equations are

Ei = Vi +
n

∑
k=1

Zik Ik (1)

where Zik represents the element in row i and column k of Z. The values of i and k are 1, 2, . . . , n, and
will remain the same for the rest of this paper.
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The critical task of the equivalence is to identify Ei and Zik. There are two equations derived
from (1).

Ei = Vi|I1=I2=···=In=0 (2)

Zik = −
Vi
Ik

∣∣∣∣ Ei = 0
I1 = I2 = · · · = Ik−1 = Ik+1 = · · · = In = 0

(3)

These two equations are employed to identify Ei and Zik as follows.

• Identification of Ei

1. Set all train currents to 0 A.
2. Solve node voltage equations.
3. Ei equals the voltage of train i.

• Identification of Zik

1. Set the current supplied by the substation to 0 A.
2. Set the current of train k to −1 A, and that of the others to 0 A.
3. Solve node voltage equations.
4. Zik equals the voltage of train i.

2.2. Port Characteristic Equations Solving

If the complex power of train i is Pi + jQi, its voltage will be

Vi =
Pi + jQi

I∗i
(4)

Substituting (4) in (1) yields

Ei =
Pi + jQi

I∗i
+

n

∑
k=1

Zik Ik (5)

The real form of (5) is
Pi IiRe−Qi IiIm

I2
iRe+I2

iIm
+

n
∑

k=1
(Rik IkRe − Xik IkIm)− EiRe = 0

Pi IiIm+Qi IiRe
I2
iRe+I2

iIm
+

n
∑

k=1
(Rik IkIm + Xik IkRe)− EiIm = 0

(6)

The subscript “Re” and “Im” denote the real and imaginary part of a complex number, respectively.
Rik and Xik are the real and imaginary part of Zik, respectively. The Newton-Raphson method is
exploited to solve (6) as follows:

1. Set the initial value of the train current vector

I =
[

I1Re I1Im I2Re I2Im · · · InRe InIm

]T
(7)

Alternatively, set the initial values of the train voltages first, and then calculate the train currents.
2. Calculate the residual vector

b =
[

b1Re b1Im b2Re b2Im · · · bnRe bnIm

]T
(8)
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where

biRe =
Pi IiRe −Qi IiIm

I2
iRe + I2

iIm
+

n

∑
k=1

(Rik IkRe − Xik IkIm)− EiRe (9)

biIm =
Pi IiIm + Qi IiRe

I2
iRe + I2

iIm
+

n

∑
k=1

(Rik IkIm + Xik IkRe)− EiIm (10)

3. Calculate the Jacobian matrix

J =


J11 J12 · · · J1n
J21 J22 · · · J2n
...

...
. . .

...
Jn1 Jn2 · · · Jnn

 (11)

where

Jik =

[
Rik −Xik
Xik Rik

]
, i 6= k (12)

Jii =

 Rii +
Pi

I2
iRe+I2

iIm
−Xii − Qi

I2
iRe+I2

iIm

Xii +
Qi

I2
iRe+I2

iIm
Rii +

Pi
I2
iRe+I2

iIm


−


2IiRe(Pi IiRe−Qi IiIm)

(I2
iRe+I2

iIm)
2

2IiIm(Pi IiRe−Qi IiIm)

(I2
iRe+I2

iIm)
2

2IiRe(Pi IiIm−Qi IiRe)

(I2
iRe+I2

iIm)
2

2IiIm(Pi IiIm−Qi IiRe)

(I2
iRe+I2

iIm)
2


(13)

This step will not take much time since most elements are constant.
4. Solve the corrective equation

J∆I = b (14)

to obtain the corrective vector ∆I.
5. If the norm of ∆I is smaller than a given value e, finish the calculation successfully. Otherwise,

subtract ∆I from I and go to Step 6.
6. If the number of iterations reaches a given value N, finish the calculation unsuccessfully.

Otherwise, go to Step 2.

After they are determined, the values of the train currents are substituted into the node
voltage equations to identify the node voltages. Afterwards, the power flow will be available easily.
The flowchart of the PA is given in Figure 3.
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3. Numerical Results

The convergence speed and ability to find multiple solutions of the proposed PA are analyzed
through a numerical study with a comparison to the MNFA. All of the calculations are conducted on
a desktop computer with an Intel Core i5-3470 CPU @ 3.20 GHz, 3.60 GHz and 8 GB memory.

3.1. Test System

Auto transformer (AT) feeding tends to be utilized in high-speed and heavy-haul railways due to
its larger PSC than direct feeding. Therefore, realistic parameters of an AT feeding section are listed in
Table 2 and adopted for the calculations.

Table 2. Parameters of the test system.

Parameter Value

Section
Track 2

Length 30 km

Public grid
System capacity 5000 MVA

Voltage 220 kV

Traction transformer
Connection single phase with secondary mid-point drawn out

Rated capacity 40 MVA
Rated voltage 220 kV/2 × 27.5 kV

Impedance 8.4%

AT
Location 15 km and 30 km away from the substation

Leakage impedance (0.1 + j 0.45) Ω
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Table 2. Cont.

Parameter Value

Trains
Locations as depicted in Figure 4

Active power the same value for all trains
Power factor 0.97 lagging

Conductors as depicted in Figure 5
Rail to earth resistance 100 Ωkm

Earth resistivity 100 Ωm
Initial values of the train voltages 40 kV

Convergence criterion ‖∆I‖2 < 0.01
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3.2. Algorithm Properties

3.2.1. Convergence Speed

The train voltages calculated by the MNFA and PA are listed in Tables 3 and 4, with the active
power of each train set to 10 MW and 20 MW, respectively. The two sets of results are different, and the
heavier the loads are, the larger the differences are. This is because the convergence speeds of the two
algorithms contrast sharply, as illustrated in Figure 6. The fixed-point iteration used in the MNFA has
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linear convergence, while the Newton-Raphson method used in the PA has quadratic convergence.
Hence, the PA requires a lower number of iterations to reach the convergence criterion.

Table 3. Train voltages calculated by MNFA and PA under light loads (Unit: V).

Train MNFA PA Difference

1 26,162.81 − j 3049.25 26,162.79 − j 3049.25 0.02
2 24,639.93 − j 4664.22 24,639.89 − j 4664.22 0.04
3 25,585.18 − j 3666.87 25,585.15 − j 3666.87 0.03
4 24,784.16 − j 4552.74 24,784.12 − j 4552.74 0.04

Table 4. Train voltages calculated by MNFA and PA under heavy loads (Unit: V).

Train MNFA PA Difference

1 22,791.54 − j 6299.11 22,791.49 − j 6299.12 0.05 + j 0.01
2 18,037.97 − j 9100.00 18,037.88 − j 9099.99 0.09 − j 0.01
3 21,108.93 − j 7411.10 21,108.87 − j 7411.10 0.06
4 18,459.19 − j 8933.77 18,459.10 − j 8933.76 0.09 − j 0.01
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Figure 7 presents the calculation speeds of the two algorithms. When the active power of each
train ranges from 0 to 20 MW, the MNFA needs as much time as the PA to complete the calculation,
roughly 85 ms, though the numbers of iteration are larger. However, as a reflection of the slow
convergence, the number of iterations and the calculation time of the MNFA will rise to a great level if
20 MW is exceeded. In contrast, those of the PA are impacted slightly.
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Most calculations are concentrated around the power limit during the RPF, so the substitution of
the PA for the MNFA will save considerable time in a PSC assessment.

3.2.2. Ability to Find Multiple Solutions

If the initial values of the train voltages are set to 1 kV and the other conditions remain the same,
the train voltages calculated by the PA will be lower, as listed in Tables 5 and 6. Heavier loads result
in smaller differences between the high and low voltage solutions. As to the MNFA, adequate initial
values have not been found which bring convergence on the low voltage solutions.

Table 5. Multiple solutions of train voltages under light loads (Unit: V).

Train High Voltage Solutions Low Voltage Solutions Difference

1 26,162.79 − j 3049.25 15,959.64 − j 4789.04 10,203.15 + j 1739.79
2 24,639.89 − j 4664.22 1206.80 − j 3075.46 23,433.09 − j 1588.76
3 25,585.15 − j 3666.87 12,878.89 − j 5093.25 12,706.26 + j 1426.38
4 24,784.12 − j 4552.74 2848.02 − j 3879.99 21,936.10 − j 672.75

Table 6. Multiple solutions of train voltages under heavy loads (Unit: V).

Train High Voltage Solutions Low Voltage Solutions Difference

1 22,791.49 − j 6299.12 16,952.05 − j 7108.26 5839.44 + j 809.14
2 18,037.88 − j 9099.99 6071.67 − j 8086.42 11,966.21 − j 1013.57
3 21,108.87 − j 7411.10 13,760.17 − j 7954.93 7348.70 + j 543.83
4 18,459.10 − j 8933.76 6989.39 − j 8192.97 11,469.71 − j 740.79

PV curves are formed by the multiple solutions found under successively varying power, as shown
in Figure 8. The PV curves are continuous in the neighborhood of the power limit, which proves that
the PA did not encounter numerical difficulty. Moreover, most low voltage solutions are available
only through the same set of initial values, simpler than the CPF. As a result, the programming is
simplified significantly.
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Figure 8. Power-voltage (PV) curves of trains. (a) Train 1; (b) Train 2; (c) Train 3; (d) Train 4. 
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The MNFA is merely capable of the upper side of PV curves. Under these circumstances, the slope
of the tangent line can be an auxiliary criterion of the power limit. It is concluded from Figure 8
that the slope is at negative infinity when the power limit is reached. Nonetheless, negative infinity
is not available in the numerical calculations. Though a value can be selected to represent infinity,
this approximation is not universal. Slopes of different trains are not equivalent, as presented in
Figure 9. The selected value may not be appropriate for other trains or systems.
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In summary, the PA can offer a more convincing proof of the power limit than the MNFA and
an easier implementation than the CPF. The PA is more feasible to calculate the PSC.

4. Application to PSC Calculation

4.1. RPF Procedure

The lower side of a PV curve related to low voltage solutions may not have practical meaning,
but it provides good verification of the power limit. It is known that the high and low voltage solutions
approach while the power is increasing, and coincide when the power limit (4 × 22.602 MW = 90.408 MW
for the test system) is reached [35]. If the power continues increasing, there will be no solutions. Therefore,
the power limit found by the PA can represent the PSC. The RPF is performed based on the PA as follows:

1. Set the complex power of each train to 0.
2. Choose a load change pattern and step length, namely how much the complex power of each

train increases or decreases.
3. Increase the power according to the chosen pattern and step length.
4. Perform the PA. If the calculation converges, go to Step 3. Otherwise, go to Step 5.
5. If the step length is smaller than a given value ε, finish the calculation. Otherwise, go to Step 6.
6. Decrease the step length, for instance, by half.
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7. Decrease the power according to the pattern and new step length, and go to Step 4.

Afterwards, the total active power of the trains is treated as the PSC. The process of power
adjustment is illustrated in Figure 10, and the flowchart is given in Figure 11.
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Although plenty of calculations were performed with the PA successfully, it is still not guaranteed
that it can always converge near the power limit. In the case of a failure inferred from a discontinuous
PV curve, the last solution on the curve can be used as the initial value of the next calculation, which is
a kind of discrete continuation method [41].

4.2. Case Studies

The PSC can be enhanced through improving TPSS parameters and the organization of train
operations. Enhancing the PSC through improving TPSS parameters includes connecting to a stronger
public grid, employing AT feeding, or installing power factor correctors. Enhancing the PSC through



Energies 2018, 11, 126 12 of 17

the organization of train operations mainly affects the number and locations of trains. Both of them
are effective, but the former is expensive and time-consuming. For that reason, the priority is given to
the latter in order to realize the full potential of a present TPSS. Its effects are analyzed below.

4.2.1. Case 1

Suppose there are n trains in the test system, two of them are, respectively, at the section end
on the up and down tracks, and the distance between adjacent trains d is the same, as depicted in
Figure 12. Other conditions are identical to Section 3.1. The power limit Plimit and maximum active
power of each train Pmax are influenced by d as presented in Figure 13. When n remains the same,
Plimit rises with d increasing. When n becomes smaller, Plimit will fall steeply first, and then rise more
gently than before. It has a minimum of 55.0 MW, and a maximum of 95.5 MW, varying acutely. As for
Pmax, it rises slightly with the increment of d, and its maximum is 27.5 MW.
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4.2.2. Case 2

If there are, respectively, two trains at the section start on the up track and the section end on
the down track, as depicted in Figure 14, the results will be distinct. The minimum of Plimit has
an increment to 89.7 MW, and the maximum is still 95.5 MW, as given in Figure 15a. The variation
becomes not as severe as in Case 1. On the other hand, when n remains the same, Pmax almost keeps
constant despite the change of d. Accordingly, Pmax is approximately inversely proportional to n,
as shown in Figure 15b.
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4.2.3. Discussion

The two cases above indicate how the organization of train operations affects the PSC. Plimit and
Pmax in Case 1 are smaller than in Case 2 overall under the same number of trains. The reason is that
the trains are closer to the section end, so that larger conductor impedance participates in the power
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transmission, and the TPSS supplies less power. Thus, it is recommended that trains on the up and
down tracks not be concentrated near the section end, especially in weak TPSSs.

In addition, Plimit exceeds the rated capacity of the traction transformer considerably. The transformer
does not match the PSC. If the PSC is expected to be fully utilized, the transformer capacity needs to be
enlarged to 95.5 MW/0.97 ≈ 100 MVA at least.

China EMUs in service can be classified into three levels according to the data of active power
consumption, as given in Figure 16. Their minimum distance and time intervals corresponding to Case
1 and Case 2 are presented in Table 7, assuming that the speeds are 300 km/h. It is implied that the
optimized organization of train operations is effective for the third level of EMUs, reducing the time
interval by 1.4 min. If the opening hours are 16 h (6:00 to 22:00) a day, 100 pairs of trains more will be
able to pass the feeding section, and the carrying capacity will be enhanced greatly, supposing that the
signals and station facilities are able to cooperate with the power supply.
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will be able to pass the feeding section, and the carrying capacity will be enhanced greatly, supposing 

that the signals and station facilities are able to cooperate with the power supply. 
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5. Conclusions

The PA is proposed for TPSSs based on the Thévenin equivalent. Port characteristic equations,
converted from nodal voltage equations, are solved by the Newton-Raphson method. Owing to its
quadratic convergence, the calculation time is shorter than the MNFA near the power limit. What is
more, an easier approach to multiple solutions than the CPF is provided. The low voltage solutions can
be found effortlessly only through another set of initial values, instead of knowledge of the numerical
continuation and a complicated programming implementation. PV curves formed by multiple solutions
are capable of providing vivid and visual information to TPSS planners and operators. With the help
of the RPF based on the PA, the PSC is available conveniently.

The organization of train operations has significant effects on the PSC. It is recommended that the
trains on the up and down tracks not be concentrated near the section end, especially in weak TPSSs.
This optimization can help to shorten the interval of adjacent trains, and is beneficial to sufficient PSC
utilization and enhancement of the carrying capacity.
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