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Abstract: Although in 2012 the European Union (EU) has promoted energy efficiency in order to
ensure a gradual 20% reduction of energy consumption by 2020, its targets related to energy efficiency
have increased and extended to new time horizons. Therefore, in 2016, a new proposal for 2030 of
energy efficiency target of 30% has been agreed. However, during the last years, even if the electricity
consumption by households decreased in the EU-28, the largest expansion was recorded in Romania.
Taking into account that the projected consumption peak is increasing and energy consumption
management for residential activities is an important measure for energy efficiency improvement
since its ratio from total consumption can be around 25–30%, in this paper, we propose an informatics
solution that assists both electricity suppliers/grid operators and consumers. It includes three models
for electricity consumption optimization, profiles, clustering and forecast. By this solution, the daily
operation of appliances can be optimized and scheduled to minimize the consumption peak and
reduce the stress on the grid. For optimization purpose, we propose three algorithms for shifting the
operation of the programmable appliances from peak to off-peak hours. This approach enables the
supplier to apply attractive time-of-use tariffs due to the fact that by flattening the consumption peak,
it becomes more predictable, and thus improves the strategies on the electricity markets. According to
the results of the optimization process, we compare the proposed algorithms emphasizing the benefits.
For building consumption profiles, we develop a clustering algorithm based on self-organizing
maps. By running the algorithm for three scenarios, well-delimited profiles are obtained. As for
the consumption forecast, highly accurate feedforward artificial neural networks algorithm with
backpropagation is implemented. Finally, we test these algorithms using several datasets showing
their performance and integrate them into a web-service informatics solution as a prototype.

Keywords: consumption management; programmable appliances; informatics solution; optimization
algorithms; load profile; forecast; web-services; prototype

1. Introduction

Energy efficiency targets, set by European Union (EU) leaders in 2007 and enacted in legislation in
2009, aim to reduce greenhouse gas emissions, improve energy security, and enhance competitiveness
and sustainable development of entire society. The 2020 package is a set of binding legislations to
ensure the EU meets its climate and energy targets for the year 2020. The EU has committed itself to
energy and climate change objectives for 2020, comprising a 20% improvement in energy efficiency,
higher share of renewable energy of 20% and reduction of greenhouse gas emissions by 20% compared
with a baseline projection [1].

In 2012, the EU adopted Directive 2012/27/EU on energy efficiency that establishes a common
framework of measures for the promotion of energy efficiency within the EU in order to ensure a 20%
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reduction of energy consumption by the year 2020. Then, in October 2014, EU countries agreed on a
new energy efficiency target of at least 27% or greater by 2030. In November 2016, a new proposal for
2030 of binding energy efficiency target of 30% for the EU came up.

According to Eurostat, during the last ten years, although the households’ electricity consumption
decreased by 1.3% in the EU-28, the largest expansions were recorded in Romania (48.1%), Lithuania
(27.1%) and Spain (21.8%) which are among the EU members with higher electricity consumption [2].

Moreover, in Europe, the peak consumption is forecasted to increase by 38.77% in 2050 [3];
therefore, the growth rate is 1.1%. According to ENTSO-E, the annual monthly peak loads increase
over the period 2016–2025 by 0.9%, although the energy consumption growth is slightly lower (0.8%
annual) [4]. Also, in the US, the summer peak consumption is projected to increase by 1.5% yearly up
to 2030, but at regional level, the growth rate is even higher [5]. However, the projected increase of
the consumption peak will lead to additional onerous grid and generation capacity requirements that
should be efficiently loaded only for short time periods; and higher electricity tariffs as a consequence
of additional costs related to these capacities.

In the context of smart grids, by means of sensors, actuators, advanced tariffs, smart meters,
IT and C infrastructure and other demand side management (DSM) measures, consumers become
more and more active. Within rapid transition from traditional utility grid companies to smart
micro-grids enhanced by significant growth of the sensors industry and communication facilities, the
electricity consumers can categorize appliances into different types based on their shifting flexibility,
model the day-ahead operation schedule of the appliances and agree to implement the optimized
schedule that is related to a convenient time-of-use (ToU) tariff that reduces the electricity consumption
payment. Usually, the micro-grid controller may identify customers with flexible loads which
are willing to be controlled during critical periods in exchange for various incentives. However,
promotion of energy efficiency, simulations and results estimation in terms of financial incentives
regarding electricity payment and environmental benefits are vital for understanding the impact of
consumption optimization strategies. The environmental benefits could be related to less number
of km of transmission and distribution overhead lines and cables, increase of renewable distributed
generation integration, etc.

Electricity consumption management brings significant benefits to consumers, prosumers,
suppliers and grid operators. In terms of electricity consumption optimization, we show in [6]
and [7] that planning of appliances operation brings savings to consumers and decrease the hourly
demand peak. In [6], the optimum capacity of a storage device that significantly contributes to peak
shaving of electricity consumption for residential consumers is calculated. It is based on the solution
of two mixed integer linear programming (MILP) optimization problems: payment minimization and
consumption peak minimization. Based on the results of [6], the best approach is to use storage devices
to effectively contribute to the peak minimization and PV to obtain some savings.

In [8,9], the authors develop methods for load profile calculation using self-organizing maps
(SOM) and applied classification or clustering in order to calculate accurate dynamic load profiles that
could be used for electricity consumption forecast, market settlements and consumption optimization.
Based on [8], the SOM are suitable for calculation of dynamic load profiles. Comparative analysis
between [8] and [9] has shown that the best method for load profiles with specific patterns is clustering,
while for well-delimited profiles, SOM is the most suitable method.

European Project Optimus aims to create a framework for assessing the local characteristics via
the instrument OPTIMUS-SCEAF (Smart City Energy Assessment Framework) in the cities, develop
a decision support system (DSS) to optimize energy use, implement it in three pilot European cities
(Savona, Italy; San Cugat, Spain; and Zaanstac, The Netherlands) and make necessary training for
expanding implementation of DSS [10].

Development of DSS for optimizing energy use by Optimus DSS has been initiated due to
increased energy consumption in cities. They consume about two-thirds of the total consumption,
are the largest sources of greenhouse gases and may affect about 70% of the total environmental
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footprint [11]. Optimus DSS is designed with the following modules: predictive module of
consumption and production for renewable energy sources, statistics analysis module, consumers’
profiles module and consumption of electricity and heat optimization module.

In [12], the authors build IntelligEnSia solution (Intelligent Home for Energy Sustainability) that
is focused on the prediction analytic using Web and Android technologies. For prediction of the energy
consumption, the authors applied three regression models to predict the energy consumption based
on the independent variable related to a particular day and dependent variables: current, voltage
and power. The proposed models can support the decision-making process in obtaining energy
consumption management.

In [13], the authors evaluate the impact of implementation of an energy management system.
It is based on energy consumption and contributes towards sustainable development. The article
performs an experimental design, using multiple linear regression to obtain a model that forecasts
energy consumption.

In [14], the authors propose an optimal scheduling of hourly consumption at the community level
based on real-time electricity tariff. The objective of the optimal load scheduling problem is to minimize
the community electricity payment taking into account the consumption preferences of householders
and characteristics of their appliances. Lagrangian relaxation is implemented to decouple the utility
constraint and provide tractable sub-problems. The authors propose a multi-layer optimization
approach. Starting from the initial case, first they considered adjustable and programmable appliances,
then local generation, storage devices (in case they exist) and aggregated consumption of a certain
micro-grid are involved. Therefore, gradually, the daily load flattens based on the real-time electricity
tariff. The results show the efficiency of the proposed load scheduling method based on real-time
electricity tariff.

Considering that existing demand side management strategies deal with only a limited number
of controllable appliances of limited types, [15] proposes a DSM strategy based on load shifting
technique for communities with large number of appliances in the smart grid context. The 24-h load
shifting technique is a minimization problem that can be solved with a heuristic-based evolutionary
algorithm. Simulations are performed considering three sectors: residential, commercial and industrial.
The results show that the proposed DSM strategy brings significant savings, also reducing the peak
load demand. However, the proposed load shifting technique may lead to the new peaks due to
the fact that consumers would change the behavior and predominantly consume at the lower rate
time intervals.

An interesting approach is given by [16] in which a methodology for ranking the EU funded
energy efficiency projects with smarting interventions on the electricity grid is provided. It is based
on ex-ante evaluation of the key performance indicators (KPIs) associated with environmental and
energy-saving aspects, such as power savings, share of renewable energy sources and carbon emissions
reduction. The methodology relies on optimal power flow algorithms, representing an appropriate
tool for assessing the potential of projects that consist of smarting actions dedicated to accomplishing
the 2020 EU targets.

In [17], the authors identify a high potential for savings and energy efficiency improvement
of the residential sector in Spain and propose an energy planning methodology for evaluating the
energy consumption of householders, primary energy consumption and share of renewable energy
considering each energy source in a Spanish community (Riojan) and in Spain as a whole. The results
provide KPIs at the residential sector level that show compliance with EU goals for 2020.

Paper [18] assesses the new-to-the-market climate change mitigation technologies that assist
member states to reach EU 2020 goals. These technologies are aiming to achieving 20% of gross
final energy consumption from renewables and achieving a 20% increase in energy efficiency.
The paper provides an ex-post evaluation of the effectiveness of new-to-the-market climate change
mitigation technologies.
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Several questions on EU targets implementation pace and discrepancies in adoption of EU
targets at the member states level are underlined by [19] in relation with achievement of a common
development goal regardless of the significant differences in member states economy. The authors
evaluate the implementation of the EU 2020 targets within the member states for years: 2004, 2010
and 2015. Based on this assessment, the member states are ranked according to the implementation
stage. The proposed multidimensional approach allows comparison across member states in the
evaluation years.

The scope of [20] consists of analyzing the possibilities of member states to fulfill the EU 2020
energy efficiency strategy and targets agreed in France (Paris). The authors show that rapid growth of
economy and primary energy consumption generates more greenhouse gas emissions. However, their
research reveals that the EU goal to reduce the greenhouse gas emission by 20% by 2020 compared
with 1990 are achievable mainly by increasing the share of RES.

In [21], the author acknowledges that DSM including smart technologies and micro-generation at
small to medium enterprises (SME) level plays an important role. The paper analyses the potential
of smart technologies in SME from the United Kingdom, by developing a quantitative model to
evaluate seven categories of smart technologies in ten non-domestic sectors. The results show that
smart technologies provide important annual energy savings (17% savings on energy expenditures).
The author also analyses the potential of micro-generation at the SME level searching for drivers
and barriers to its implementation. It results that the initial costs, technical feasibility and planning
permission on historical buildings are the main barriers, and that the feed-in tariffs is one of the
main drivers.

Paper [22] analyses the energy demand of the residential sector; a comprehensive comparison
is performed between control models (such as: thermostat, proportional-integral-derivative, model
predictive control) of a domestic heating, ventilation and air conditioning system controlling the house
temperature. As a novelty, the authors propose an interface that adjusts the model predictive control
dynamic range of the output command signal into a discrete two level control signal. The analyzed
house is also supplied by solar micro-generation, five ToU electricity rates being applied for a one
week period. The aim of the proposed optimization approach is to reach the best compromise between
temperature comfort and payment, identifying the most appropriate electricity rate option provided
by the electricity supplier for the householders.

Paper [23] proposes an energy ecosystem, a cost-effective smart micro-grid based on intelligent
hierarchical agents with dynamic demand response and distributed energy resource management.
The individual costs of distributed energy resources and energy storage are, therefore, shared by the
entire community. To achieve high energy efficiency in smart grids, the authors propose to shave
the load by demand response, distributed energy resources and energy storage systems that can be
optimally controlled.

In [24], the authors develop a couple of dynamic neural networks for solving nonlinear time series
problems, based on the non-linear autoregressive and non-linear autoregressive with exogenous inputs
models. Large datasets comprising the hourly energy consumption recorded by the smart meters
installed at a commercial center type of consumer (hypermarket) and temperature and time stamp
datasets (for non-linear autoregressive with exogenous inputs). As a novelty for consumption forecast,
the authors obtain an optimal mix between the training algorithms Levenberg-Marquardt, Bayesian
Regularization, Scaled Conjugate Gradient, the hidden number of neurons and the delay parameter.

Considering that savings achieved by the presence of smart metes are small, the authors of
paper [25] analyze the potential of replacing the simple statement of energy use provided by an in-home
displays with detailed information designed to improve consumer energy knowledge and recommend
behavior change by personalized messages. The results point out the necessity of improving energy
literacy in order to promote and encourage energy efficient measures and new smart meters with the
potential to increase savings and impact climate change strategies.
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Paper [26] proposes various DSM strategies using the genetic algorithm, teaching learning-based
optimization, the enhanced differential evolution algorithm and the proposed enhanced differential
teaching learning algorithm to manage energy and comfort, while taking the human preferences into
consideration. The operation of programmable home appliances is changed in response to the real-time
tariff signal in order to get monetary savings. To further improve the cost along with reduced carbon
emission, renewable energy sources/energy storage are also integrated into the micro-grid. The main
objectives are: RES integration, electricity bill reduction and minimizing the peak to average ratio and
carbon emission. However, the objective of peak minimization should prevail due to its substantial
advantages that lead to sustainable development of the power systems.

In [27], an overview and a taxonomy for DSM, analyzing the various types of DSM and giving an
outlook on the latest demonstration projects in this domain are provided.

Energy efficiency services are expected to contribute to greenhouse gas emissions reduction and
energy security at the EU level. Therefore, in [28], the authors carry out a case study and consider
that the main challenges in developing new innovative energy efficiency services are: the unbundling
of energy company activities, which makes it difficult to develop services when the contribution
of several business units is necessary and the distrust among energy end-users, which renders the
business logic of energy saving contract models self-contradictory.

In [29], the authors analyze the most relevant studies on optimization methods for DSM of
residential consumers. They review the related literature according to three axes defining contrasting
characteristics: DSM for individual users versus DSM for cooperative consumers, deterministic versus
stochastic DSM and day-ahead versus real-time DSM. Thus, an image of the main features of different
approaches and techniques is provided.

Paper [30] studies the general frame, software architecture, hardware platform and main modules
of DSS for DSM. The system contains ten functions, including energy efficiency assessment, DSM
program design, project management, electricity savings analysis, electric load analysis and forecast,
peak load shifting management, policy modeling, project comprehensive evaluation, case management,
that provide a complex decision supporting platform.

In [31], an energy retrofit intelligent DSS, that integrates expert knowledge with quantitative
information to provide homeowners with accurate information for decision-making, is developed.
The paper identifies the components of the proposed system, develops rules for relevant energy retrofit
expert knowledge to be employed in the knowledge-based system of the DSS, develops the system for
decision-making for home energy retrofits, and demonstrates the application of the DSS using two test
homes. The paper contributes to improving the adoption of energy retrofits by homeowners.

In this paper, we propose a web-service integrated informatics solution that consists of three
models for electricity consumption management that are based on optimization, profiles clustering
and forecast algorithms developed in the smart grid context. Apart from other solutions, the input
data is transformed and loaded into a relational cloud database and algorithms are implemented as
stored procedures in the same database, increasing the performance of the processing algorithms,
avoiding additional software tools for implementation.

To improve the energy efficiency, we propose to shift appliances to reduce the peak consumption
and increase savings by avoiding onerous cost related to additional grid infrastructure. Moreover, by
this solution, the consumers are able to monitor electricity consumption at the appliance level and
identify the energy intensive appliances that can be replaced to reduce the electricity consumption
and further increase the savings. Also, by our approach, the consumption profiles and forecast aim to
increase the predictability of the consumption and improve the market strategies of suppliers that lead
to electricity tariff reduction.

In the context of DSM, load control strategies for different purposes have to improve from
conventional total load curtailments to shifting or adjusting the operation of appliances that does
not affect or compromises the comfort of the consumers. However, by considering the consumption
optimization problem only from the minimization of electricity payment point of view, as it is proposed
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in some research papers, it may generate new peaks as the consumers tend to shift their appliances
to hours with lowest tariffs. Thus, our proposal is to shift the appliances in order to flatten the daily
load curve as much as possible which will lead to the most convenient tariffs for consumers. In this
respect, we design three algorithms that shift the programmable appliances, implement and compare
the results.

Nevertheless, optimization strategies should be correlated with transparent and well-designed
financial incentives and the intervention of consumers should be as light as possible, therefore, friendly
online tools such as web portals are needed to reduce the consumers’ tasks [32]. Optimization algorithms
help electricity suppliers to reshape the consumption profiles and obtain a more predictable forecast
due to the optimal schedule operation at the appliance level. Also, the consumption optimization
increases the awareness of consumers in terms of energy conservation and, thus, on medium and
long-term consumption reduction.

For achieving consumption profiles, we develop a clustering algorithm based on self-organizing
maps. By running the algorithm for three scenarios, different profiles are calculated. As a consequence,
a comparative analysis section in the prototype to allow the supplier to visualize and compare the load
profiles is designed.

As for the consumption forecast, feedforward artificial neural networks algorithm with
backpropagation is implemented. Apart from consumption data, the dataset consists of exogenous
factors such as: temperature, wind speed, wind direction, humidity, type of the day, hour and load
profile. Then, the consumption management related algorithms are integrated into an informatics
prototype that enables consumers and suppliers/grid operators to visualize data through interactive
controls such as reports, pivot tables, charts, maps, scenarios and various gauges.

The paper is briefly structured as follows. Section 1 presents an introduction to the research
work and different studies from literature. Section 2 describes the informatics solution for electricity
consumption management components and architecture of the prototype. Section 3 shows the main
flowchart for models and algorithms. Section 4 presents the proposed models and algorithms for
consumption optimization, profiles and forecast. Section 5 shows the results. Section 6 depicts
interfaces of the prototype. Section 7 presents discussion and Section 8 aims to provide the main
conclusion remarks.

2. Informatics Solution for Electricity Consumption Management

Based on emerging technologies such as sensors, intelligent appliances, communications and
smart metering systems, the advanced consumption management has been significantly enabled.

Nonetheless, the electricity consumption management mainly implies the interaction among
users and components, such as electricity consumers need to control, schedule and monitor their
appliances through a friendly user interface; electricity suppliers/grid operators require access to
individual/aggregated consumption, profiles and forecast. Thus, our approach regarding consumption
management consists of an informatics prototype developed on a cloud computing platform
that integrates smart meters, programmable/non-programmable appliances and sensors through
individual Electricity Consumption Management Instances (ECMI) and aggregates consumption at a
Control Centre (CC) managed by the electricity supplier and accessed by the grid operators or other
authorities (as in Figure 1).
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The informatics prototype may assist decisions regarding consumption management, being
developed as web-services accessible by three types of users: consumer has access to his appliances,
consumption data, load scheduler, real-time bills, payments and tariffs through ECMI; electricity
supplier has access to consumption data, load profiles, consumption forecast and can set up tariffs
through CC; grid operator, authority and/or regulator may access CC to analyze the aggregated
consumption data for grid or market related purposes.

Architecture of the prototype is presented in Figure 2. Appliances and smart meters are connected
within a network of sensors designed to control the operation of the appliances. The input data
collected from individual appliances are loaded into a central database through a gateway. From the
database, in order to enable advanced and multidimensional analyses, data is transformed and
loaded into a data warehouse. Then, data is processed within three distinct models: M1, electricity
consumption optimization; M2, load profiles; and M3, consumption forecast; for each model, specific
algorithms are developed. Users interact with the proposed models via web-services, each type of
user having access to specific options. Electricity consumers visualize their hourly consumption,
real-time billing information, tariffs and have access to module M1. Also, through the interface, the
consumer’s preferences and characteristics of electric appliances are added. Based on the consumers’
input regarding appliances and their preferences, the algorithms implemented in M1 optimize the
hourly consumption, providing the optimal schedule of each appliance.
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Individual consumption optimization of each consumer is performed at the ECMI level, the
operation of the appliances is stored in the database and subsequently loaded into the data
warehouse for historical advanced analyses. Consumption optimization process also considers
the non-programmable appliances, such as: refrigerator, lighting, etc., but it is achieved mainly
through programmable appliances, such as washing machine, bread oven, dryer, car battery, etc.
After consumption optimization is performed, the ECMI sends to CC the planning (operation schedule)
consumption for a certain period of time, usually 24 h. Based on the consumption data recorded
at regular intervals of time (hour by hour or at 15 or 30 min), the consumption profiles (M2 model)
are determined with clustering algorithm developed with SOM. For each profile, the electricity
supplier performs consumption forecast with artificial neural networks (ANN) by accessing M3 model.
Compared with the present situation, when hourly consumption is unknown, based on detailed
data collected from consumers, the supplier and grid operator are able to analyze consumption and
provide accurate consumption forecasts at the CC level, which have a positive impact on grid operation
planning and actions on electricity wholesale market.

For consumption management purposes, we develop an online portal that allows advanced
analyses for suppliers that include data visualization elements via dashboards, predictive analyses,
what if scenarios, planning and reporting tools.

Also, the prototype includes interfaces for consumers to enable real-time information regarding
consumption and tariff scheme visualization, consumption monitoring, alerts and consumption
thresholds, comparisons between consumption within the same profile while preserving the data
confidentiality, consumption estimations and predictions.

In Section 3, the flowchart of the models and algorithms is presented.

3. Flowchart of the Proposed Models and Algorithms

The proposed models and algorithms are integrated through the web-services in the main interface
of an informatics prototype and allow the execution of the optimization algorithms performed by the
consumers on one side and the execution of the load profile and consumption forecast algorithms
performed by the electricity supplier on the other side. Users’ interaction with the proposed models
and the algorithms is described in Table 1.
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Table 1. Interaction between users and models.

Model Execution

Users
Electricity Supplier Electricity Consumers

M1—Consumption
optimization

1. Provides ToU tariffs;
7. Visualises the load schedule for
individual/aggregated consumers
based on optimization model.

2. Set appliances type;
3. Provide initial schedule of
appliances and status options of
programmable appliances for the
next day;
4. Optimize consumption for next
day by running in parallel three
shifting algorithms;
5. Analyse the optimized schedule
of appliances and total payment for
the next day;
6. Select the best schedule that
minimizes the payment and save it
to ECMI and central database;

M2—Load profiles

1. Selects the number of load profiles;
2. Executes the clustering algorithm at
least once a month with data collected
from previous 3 months;
3. Stores the results in the Control
Centre (central database);
4. Analyses the profiles and distribution
of total consumption for each profile;

5. Access the ECMI and visualise
own profile information and
compare consumption with similar
profile.

M3—Consumption forecast

1. Trains the ANN network with
historical data (this step is performed
only once);
2. Validates ANN with previous 30
days records (this step is performed
periodically, every month);
3. Provides the forecast period (number
of hours);
4. Executes the consumption forecast
algorithm for each load profile;
5. Analyses the output and compare
actual values with forecasts for each
profile and for aggregated
consumption;

6. Visualize estimated consumption
for own profile.

Flowchart of the models and algorithms in Figure 3 shows the connections between users
(electricity consumers and supplier), the individual electricity consumption management instances
(ECMI) and the control center (CC).
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Optimization algorithms are executed in ECMI, while the load profiles and consumption forecast
are executed in the control center (CC). All outputs provided by algorithms are stored in a central
database for further analyses and historical records. Also, from the central database, electricity supplier
can compare forecasting results with actual consumption to evaluate the accuracy of the algorithm.
Both CC and ECMI are developed in a cloud computing platform and accessed via web-services.

In the Section 4, we describe the models M1, M2 and M3 developed and integrated into the
prototype. These models are tested in Section 5 on hourly consumption dataset for 212 consumers
during one year period. Data is collected from smart meters and sensors for several types of appliances:
heating, cooling, ventilators, indoor lighting, outdoor lighting, water heating, household equipment
(washing machine, refrigerator and coffee maker) and other interior devices (TV, PC, sound systems).
For consumption forecast model, data is collected also from weather sensors (temperature, humidity,
wind speed, wind direction). The data is checked for consistency and measurements are validated
and loaded into the central database running Oracle Database 12c, where the proposed algorithms are
implemented as stored procedures in Oracle PLSQL language.

4. Models and Algorithms

4.1. M1—Optimization Model. Algorithms for Shifting the Householder Programmable Appliances

The operation of programmable appliances can be shifted to flatten the consumption peak by
means of ToU or real-time tariffs that are designed to support such objective. As a consequence, the
suppliers are able to offer attractive ToU tariffs if the consumption is more predictable and can improve
the strategies on the electricity markets.

In this respect, we develop three algorithms that aim to shift the operation of programmable
appliances in order to reduce the consumption peak as much as possible. The consumers have only to
define the type of their appliances and send the operation schedule (hourly consumption preferences)
that will be optimized by ECMI, so that convenient ToU tariff is applied for electricity consumption.

For implementation, we consider several appliances with fixed operation schedule (also known
as non-programmable appliances or NPA), such as: refrigerator, electric oven, etc. that cannot be
shifted due to consumers’ comfort reasons. From this category, some appliances that are always
in operation are also known as background appliances [33] (such as refrigerator, house monitoring
system). Then, we consider programmable with interruption appliances or programmable with
interruption appliances (PIA) (i.e., car battery, water heater, vacuum, heating system, etc.) and
programmable non-interruptible appliances or programmable non-interruptible appliances (PNIA)
(i.e., washing machine, bread oven, dish washer, etc.). For privacy reasons, consumers can only
mention the type of the appliances (non-programmable appliances (NPA), PIA or PNIA) without
disclosing private information regarding consumption activities and brand of appliances.

The shifting flexibility of these appliances is depicted in Figure 4. PNIA will shift with entire
hourly consumption blocks, while PIA will shift block by block since they support interruptions
in operation.
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time interval, where 1 is on and 0 is off) of the programmable appliances. For programmable appliances,
it is important to know the possible operational time intervals that indicate the availability of either
appliance or consumer. Based on them, the possible starting time can be figured out taking into account
the operation duration.

The shifting algorithms are iterative processes that consider non-programmable appliances as
fixed hourly consumption and programmable appliances aiming to flatten the daily load curve
taking into account the operation constraints of programmable appliances. The operation constraints
are related to the possible operation hours for a certain appliance. For instance, some appliances
cannot operate without consumers’ intervention (also known as active appliances) such as vacuum,
while some appliances have to be at home in order to consume (e.g., car battery, also considered as
passive appliances) [33].

Consumption shifting of the appliances takes advantage of time independence of loads and
follows the filling valley technique, but sometimes there are dependencies among appliances operation.
For instance, the dryer will operate always after washing machine finished its operation. So, additional
constraints has to be considered.

The actual optimized consumption for hour h after shifting the appliances is equal with the total

scheduled consumption of all appliances,
N
∑

q=1
Ch

q scheduled, plus total consumption of shifted appliances

i ∈ {PIA} to hour h plus total consumption of shifted appliances j ∈ {PNIA} to hour h ± d,
PIA,PNIA

∑
i=1
j=1

Conh
i,j, minus total consumption of shifted appliances i from hour h minus total consumption

of shifted appliances j from hour h ± d,
PIA,PNIA

∑
i=1
j=1

Disconh
i,j.

Ch
actual =

N

∑
q=1

Ch
q scheduled +

PIA,PNIA

∑
i=1
j=1

Conh
i,j −

PIA,PNIA

∑
i=1
j=1

Disconh
i,j (1)

where:

N—total number of appliances;
Ch

actual—actual consumption at hour h;
Ch

q scheduled—scheduled consumption of appliance q at hour h;

Conh
i,j—consumption of shifted appliance i ∈ {PIA} to hour h plus consumption of shifted

appliance j ∈ {PNIA} to hour h± d;
Disconh

i,j—consumption of shifted appliance i ∈ {PIA} from hour h plus consumption of shifted
appliance j ∈ {PNIA} from hour h ± d;
d—time interval before and after hour h that is required by PNIA appliances to operate.

When shifting a programmable interruptible appliance (PIA), the total consumption for peak and
off-peak hours becomes:

Co f f−peak
t ← Co f f−peak

t + Cpeak
app (2)

Cpeak
t ← Cpeak

t − Cpeak
app (3)

where:

Co f f−peak
t —total consumption at off-peak hour;

Cpeak
t —total consumption at peak hour with at least one programmable appliance that can

be shifted;
Cpeak

app —consumption of programmable appliance that shifts from peak to off-peak hour;
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It means that the off-peak consumption increases by the shifted consumption of PIA, while the
peak consumption decreases by the same amount.

For PIA, there is no need to calculate the operation duration since its operation can be interrupted.
If shifting a programmable non-interruptible appliance (PNIA), first we need to identify the start

and end operation hours of the appliance and calculate its operation duration:

dPNIA = peakstop_h − peakstart_h + 1 (4)

where:

dPNIA—operation duration for PNIA;
peakstop_h, peakstart_h—start and end operation hours at peak;

Then, the shifting algorithm verifies the possible starting hours (status matrix S) around off-peak
hour proximity to find o f f _peakstart_h (start operation hour at off-peak) and accordingly shifts the
appliance. Starting from k = o f f _peakstart_h to o f f _peakstart_h + dPNIA − 1 and p = peakstart_h to
peakstart_h + dPNIA − 1, then:

Ck
app ← Cp

app (5)

Ck
t ← Ck

t + Cp
app (6)

Cpeak
t ← Cpeak

t − Cp
app (7)

Also, the consumption in the proximity of the peak hour will decrease due to the fact that PNIA
may start/end operation before or after the peak hour.

In all proposed algorithms, the appliances are shifted until the total consumption at peak hour
with at least one programmable appliance that can be shifted (Cpeak

t ) is smaller or equal to the average
consumption and the total off-peak consumption plus shifted consumption is greater or equal to the
total peak consumption that has programmable appliances that can be moved.

Cpeak
t ≤ Cavg or Co f f−peak

t + Cpeak
app ≥ Cpeak

t (8)

where Cavg represents the average hourly consumption.
Shifting Algorithm 1 identifies peak and off-peak hours at each iteration. Then, the appliance

with the smallest consumption (for the peak hour) is shifted from peak to off-peak hour by calling
procedure SHIFT_APPLIANCE (app). This procedure is implemented in Oracle PLSQL based on
Equations (2)–(7), depending on the type of shifted appliance (PIA or PNIA). The appliance will
be shifted only if its status is on at off-peak hour indicated by the consumer in the status matrix
S (So f f−peak

app = 1). Otherwise, the next smallest programmable appliance is considered for shifting.
Flowchart of the shifting Algorithm 1 is depicted in Figure 5.

We developed the algorithm as a stored procedure called LOAD_OPT_1 (p_C_type, p_Ci, p_S,
p_ToU, p_Cf, p_payment), where p_C_type is the vector type of appliances, p_Ci is the matrix of initial
consumption schedule, p_S represents status matrix of the programmable appliances and p_ToU is
the ToU tariff hourly vector, p_Cf is the matrix of final consumption schedule (out parameter) and
p_payment represents the total payment after shifting (out parameter).
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Algorithm 1 Gradual-shifting peak/off-peak algorithm

REPEAT
Cpeak

t := max
(

Ch
t

)
, ∀h = 1, . . . , 24

Co f f−peak
t := min

(
Ch

t

)
, ∀h = 1, . . . , 24

REPEAT

Cpeak
app := min(Cpeak

i,j ), ∀i ∈ PIA, ∀j ∈ PNIA

UNTIL (So f f−peak
app =1)

IF Co f f−peak
t + Cpeak

app < Cpeak
t THEN

ALL PROCEDURE SHIFT_APPLIANCE (app);
ENDIF

UNTIL Cpeak
t ≤ CavgEnergies 2018, 11, 138 13 of 28 

 

 
Figure 5. Flowchart of the shifting Algorithm 1. 

Shifting Algorithm 2 identifies consumption peak and shifts all programmable appliances to the 
consumption off-peak that is identified at each iteration. Flowchart of the shifting Algorithm 2 is 
depicted in Figure 6. 

The algorithm is implemented in the procedure LOAD_OPT_2 (p_C_type, p_Ci, p_S, p_ToU, 
p_Cf, p_payment). 

Algorithm 2 Gradual-shifting off-peak algorithm 
REPEAT : = max , ∀ℎ = 1, . . . , 24 

WHILE appliance can be shifted from peak DO : = min , ∀ℎ = 1, . . . , 24 
REPEAT := min , , ∀ ∈ , ∀ ∈  
UNTIL ( =1) 
IF + <  THEN 

CALL PROCEDURE SHIFT_APPLIANCE (app); 
ENDIF 

ENDWHILE 
UNTIL ≤  

Figure 5. Flowchart of the shifting Algorithm 1.

Shifting Algorithm 2 identifies consumption peak and shifts all programmable appliances to the
consumption off-peak that is identified at each iteration. Flowchart of the shifting Algorithm 2 is
depicted in Figure 6.
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The algorithm is implemented in the procedure LOAD_OPT_2 (p_C_type, p_Ci, p_S, p_ToU,
p_Cf, p_payment).

Algorithm 2 Gradual-shifting off-peak algorithm

REPEAT
Cpeak

t := max
(

Ch
t

)
, ∀h = 1, . . . , 24

WHILE appliance can be shifted from peak DO

Co f f−peak′

t := min
(

Ch
t

)
, ∀h = 1, . . . , 24

REPEAT

Cpeak
app := min(Cpeak

i,j ), ∀i ∈ PIA, ∀j ∈ PNIA

UNTIL (So f f−peak
app =1)

IF Co f f−peak
t + Cpeak

app < Cpeak
t THEN

CALL PROCEDURE SHIFT_APPLIANCE (app);
ENDIF

ENDWHILE
UNTIL Cpeak

t ≤ Cavg
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Shifting Algorithm 3 identifies consumption peak and shifts all possible programmable appliances
to the consumption off-peak. After shifting all programmable appliances, the consumption peak and
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off-peak hours are again identified and reiterate the process. Flowchart of the shifting Algorithm 3 is
depicted in Figure 7.

We develop procedure LOAD_OPT_3 (p_C_type, p_Ci, p_S, p_Tou, p_Cf, p_payment) to
implement the algorithm.

Algorithm 3 Lump-shifting algorithm

REPEAT
Cpeak

t := max
(

Ch
t

)
, ∀h = 1, . . . , 24

Co f f−peak
t := min

(
Ch

t

)
, ∀h = 1, . . . , 24

WHILE appliances can be shifted from peak TO off-peak DO

IF So f f−peak
app =1 AND Co f f−peak

t + Cpeak
app < Cpeak

t THEN
CALL PROCEDURE SHIFT_APPLIANCE (app);

ENDIF
ENDWHILE

UNTIL Cpeak
t ≤ Cavg

A comparative analysis of the results achieved by these three algorithms is performed in Section 5.
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4.2. M2—Load Profiles Model. Self-Organizing Maps Algorithm for Load Profiles

The electricity consumption data hourly collected from 212 consumers’ apartments over one
year is used to determine load profiles. Thus, we organize the input variables based on the type
of consumption (heating, cooling, ventilation, indoor lighting etc.) and total consumption of each
consumers. The variables are provided as vectors CL ∈ Rn, where n represents the number of inputs
determined from consumption type and total consumption.

We develop a clustering algorithm based on self-organizing maps (SOM), an unsupervised
learning that uses a neighborhood function for grouping inputs with similar behavior. This method
builds groups/clusters based on distances between the neuron with the highest degree of similarity to
the input vector and its neighbors. Self-organizing maps are matrix-based neural networks in which
nodes are transformed accordingly to input vectors (classes). The algorithm performs in five steps,
as follows:

Step 1: the network is initialized with random values for weight vectors of the nodes wi and an
input vector CL(t) is chosen randomly from the training set;

Step 2: network parameters are configured:

• a neighborhood function Fcn (i, j, t) is chosen for determining the distances between neuron
i and neuron j based on their similarities at each step t. It is recommended to establish
a larger proximity (60–70%) for the first iterations that will be progressively reduced
during learning;

• the learning rate α(t) ∈ [0, 1] is initialized. It represents a monotonically decreasing
coefficient used for adjusting the distances between neurons;

• the network topology is chosen for setting up connections of the nodes;
• a number of maximum iterations (tmax) is provided for training.

Step 3: process each node in the map to find the similarity between the input vector and the
weight vector of the map. The neighborhood function is applied and the neuron with the weight vector
that is most similar to the input vector is chosen. This is called best matching unit (BMU).

Step 4: The weights of BMU and its neighbors are adjusted as follows:

wi(t + 1) = wi(t) + α(t)× Fcn(i, j, t)× (CL(t)− wi(t)) (9)

Step 5: move to the next iteration t and repeat Step 3 until t = tmax or α(t) = 0.
We implemented the SOM algorithm in Oracle PLSQL as a stored procedure called

LOAD_PROF_SOM (tmax, nlayer, mlayer), where:

• tmax is the maximum number of iterations;
• nlayer and mlayer is the number of nodes representing dimension of the maps (nlayer × mlayer).

The procedure uses Euclidean distance for neighbourhood function Fcn (i, j, t).

4.3. M3—Consumption Forecast Model. ANN Algorithm for Consumption Forecast

Our proposed algorithm for consumption forecast is based on feedforward artificial neural
networks (ANN) with backpropagation. The electricity consumption (Y) can be determined by
training the ANN on several instances of the input vector X that consists of exogenous factors such as:
temperature, wind speed, wind direction and humidity. Beside these factors, we may consider type of
the day (working or week-end), hour and load profile of the consumer. These inputs are organized in
the vector X = (x1, . . . , xi, . . . , xm)

′, ∀i = 1, m, where m is the number of the input variables.
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For the ANN architecture, we consider only one hidden layer H with p neurons and we use the
activation function fH(X) for the output layer as follows:

Y = fH(X) = fH(bh +
p

∑
j=1

whj × hj) (10)

where:

bh—bias of the hidden layer H;
whj—represents the weight between the neuron j of hidden layer H and the output layer Y,
∀j = 1, p;
hj—value of neuron j of the hidden layer H, ∀j = 1, p determined as follows:

hj = f j(X) = f j(bxj +
m

∑
i=1

wxij × xi), ∀j = 1, p (11)

where:

f j(X)—activation function of the hidden layer;

bxj—bias of the input layer for each neuron of the hidden layer;

wxij—weight between each input neuron i and each neuron j of the hidden layer, ∀i = 1, m and
∀j = 1, p;

For initializing the ANN parameters, we develop in Oracle PLSQL a stored procedure called
INIT_ANN_LOAD (WX, BX, WH, bh, m, p), where WX and WH are arrays of weights, BX and bh
represents biases, m is the number of inputs and p is the number of neurons of the hidden layer.
The weights and biases are initialized with random values between 0 and 1.

In order to train the network, we standardize the input values with Min-Max method that scales
the inputs to a fixed range of 0–1:

x′i =
xi −mini

maxi −mini
(12)

where:

mini—minimum of all elements in the data set of each input xi;
maxi—maximum of all elements in the data set of each input xi.

For standardization, we develop a procedure in Oracle PLSQL called MIN_MAX_ANN_LOAD().
The forecasting algorithm needs a proper training and validation steps and, in order to provide

representative values for each step, we develop a procedure called SPLIT_ANN_LOAD (p_quota) that
uses a hash function to randomly split the dataset in two parts, according to parameter p_quota.

During the training step, the weights and biases are progressively adjusted in order to fit the
functions fH(X) and f j(X). We consider the linear transfer approach for their implementation.
The adjustments are made by minimizing the error function E(Ŷ,Y) between the actual value of
electricity consumption Ŷ and the predicted value Y. The error function aggregates the errors for each
pair (Ŷq, Xq) of the training set Q:

E(Ŷ,Y) =
1

2Q

Q

∑
q=1

(Ŷq −Yq)
2 (13)
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The weights and biases are adjusted using a faster version of the gradient descend called Nesterov
method. In this case the adjustments are made based on the gradients of the previous two iterations
(t and t − 1):

wht+1
j = (1− δt)×

(
wht

j − lr×∇Et(wht
j)
)
+ δt ×

(
wht−1

j − lr×∇Et−1(wht−1
j )

)
(14)

wxt+1
ij = (1− δt)×

(
wxt

ij − lr×∇Et(wxt
ij)
)
+ δt ×

(
wxt−1

ij − lr×∇Et−1(wxt−1
ij )

)
(15)

bxt+1
j = (1− δt)×

(
bxt

j − lr×∇Et(bxt
j)
)
+ δt ×

(
bxt−1

j − lr×∇Et−1(bxt−1
j )

)
(16)

bht+1 = (1− δt)×
(
bht − lr×∇Et(bht))+ δt ×

(
bht−1 − lr×∇Et−1

(
bht−1

))
(17)

where:

lr—learning rate between 0 and 1;
∇Et(wht

j)—direction of the gradient of Et at wht
j. ∇Et is calculated for each weight and bias.

δt—dynamic coefficient that starts with 1 and is iteratively updated based on λt calculated as:

δt =
1− λt

λt+1
(18)

λt =
1 +

√
1 + 4× λ2

t−1

2
; λ0 = 0; (19)

Since the forecasting algorithm is performed for each profile determined in model M2, flowchart
of load profiles algorithm and consumption forecast algorithm is depicted in Figure 8. Training of the
ANN is performed only once for a certain dataset, then once a month a validation process is performed
to update the weights and biases based on the recent measurements. These steps are depicted in
Figure 8 with dashed line.

For implementing the Nesterov method, we develop a stored procedure in Oracle PLSQL called
TRAIN_ANN_LOAD (p_lr, max_epoch, eps) that initializes the learning rate with the value of p_lr.
Parameter max_epoch limits the training of the ANN to a maximum number of iterations and eps
provides the tolerated error.

The consumption forecast algorithm will provide the output for the next h hours based on the
parameter of the procedure TEST_ANN_LOAD (p_h) developed for testing the algorithm.
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5. Results

5.1. Testing the Optimization Algorithms

For optimizing the operation of the appliances, the consumer should provide only the day-ahead
desirable schedule for all appliances (for simplicity, the individual consumption in Wh was divided
by ten) based on their type as in Table 2 and the programmable appliances’ status matrix (S) or the
possible operation time interval, where 1 is on and 0 is off as in Table 3. The consumption of all NPA is
summed up since they cannot be involved in optimization process. Table 2 provide an example of a
24-h appliances’ schedule for four PIA and three PNIA
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Table 2. Initial consumption schedule.

Hour
App 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

NPA 10 9 7 7 7 8 9 11 11 10 9 9 9 10 10 11 13 14 14 16 19 20 15 13
D1 PIA 2 2 1 2 2 1
D2 PIA 2 3 2 3
D3 PIA 1
D4 PIA 2 4 2

D5 PNIA 4 1 1
D6 PNIA 2 1
D7 PNIA 1 1 1 1
INITIAL 10 9 7 7 9 11 9 15 13 11 10 9 9 10 10 13 16 18 21 21 22 22 18 13

Table 3. Status matrix (S) of the programmable appliances.

Hour
App 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

D1 PIA 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
D2 PIA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
D3 PIA 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
D4 PIA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

D5 PNIA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
D6 PNIA 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
D7 PNIA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The proposed optimization algorithms identically shifts the programmable appliances from peak
to off-peak hours, according to Figure 9, the differences appear at the off-peak hours. However,
after optimization, the hourly consumption peak reduction is between 9.1% (at hour 22) and 33%
(at hour 19).
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Figure 9. Initial and optimized daily consumption considering the three algorithms.

The Algorithms 1 and 3 are similar, while the Algorithm 2 better deals with flattening the
consumption especially at the off-peak hours.

From Figure 10 it can be noticed that PIA and PNIA appliances that operate at peak are shifted to
off-peak hours according to the proposed algorithms.

For payment evaluation, we consider two ToU tariffs as in Figure 11 that are applied to the
optimized hourly consumption. ToU tariff A discourages the consumption at peak hours (18, 19) being
significantly higher than ToU tariff B, but for the rest of the day, it is slightly smaller than ToU tariff
B. Both tariffs encourage the night electricity consumption when the tariff is lower. Based on the
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simulation results, the supplier may transparently choose to implement a specific tariff that is the most
convenient for the electricity consumer.
Energies 2018, 11, 138 20 of 28 

 

Figure 10. Consumption of different type of appliances for initial schedule and shifting algorithms. 

 
Figure 11. Time-of-use tariffs. 

Then, in Figure 12 we show the payment for electricity consumption considering the results of 
the optimization algorithms and the above ToU tariffs. It results that regardless the ToU tariff, the 
least expensive case is given when Algorithm 2 is applied. 

 
Figure 12. Daily electricity payment. 

Although, the three algorithms ensure a consumption peak reduction between 9.1% and 33%, 
considering the two ToU tariffs, they generate different electricity payments. Further adjustable 
operation of appliances such as air-conditioning, lighting and heating could be considered to increase 
the flatness of the load curve. Therefore, for these scenarios, the most expensive algorithm is the third 

0
2
4
6
8

10
12
14
16
18
20
22

1 3 5 7 9 11 13 15 17 19 21 23

Initial NPA PIA PNIA

0
2
4
6
8

10
12
14
16
18
20

1 3 5 7 9 11 13 15 17 19 21 23

Algorithm 1 NPA PIA PNIA

0
2
4
6
8

10
12
14
16
18
20

1 3 5 7 9 11 13 15 17 19 21 23

Algorithm 2 NPA PIA PNIA

0
2
4
6
8

10
12
14
16
18
20

1 3 5 7 9 11 13 15 17 19 21 23

Algorithm 3 NPA PIA PNIA

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Eu
ro

 c
en

ts

Hour

ToU tariff A

ToU tariff B

4050

4150

4250

4350

4450

4550

ToU A: Initial Alg1 Alg2 Alg3 ToU B: Initial Alg1 Alg2 Alg3

Eu
ro

 c
en

ts

Figure 10. Consumption of different type of appliances for initial schedule and shifting algorithms.

Energies 2018, 11, 138 20 of 28 

 

Figure 10. Consumption of different type of appliances for initial schedule and shifting algorithms. 

 
Figure 11. Time-of-use tariffs. 

Then, in Figure 12 we show the payment for electricity consumption considering the results of 
the optimization algorithms and the above ToU tariffs. It results that regardless the ToU tariff, the 
least expensive case is given when Algorithm 2 is applied. 

 
Figure 12. Daily electricity payment. 

Although, the three algorithms ensure a consumption peak reduction between 9.1% and 33%, 
considering the two ToU tariffs, they generate different electricity payments. Further adjustable 
operation of appliances such as air-conditioning, lighting and heating could be considered to increase 
the flatness of the load curve. Therefore, for these scenarios, the most expensive algorithm is the third 

0
2
4
6
8

10
12
14
16
18
20
22

1 3 5 7 9 11 13 15 17 19 21 23

Initial NPA PIA PNIA

0
2
4
6
8

10
12
14
16
18
20

1 3 5 7 9 11 13 15 17 19 21 23

Algorithm 1 NPA PIA PNIA

0
2
4
6
8

10
12
14
16
18
20

1 3 5 7 9 11 13 15 17 19 21 23

Algorithm 2 NPA PIA PNIA

0
2
4
6
8

10
12
14
16
18
20

1 3 5 7 9 11 13 15 17 19 21 23

Algorithm 3 NPA PIA PNIA

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Eu
ro

 c
en

ts

Hour

ToU tariff A

ToU tariff B

4050

4150

4250

4350

4450

4550

ToU A: Initial Alg1 Alg2 Alg3 ToU B: Initial Alg1 Alg2 Alg3

Eu
ro

 c
en

ts

Figure 11. Time-of-use tariffs.

Then, in Figure 12 we show the payment for electricity consumption considering the results of
the optimization algorithms and the above ToU tariffs. It results that regardless the ToU tariff, the least
expensive case is given when Algorithm 2 is applied.
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Figure 12. Daily electricity payment.

Although, the three algorithms ensure a consumption peak reduction between 9.1% and 33%,
considering the two ToU tariffs, they generate different electricity payments. Further adjustable
operation of appliances such as air-conditioning, lighting and heating could be considered to increase
the flatness of the load curve. Therefore, for these scenarios, the most expensive algorithm is the third
one, while the most rapid algorithm for electricity consumers is the second one; it also provides more
savings. Through the web-service interface, the consumers run in parallel all three algorithms, analyze
the results and choose the most convenient option in terms of payment.

According to Table 4, the second algorithm with ToU A tariff provides the biggest savings (6.12%).
Also the implementation of these algorithms is done with different number of iterations as in Table 4.

From Table 4, we can conclude that ToU A is the most convenient tariff for householder that can
be stimulated to shift the operation of the programmable appliances for financial incentives.

Table 4. Electricity payment reduction for different optimization algorithms and ToU tariffs.

Algorithm_No. & ToU Tariff Electricity Payment Reduction % No. of Iterations

Alg1 ToU A 5.93 13
Alg2 ToU A 6.12 8
Alg3 ToU A 5.42 10
Alg1 ToU B 2.39 13
Alg2 ToU B 2.52 8
Alg3 ToU B 1.80 10

5.2. Testing the Load Profile Algorithm

For simulations on the set of 212 consumers’ data, we set the maximum number of iterations
tmax = 1000; as for the number of neurons, we test three scenarios: (i) 3 × 3; (ii) 2 × 3 and (iii) 2 × 2.
For each option, we run the algorithm and analyse the results.

(i) In the first scenario, the algorithm determined nine load profiles (P_I.1, . . . , P_I.9) as in Figure 13,
where we can observe that there are similarities between several profiles (P_I.1, P_I.2, P_I.4, P_I.5,
P_I.6, P_I.9) and only P_I.3, P_I.7 and P_I.8 are well-delimited from other profiles. Also, the most
profiles differ only in the amplitude (peak or off-peak consumption level), except P_I.3, P_I.7 and
P_I.8 which have a different consumption pattern.

(ii) In the second scenario, we determine six load profiles on a 2 × 3 layers architecture that are
shown in Figure 14. Profiles P_I.1, P_I.2, P_I.4, P_I.5, P_I.6, P_I.9 from the first scenario with
similar consumption patterns are clustered in 4 profiles better delimited. Also, P_I.3 from the first
scenario maintains its cluster, now P_II.2. P_I.7 and P_I.8 from the first scenario are now grouped
in one profile, P_II.5. Therefore, this scenario offers better delimitation of the load profiles and
provides a more accurate overview over groups of consumers.
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(iii) The third scenario determines four load profiles as depicted in Figure 15. As it can be observed,
P_II.2 maintains its place and also P_II.5 from the second scenario. P_III.3 increases its members
by adding some members from P_II.6 and P_II.1 from the second scenario. P_III.1 and P_III.4
include members from previous P_II.1 and P_II.6, respectively P_II.3 and P_II.4.

This scenario offers a better delimitation than the second scenario, but in case the electricity
supplier needs a more detailed perspective over consumers’ segmentation, the second scenario can be
applied. As a consequence, we decided to develop a comparative analysis section in the web-service
interface to allow the electricity supplier to visualize, compare and decide over the number of load
profiles that can be achieved.
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5.3. Testing the Consumption Forecast Algorithm

Simulations are performed on the 212-consumer dataset and, in addition to consumption
measurements, we add hourly recorded weather data for temperature, humidity, wind speed and
wind direction. Also, we add as inputs three more variables: type of day (working or weekend), hour
and cluster (load profile) determined with LOAD_PROF_SOM procedure. The input vector X has the
following structure:

X = (x1, x2, x3, x4, x5, x6,x7)
′ (20)

where:

x1—temperature;
x2—humidity;
x3—wind speed;
x4—wind direction;
x5—type of day, x5 ∈ {1, 2};
x6—hour, x6 ∈ {1, 2, . . . , 24};
x7—profile, x7 ∈ {1, 2, 3, 4, 5, 6} or x7 ∈ {1, 2, 3, 4} depending on the electricity
supplier’s option.

The output Y is the total electricity consumption of each cluster. For estimating the accuracy, we
use root-mean-square error (RMSE) and correlation coefficient (R), the results being centralized in
Table 5 for each cluster, testing for the 4 profiles scenario.

Table 5. Performance measures for each profile.

Profile
Performance RMSE R

P_III.1 4.58 0.9978
P_III.2 5.64 0.9982
P_III.3 3.67 0.9956
P_III.4 4.35 0.9974

In Figure 16, the consumption forecast for profile P_III.1 is compared with the actual consumption.
The error is also depicted.

Consumption forecast algorithm is re-validated at every 30 days in order to update its weights
and biases with the newest inputs for weather conditions and consumers’ profiles. Thus, any potential
change in the consumer behavior is reflected in the load profiles and then in the forecasting algorithm.
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6. Interfaces of the Prototype

In order to implement the informatics prototype that is mainly designed to serve the requirements
of consumers and electricity suppliers/grid operators, we used the following technologies: Oracle
Database 12c for data management, including development of stored procedures described in Section 4,
and Oracle JDeveloper 12c with Application Development Framework (ADF) for developing the
web-services interfaces. Users access the web-services through online interfaces integrated in a web
portal. Each type of user (electricity consumer, supplier or grid operator) may access the portal and
interact with customized interfaces.

The electricity consumers access their individual ECMI available in the portal to manage
consumption places and visualize the allocated electricity tariffs. Also, they can configure appliances
by setting the type of each appliance and hourly consumption (page Scheduler of the portal).
In addition, the status matrix of the programmable appliances is also required by the shifting algorithms.
After configuration of appliances, consumers access the optimization model M1 (Consumption
optimization page). The shifting algorithms are run in parallel, the final schedule and total payment
are generated for each algorithm. Consumers choose the best option that minimize the consumption
payment. However, the results in terms of savings and peak reduction depend on the flexibility of
each consumer and share of programmable appliances.

In Figure 17 (page Monitor the appliances), the consumers monitor the electricity consumption
by category of consumption (left section of the page) during a selected period and visualize hourly
operation of appliances for a given consumption place that can be also selected from a list (top-right
section of the page). Also, the hourly consumption data for each appliance is depicted (bottom section
of the page). Since the operation of each appliance is displayed, its share can be analyzed and the
consumer may identify the energy intensive appliances and choose to replace them and therefore
decrease the electricity consumption.
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Other pages of the ECMI portal provide access to tariffs, consumption analyses over types of
appliances, daily and historical analyses of consumption with charts, tables, selectors and gauges.

The electricity supplier accesses the CC through the portal interfaces (Figure 18) to manage
consumers data (page Consumers Info) and set up tariffs for consumers (page Tariffs). Also, the
supplier accesses model M2 (page Load Profiles) to select the number of profiles and run the load
profile algorithm (bottom section of the page), visualizing the number of consumers that belong to
each profile and their average, peak and off-peak consumption (top section of the page).
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Moreover, the supplier analyses the distribution of the average, peak and off-peak consumption
for a selected date and hour by customizing the pivot table from the bottom of the page.

The electricity supplier can also analyse consumption for each place or over aggregated locations
(in page Daily consumption info) and can perform historical analyses (page Historical analyses)
by comparing the actual consumption with records of the previous days. The hourly electricity
consumption can be analysed based on types of appliances.
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In Consumption Forecast page, the electricity supplier accesses model M3 to run the consumption
forecast algorithm selecting the corresponding number of hours to forecast. Then, the accuracy of the
model can be calculated for previous forecasts.

Other portal sections provide access to billing system, real-time distribution of the consumption
over types of appliances and analytical reports for advanced analyses over locations, type of consumers
and profiles.

The portal is currently under development and partially tested by an electricity supplier with 5%
market share in Romania. The development involves prosumers, extending the type of appliances,
other utilities integration, electric vehicles and improving the optimization algorithms by considering
not only shifting, but also adjusting of some appliances. In order to facilitate the use of portal, we
also consider to introduce algorithms that can provide suggestion for day-ahead schedule based on
consumption patterns.

7. Discussion

Consumption optimization brings significant benefits to consumers, suppliers and grid operators
since it reduces the investment requirements related to onerous grid infrastructure. Based on advanced
tariffs and other DSM measures, the consumers become more and more active and are motivated
to schedule their appliances. For consumption optimization, we propose three algorithms that shift
the programmable appliances to flatten the peak, since by this objective, multiple benefits can be
achieved by the electricity consumers, suppliers and grid operators. It will also lead to the reduction
of electricity consumption payment due to the fact that at off-peak hours the tariff is lower; some
investment in grid facilities can be avoided or postponed; the suppliers’ acquisition market strategies
will be improved; losses will be reduced; and generators are less stressed. The mere objective of
diminishing the electricity payment by shifting the appliances from high rate to low rate tariff intervals
is only a temporary solution since new peaks may emerge and thus always new design of ToU tariff
is required. Usually, the reduction of electricity payment does not lead to the reduction of peak
consumption; on the contrary the peak can be higher than without optimization.

Electricity suppliers combine the optimal schedule with advanced tariffs such as ToU, critical
pricing or real-time tariffs that encourage the consumption at off-peak hours. Based on the design of
advanced tariffs, the consumers will change their behavior and shift the operation of the appliances
accordingly. Therefore, we compare the results of the three algorithms combined with two ToU
tariffs. The proposed algorithms shift the programmable appliances from peak to off-peak hours,
with significant changes at the off-peak hours. The hourly consumption in the evening when peak
occurs decreases between 9.1% (at hour 22) and 33% (at hour 19). For payment evaluation, it results
that, the least expensive case is given when Algorithm 2 is applied (6.12% savings with ToU A tariff).
Also, Algorithm 2 is the most rapid (lowest number of iterations). Shifting Algorithm 2 identifies
consumption peak and shifts all programmable appliances to off-peak hour that is identified at each
iteration, while ToU tariff A discourages the consumption at peak hours, but for the rest of the day, it is
slightly smaller than ToU tariff B. Regardless the shifting algorithm, the biggest savings are recorded by
implementing the ToU tariff A, therefore the consumers are rewarded when they shift the appliances
from peak to off-peak hours. We may conclude that Algorithm 2 in combination with ToU A tariff are
the most convenient for householder that can be stimulated to shift the operation of the programmable
appliances for financial incentives.

For obtaining consumption profiles, we develop a clustering algorithm based on self-organizing
maps. By running the algorithm for three scenarios, different well-delimited profiles are performed.
Thus, through the prototype’s interface, the supplier can choose to visualize a different number of
profiles that are input data in consumption forecast. As for the consumption forecast, feedforward
artificial neural networks algorithm with backpropagation is implemented. High accuracy of the
results helps supplier to improve market strategy. It also helps grid operators to better plan grid
capacity and other resources. Finally, we test algorithms showing their performance and integrate
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them into an informatics solution as a prototype. This solution can be replicated on other database
platforms, even on open source platforms, by implementing the algorithms in other programming
languages. To support the replication, we provide detailed flowcharts for the proposed algorithms,
refine the main flowchart of the methodology and describe the interaction among the components and
architecture of the prototype.

As a further development of our prototype, we consider to include prosumers’ activities and also
the effect of electrical vehicles and storage systems will be analyzed. Moreover, we will consider the
heat pumps, with additional datasets provided by sensors for measuring the interior temperature
and humidity.

However, regardless the incentives provided by supplier, some consumers will not change their
behavior. By offering an easy to use mobile or web-serviced applications that are less time-consuming
and user-friendly, the share of reluctant consumers may decrease. Based on data mining algorithms,
the application can suggest possible day-ahead schedule of appliances and the tasks of consumers will
be diminished; they only have to confirm or make minor modifications. Therefore, we will consider
data mining algorithms for suggestions of scheduling to improve our prototype.

8. Conclusions

In this paper, we present an informatics solution for consumption management that assists
consumers, suppliers and grid operators in finding the best decisions regarding consumption
optimization and forecast, identification of intensive appliances and profiles. Also, the solution leads
to both peak consumption and payment minimization, improves the consumption forecast accuracy
and increases the awareness regarding the consumption management. The solution is developed based
on web-services that offer friendly interfaces, both consumers and suppliers/grid operators being able
to visualize data through interactive controls such as reports, pivot tables, charts, maps, scenarios
and various gauges. It comprises three models for consumption optimization, profiles clustering and
forecasts that mainly use input consumption data from smart meters and sensors.

As a novelty, the input data is transformed and loaded into a relational cloud database and also
the proposed algorithms are implemented as stored procedures in the same database, increasing the
performance of the processing algorithms, avoiding additional software tools for implementation.

For energy efficiency improvement, we propose to shift appliances to reduce the peak
consumption and increase savings by avoiding onerous cost related to additional grid infrastructure.
Moreover, by this solution, the consumers are able to monitor electricity consumption at the appliance
level and identify the energy intensive appliances that can be replaced to reduce the electricity
consumption and further increase the savings. Also, by our approach, the consumption profiles
and forecast aim to increase the predictability of the consumption, improve the market strategies of
suppliers that lead to electricity tariff reduction and enable sustainable development of power systems.
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