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Abstract: This paper describes the 400 kV AC submarine link under the Dardanelles Strait composed
of 12 submarine armoured single-core cross-linked polyethylene (XLPE)-insulated cables (plus
a back-up power cable). The link consists of two parallel-operated double-circuit links named
Lâpseki–Sütlüce I and Lâpseki–Sütlüce II. The transmissible power is 4000 MW (1000 MW per circuit)
and the average length for a single-core cable is about 4.6 km: the submarine cables are part of overhead
lines. This paper gives a wide account of the cable installations and, chiefly, of the cable protections on
the seabed: different protection choices were extensively used (i.e., water jetting and mattressing).

Keywords: submarine single-core armoured cables; submarine cross-linked polyethylene insulated
cables; cable protections

1. Introduction

The Turkish high voltage (HV) transmission grid is highly modern. In the first years of HV
electrification (around 1968), the Turkish grid was constituted by 154 kV overhead lines supplying only
the most important cities: in those years, the load peak was about 1.5 GW. Nowadays, the load peak is
about 47.5 GW with an energy demand of about 250 TWh. The modernization and reinforcement of
the Turkish grid have been witnessed by Professor Francesco Iliceto in his consultant activity and in
his papers [1–4].

The transmission network is composed of about 21,000 km of Extra High Voltage (EHV) lines
(400 kV) and 39,000 of HV lines (154 kV). The power plants have a rated power of about 81 GW
(almost equally shared between hydroelectric, coal thermoelectric, and turbo-gas plants). A great
achievement of the Turkish transmission system operator (TEIAŞ) is the interconnection with the
ENTSO-E grid. Turkey is interconnected with the Bulgarian and Greek grids by means of three 400 kV
A.C. overhead interties. The synchronous parallel is strongly helped by the use of Special Protection
Systems (with acronym SPSs) also called System Integrity Protection Schemes. These SPSs are installed
in the two Turkish interconnection substations (with the aforementioned Greek and Bulgarian grids).
The active powers flowing through these three interties are measured and updated every 50 ms.
These measurements are then sent to the SPS computing system which sums them and computes
the time derivative and its average value every 1.5 s. If this average value and the above-mentioned
algebraic sum exceed prefixed thresholds (expressed in MW/s and in MW) along with a sign indicating
that the power import is increasing, SPSs control the load shedding of 12 substations (154/34.5 kV) for
a total of 1200 MW.
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2. Description of the Link

In this scenario, the installation of the cable systems and the erection of the associated 400 kV
overhead lines were economically justified in order to transmit a large power amount generated by
the power plants (located along the Southern coast of the Marmara Sea) to Istanbul, via the Western
corridor (Trakya) [5]. The cable systems link the Lâpseki substation (Asian side) with the Sütlüce
one (European side) across the Dardanelles Strait. The land and submarine cables are shown in
Figure 1, whereas Table 1 gives all their geometrical characteristics. With regard to Lâpseki–Sütlüce
I [5], the cable system consists of a proper submarine part (about 3850 m) and two land stretches
(the Lâpseki part about 600 m and the Sütlüce part about 150 m). The submarine part is operated in
solid bonding (with acronym SB), whereas the two land parts are operated in single-point bonding
(with acronym SPB) as shown in Figure 2.

As already mentioned, the cable lines are part of a mixed or hybrid line (cascade connections of
overhead–cable–overhead lines), as shown in Figure 3, which renders these links extremely interesting
from an electrical engineering research standpoint [6–21].

Energies 2018, 11, 164 2 of 15 

 

2. Description of the Link 

In this scenario, the installation of the cable systems and the erection of the associated 400 kV 
overhead lines were economically justified in order to transmit a large power amount generated by 
the power plants (located along the Southern coast of the Marmara Sea) to Istanbul, via the Western 
corridor (Trakya) [5]. The cable systems link the Lâpseki substation (Asian side) with the Sütlüce one 
(European side) across the Dardanelles Strait. The land and submarine cables are shown in Figure 1, 
whereas Table 1 gives all their geometrical characteristics. With regard to Lâpseki–Sütlüce I [5], the 
cable system consists of a proper submarine part (about 3850 m) and two land stretches (the Lâpseki 
part about 600 m and the Sütlüce part about 150 m). The submarine part is operated in solid bonding 
(with acronym SB), whereas the two land parts are operated in single-point bonding (with acronym 
SPB) as shown in Figure 2. 

As already mentioned, the cable lines are part of a mixed or hybrid line (cascade connections of 
overhead–cable–overhead lines), as shown in Figure 3, which renders these links extremely 
interesting from an electrical engineering research standpoint [6–21]. 

 

Figure 1. (a) Land Milliken-type cable; (b) Submarine armoured single-core cable [5]. 

 
Figure 2. Screen bonding arrangements for the Lâpseki–Sütlüce I cable system. 

  

SB 

∼3850 m 

SPB 

∼600 m 

SPB 

∼150 m 

Figure 1. (a) Land Milliken-type cable; (b) Submarine armoured single-core cable [5].

Energies 2018, 11, 164 2 of 15 

 

2. Description of the Link 

In this scenario, the installation of the cable systems and the erection of the associated 400 kV 
overhead lines were economically justified in order to transmit a large power amount generated by 
the power plants (located along the Southern coast of the Marmara Sea) to Istanbul, via the Western 
corridor (Trakya) [5]. The cable systems link the Lâpseki substation (Asian side) with the Sütlüce one 
(European side) across the Dardanelles Strait. The land and submarine cables are shown in Figure 1, 
whereas Table 1 gives all their geometrical characteristics. With regard to Lâpseki–Sütlüce I [5], the 
cable system consists of a proper submarine part (about 3850 m) and two land stretches (the Lâpseki 
part about 600 m and the Sütlüce part about 150 m). The submarine part is operated in solid bonding 
(with acronym SB), whereas the two land parts are operated in single-point bonding (with acronym 
SPB) as shown in Figure 2. 

As already mentioned, the cable lines are part of a mixed or hybrid line (cascade connections of 
overhead–cable–overhead lines), as shown in Figure 3, which renders these links extremely 
interesting from an electrical engineering research standpoint [6–21]. 

 

Figure 1. (a) Land Milliken-type cable; (b) Submarine armoured single-core cable [5]. 

 
Figure 2. Screen bonding arrangements for the Lâpseki–Sütlüce I cable system. 

  

SB 

∼3850 m 

SPB 

∼600 m 

SPB 

∼150 m 

Figure 2. Screen bonding arrangements for the Lâpseki–Sütlüce I cable system.



Energies 2018, 11, 164 3 of 15

Table 1. Land and submarine cable geometrical characteristics (XLPE: cross-linked polyethylene;
PE: polyethylene).

Land Cable Submarine Cable

N Description Nominal
Diameter mm N Description Nominal

Diameter mm

1 Copper conductor M-type
watertight 58 1

Copper conductor with
aluminium central rod

watertight
52.6

2 Conductor Screen 61.6 2 Conductor Screen 55.6
3 XLPE insulation 116.7 3 XLPE insulation 112.6
4 Insulation Screen 119.8 4 Insulation Screen 115.6
5 Longitudinally Welded Al screen 124 5 Extruded lead screen 124.1
6 PE outer sheath 137.4 6 PE sheath 131.1

-
7 Bedding 133.1
8 Copper round wires armour 144.9
9 Serving 153
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3. A Brief Overview of the Submarine Cable Protection Techniques

It is worth mentioning that the first submarine cable for telegraphic purpose, installed between
England and France in 1850, was inadvertently cut by a French fisherman within the first 24 h of
operation [22]. In 1858, the first transatlantic cable (always for telegraphic purposes) between Ireland
and Newfoundland was just a little bit luckier and failed after 26 days of operation. Many submarine
cables were installed unprotected on the seabed in shallow water stretches until the 1980s and 1990s.
Without cable protections, third-party damages are a frequent reality. The engineering community has
always felt this issue so strongly that a paper [23] dated 1938 and emblematically entitled “Protection
of Submarine Cable by Placement Underground” stated that:

“a plow has been devised by engineers of the Western Union Telegraph Company which when pulled
along the ocean bottom is expected to cut a furrow, drop the cable into it, and back fill over the cable”.

When suitable subsea burial tools (e.g., jetting, trenching, and dredging machines) became
available in the 1980s, the burial and covering protections of more and more longer cable stretches
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became a common engineering practice. However, in 1986, only a small portion of submarine power
cables was externally protected [24]. Today, almost all submarine power cables are externally protected
by burial or covering (e.g., by means of mattresses or tubular products, or rock dumping) (see Figures 4
and 5).
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cutting; (d) open-trench dredging.
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It is worth remembering that these protections play also a key role in order to avoid possible
sabotages. Figure 6 shows the suitability of different burial techniques depending on the seabed
conditions [25]. The scales for cohesive and cohesionless soils are approximately reported on the x-axis.
The suitability of the different tools is reported on the y-axis.
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Table 2 reports a comparison among different burial techniques [25], and the text highlighted in
grey regards situations of a certain importance for the Lâpseki–Sütlüce installation.

Table 2. Comparison of Burial Techniques [25] (for the assessment see (1)).

Factor Hydro
Jetting Ploughing Mechanical

Cutting

Range of suitable soil conditions M H M
Uneven bathymetry H M L
High currents L H H
Low underwater visibility, high turbidity L H L
Very shallow water L (2) H M
Simultaneous lay and burial (SLB) M H L
Post-lay burial (PLB) H L (3) M (3)

Manoeuvrability H L M
Multipass capability H L (4) M (4)

Ability to bury bundled cables H M M
Ability to bury loops or repair joints M - -
Safety of cable during burial operation H L (5) M
Suitability in close proximity to infrastructure H L M
Backfill quality M H L
Environmental benignity M H M
Rate of progress M H L
Availability of suitable vessels H M (6) H
Mobilisation layout flexibility H L M
Ease of catenary/tow line management H M H

(1) Assessment: H = High/more favourable, M = Medium/neutral, L = Low/less favourable, - = not applicable;
(2) Requires water supply. Typical minimum water depths are 5 to 10 m for ROV based systems; (3) Requires subsea
loading of cable if start and end points are offshore; (4) Single pass only, except for pre-lay trenching operations;
(5) A cable manufacturer may recommend not using ploughing as a burial technique; (6) Large bollard pull required.
Due to size and weight of plough, generally launched over stern, not side.

Of course, the real installation or laying phase is only the last step of a long and precise process,
which foresees, at least, the following milestones:

â A route cable survey comprising of geophysical and geotechnical portions;
â A marine survey, which could include an extraction of samples from the seabed.

The milestones are not sequential, e.g., information will have to be gathered so the route can
be evaluated, but a tentative route must be chosen before a submarine survey can be done [26–33].
In any case, geotechnical investigations (meant as a direct measurement of the seabed and subsoil
physical properties, e.g., by in situ sampling with laboratory analysis [29]) and ground ones (commonly
including geotechnical investigations, geological studies, and geophysical surveys) must be performed
before the installation begins. It is worth noting that, as wholly demonstrated by the Cigré technical
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brochure # 398 [26], mechanical damages by human activities (cables damaged by natural events, e.g.,
landslides and earthquakes are less than 9% of cable faults) are the most common cause of cable failure.
The chief causes of submarine cable failure are:

â Fishing activity;
â Ship anchoring (chiefly in shallow water).

In general, relatively a small depth of cover is adequate for protection from fishing activities (for
many years the standard burial depth was 0.6 m). Fishing activities, which pose a threat, include
trawling by both beam and otter boards (there are other fishing techniques which can be dangerous for
cable integrity, like shellfish dredging and stow net fishing).

It is now common practice to bury cables up to a water depth of 1 km, however, cable damage
associated with fishing has been reported at depths of 1.2 km. In order to take this fact into account,
the cable industry is now being asked to achieve, on some projects, burial in water depths up to 1.5 km.
This is not the case of Lâpseki–Sütlüce I and II, since the maximum depth of the Dardanelles Strait
reaches about 0.1 km. Therefore, burial and protection of the 13 single-core cables were mandatory.

4. Assessment of Lâpseki–Sütlüce Optimal Burial Depth

The nature of the seabed soils clearly plays an important role in the depth into which anchors and
fishing gear could penetrate. Figure 7 shows that, with regard to fishing gears, a cover depth equal to
0.6 m gives good guarantees, even in soft soil, to avoid cable damages [26].

With regard to the anchor penetration depth into the seabed, it depends upon both the seabed
type and the anchor weight. It is rather impressive [26] that in soft seabed a 30 t anchor (see Figure 8)
can penetrate 5 m inside the seabed! With regard to the Lâpseki–Sütlüce I and II installations in the
Dardanelles Strait, an optimal burial depth hopt = 1.5 m (brown line in Figures 7 and 8) is a very good
measure to avoid anchor and fishing gear damages (with a minimum cover depth hmin = 1 m).

In order to compare this choice with other meaningful submarine installations [33], in the Oslofjord
project [34], the cables were mostly buried 1 m below the seabed in order to provide general cable
protection. This target was particularly important in the trawling areas. Cable and Wireless Global
Marine have developed the concept of a Burial Protection Index (BPI) [29], as shown in Figure 9.
This recognises the resistance of different seabed soils to penetration by anchors and fishing gears. It is
based on typical soil types encountered during cable installations; however, it must be remembered
that such soil mechanics is not an exact science.

The meaning of the BPI is:

â BPI = 0 Assumes that the cable is surface laid;
â BPI = 1 Depth of burial consistent with protecting a cable from normal fishing gear only;
â BPI = 2 Depth of burial gives protection from anchors up to approximately 2 t. This may be suitable

for normal fishing activity, but would not be for larger ships (e.g., large container ships, tankers);
â BPI = 3 Depth of burial sufficient to protect from anchors of all but the largest ships.

It is worth noting that this approach is not general, and consequently it must be used with
due care.

In any case, if the majority of the seabed in the part of Dardanelles Strait where the cables have
been laid is “coarse sand with gravels and cobbles” and the depth of cover ranges between hmin = 1 m
and hopt = 1.5 m, the BPI ranges between about 1.5 and 2: this should guarantee from fishing activities
and anchors up to 2 t. Subsequently, where it was not possible to reach hmin, the use of further
protections has been necessary.
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5. Verification of the Consistency of the Installation Choices of Lâpseki–Sütlüce

The marine survey conducted by Prsymian and Teiaş in order to define the final cable routes and
to gather information for the burial assessment survey (BAS) was wide, detailed, and comprehensive.

The work consisted of:

â A desktop study;
â A topographic survey at both landings from the shoreline to the sea/land joint bay area;
â A near-shore bathymetric survey;
â AN offshore marine survey.

Moreover, it was decided to enlarge the marine survey to 5 additional vibrocoring and to 3.5 km
offshore marine survey by a Remotely Operated Vehicle (ROV) for additional route development.
Ambient conditions (like seawater temperature and salinity) ought to be taken into account. One of
the route objectives is to avoid possible abrasion and damage caused by waves, tide, sea current,
moving sea bottom, etc. As fully demonstrated by the Sorgente–Rizziconi submarine part [11], it is
often necessary to select a cable route that may not be the shortest alternative. A distance between
parallel single-core cables (or multiple three-core ones) of 100–200 m (or twice the water depth) will
significantly lower the risk of damage to more than one cable due to one accident. In fact, the choice of
maximum spacing in Lâpseki–Sütlüce I between the seven single-core cables (meant as the spacing
between two adjacent cables) is about 250 m in correspondence to the maximum water depth of 100 m
(spacing/water depth ∼= 2.5). This should reduce the risk of multiple cable damage and guarantee
some available room for possible cable repair. The target is to find a seabed as smooth as possible and
to avoid:

1. Rough sea bottom, which may cause free spans, abrasion, or sidewall pressure on the cable;
2. Steep slopes (less than 15–20% is recommended);
3. Natural obstacles like boulders or even human past activities as wrecks, scrap, etc;
4. Areas where waves, high water currents, high tidal range, soil movements, or ice may cause

problems (it is not the case of the Lâpseki–Sütlüce submarine link);
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5. Cable crossings and other cables or services nearby (as it is the case of the Lâpseki–Sütlüce
submarine cables);

6. Too shallow water depth for cable laying, protection, and repair;
7. Too hard or too soft seabed;
8. Areas of existing and future marine activities like shipping channels, fishing areas.

Another merit of this detailed survey has been that the final selected routes were shorter than
the reference routes with a saving in the project costs. Seabed shows a terraced morphology with
few morphological steps with a slope locally greater than 15◦. With regard to the burial assessment
survey (BAS), the typologies of the seabed were categorized as in Table 3. It is worth noting that in
the P category seabed only surgical or micro trenching was foreseen. These seabed categories are also
shown in Figure 10 without reference to A, B, C, D, and P letters of Table 3.
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Table 3. Seabed categories encountered in the cable route.

Category Cover Depth (m) Seabed Conditions Protection

A >1.50 fine sediments (soft clay/silt) and/or coarse sediments
(loose to dense sand) with thickness >1.65 m

jettingB 1.00–1.50
fine sediments (soft to firm clay/silt) and/or coarse
sediments (loose to dense sand/fine gravel) with
thickness 1.15–1.65 m

C 0.75–1.00
fine sediments (soft to firm clay/silt) and/or coarse
sediments (loose to dense sand/fine gravel) with
thickness 0.90–1.15 m

D variable Subcropping/outcropping very coarse sediments (loose
gravel/pebbles/cobbles/possible boulders)

jetting attempt +
other protection

P approx. 0.50 Cymodocea nodosa prairie microtrenching

The spare cable route encounters the D category seabed (whose definition is “veneer
of loose coarse sediments, SAND/fine, GRAVEL over loose very coarse sediments, coarse
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GRAVEL/PEBBLES/COBBLES/possible boulders, subcropping/outcropping very coarse sediments”)
for a total length of 200 m. The D soil category is visible in orange in Figure 11 and it intersects the
two circuits for an almost equal length (for the northern circuit, including the spare phase, from 200
to 250 m, and for southern circuit from 110 m to 160 m). For this D category seabed, a given number
of vibrocore samples were extracted from the seabed (see Figure 12). The position of the vibrocore
sample with code VBC_27 is visible inside the orange zone and besides the spare cable in Figure 11.
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Seabed samples collected in the D area show the occurrence of thick levels of very coarse gravel
with cobbles (see Figure 12), in some cases accompanied by levels of clayey and silty sands. The gravel
is, at places, outcropping, as revealed by the ROV video inspection of Figure 13. The submarine survey
document reports that in D area boulders and blocks are present. The nature of the category D seabed
is also confirmed by other vibrocore samples extracted in the same area.

The intersection of the two circuits in the D category seabed occurs at the crossing with the
in-service (with acronym IS) telecommunication cable [35] named ITUR (see Figure 14).

The common practice of submarine cable installation considers a minimum safe distance from
IS cable crossings of 100 m on both sides, while, for jetting works, this safe distance is reduced up to
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20 m, if the soils and cable configuration allow. The unlucky occurrence that the category D seabed
is in correspondence to the IS ITUR and Mednautilus cables rendered the cable protection extremely
delicate and difficult.Energies 2018, 11, 164 11 of 15 
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MEDNAUTILUS, TURMEOS, and MEDTURK).

Prysmian tried several jetting passes (see Figure 15 for the employed jetting machine) and used
mattress covering when the cover depth was less than hmin. All the installation steps are summarized
in the flowchart of Figure 16.

In the Lâpseki–Sütlüce installation, ASSOMAT II was used to perform mattress covering (see
Figure 17). AssoMat II is a self-propelled autonomous installation frame.

Due to its dimensions (5.5 m × 2.9 m) along with four thrusters, AssoMat II can operate at high
water depths with adverse local conditions like high currents. Its control system allows an accurate
positioning of the mattresses along the protected route and a proper alignment of the sequence
of mattresses.
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In Lâpseki–Sütlüce, it was used when the hmin had not reached 1 m after several passes of jetting
activity in the stony seabed.
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This paper presents some technical features and installation characteristics of the 4 GW AC EHV 
submarine link under the Dardanelles Strait. This link is one of the very few EHV AC submarine 
cable systems with extruded insulation worldwide. Special attention was paid to the cable protection 
on seabed against third-party injuries due to the high maritime traffic on the Dardanelles Strait. 
Protection of the 400 kV cables was achieved by water jetting burial at 1.5 m in most of the routes. 
The 13 single-core cables have overcrossed four pre-existing in-service fibre optic cables laid on the 
sea bottom along the Strait. At the crossings, plastic separation sleeves were placed over the fibre 
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6. Conclusions

This paper presents some technical features and installation characteristics of the 4 GW AC EHV
submarine link under the Dardanelles Strait. This link is one of the very few EHV AC submarine
cable systems with extruded insulation worldwide. Special attention was paid to the cable protection
on seabed against third-party injuries due to the high maritime traffic on the Dardanelles Strait.
Protection of the 400 kV cables was achieved by water jetting burial at 1.5 m in most of the routes.
The 13 single-core cables have overcrossed four pre-existing in-service fibre optic cables laid on the
sea bottom along the Strait. At the crossings, plastic separation sleeves were placed over the fibre optic
cables, and concrete mattresses over the power cables.
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